1
|
Krin E, Carvalho A, Lang M, Babosan A, Mazel D, Baharoglu Z. RavA-ViaA antibiotic response is linked to Cpx and Zra2 envelope stress systems in Vibrio cholerae. Microbiol Spectr 2023; 11:e0173023. [PMID: 37861314 PMCID: PMC10848872 DOI: 10.1128/spectrum.01730-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE The RavA-ViaA complex was previously found to sensitize Escherichia coli to aminoglycosides (AGs) in anaerobic conditions, but the mechanism is unknown. AGs are antibiotics known for their high efficiency against Gram-negative bacteria. In order to elucidate how the expression of the ravA-viaA genes increases bacterial susceptibility to aminoglycosides, we aimed at identifying partner functions necessary for increased tolerance in the absence of RavA-ViaA, in Vibrio cholerae. We show that membrane stress response systems Cpx and Zra2 are required in the absence of RavA-ViaA, for the tolerance to AGs and for outer membrane integrity. In the absence of these systems, the ∆ravvia strain's membrane becomes permeable to external agents such as the antibiotic vancomycin.
Collapse
Affiliation(s)
- Evelyne Krin
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - André Carvalho
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Manon Lang
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Anamaria Babosan
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
2
|
Raghavan D, Patinharekkara SC, Elampilay ST, Payatatti VKI, Charles S, Veeraraghavan S, Kadiyalath J, Vandana S, Purayil SK, Prasadam H, Anitha SJ. New insights into bacterial Zn homeostasis and molecular architecture of the metal resistome in soil polluted with nano zinc oxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115222. [PMID: 37418939 DOI: 10.1016/j.ecoenv.2023.115222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Accumulation of nano ZnO (nZnO) in soils could be toxic to bacterial communities through disruption of Zn homeostasis. Under such conditions, bacterial communities strive to maintain cellular Zn levels by accentuation of appropriate cellular machinery. In this study, soil was exposed to a gradient (50-1000 mg Zn kg-1) of nZnO for evaluating their effects on genes involved in Zn homeostasis (ZHG). The responses were compared with similar levels of its bulk counterpart (bZnO). It was observed that ZnO (as nZnO or bZnO) induced a plethora of influx and efflux transporters as well as metallothioneins (MTs) and metallochaperones mediated by an array of Zn sensitive regulatory proteins. Major influx system identified was the ZnuABC transporter, while important efflux transporters identified were CzcCBA, ZntA, YiiP and the major regulator was Zur. The response of communities was dose- dependent at lower concentrations (<500 mg Zn kg-1 as nZnO or bZnO). However, at 1000 mg Zn kg-1, a size-dependent threshold of gene/gene family abundances was evident. Under nZnO, a poor adaptation to toxicity induced anaerobic conditions due to deployment of major influx and secondary detoxifying systems as well as poor chelation of free Zn ions was evident. Moreover, Zn homeostasis related link with biofilm formation and virulence were accentuated under nZnO than bZnO. While these findings were verified by PCoA and Procrustes analysis, Network analysis and taxa vs ZHG associations also substantiated that a stronger Zn shunting mechanism was induced under nZnO due to higher toxicity. Molecular crosstalks with systems governing Cu and Fe homeostasis were also evident. Expression analysis of important resistance genes by qRT-PCR showed good alignment with the predictive metagenome data, thereby validating our findings. From the study it was evident that the induction of detoxifying and resistant genes was greatly lowered under nZnO, which markedly hampered Zn homeostasis among the soil bacterial communities.
Collapse
Affiliation(s)
- Dinesh Raghavan
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala, India
| | | | | | | | - Sona Charles
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala, India
| | | | - Jayarajan Kadiyalath
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala, India
| | - Sajith Vandana
- National Institute of Technology, NIT Campus PO, Kozhikode, Kerala, India
| | | | - Haritha Prasadam
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala, India
| | | |
Collapse
|
3
|
Paredes A, Iheacho C, Smith AT. Metal Messengers: Communication in the Bacterial World through Transition-Metal-Sensing Two-Component Systems. Biochemistry 2023; 62:2339-2357. [PMID: 37539997 PMCID: PMC10530140 DOI: 10.1021/acs.biochem.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria survive in highly dynamic and complex environments due, in part, to the presence of systems that allow the rapid control of gene expression in the presence of changing environmental stimuli. The crosstalk between intra- and extracellular bacterial environments is often facilitated by two-component signal transduction systems that are typically composed of a transmembrane histidine kinase and a cytosolic response regulator. Sensor histidine kinases and response regulators work in tandem with their modular domains containing highly conserved structural features to control a diverse array of genes that respond to changing environments. Bacterial two-component systems are widespread and play crucial roles in many important processes, such as motility, virulence, chemotaxis, and even transition metal homeostasis. Transition metals are essential for normal prokaryotic physiological processes, and the presence of these metal ions may also influence pathogenic virulence if their levels are appropriately controlled. To do so, bacteria use transition-metal-sensing two-component systems that bind and respond to rapid fluctuations in extracytosolic concentrations of transition metals. This perspective summarizes the structural and metal-binding features of bacterial transition-metal-sensing two-component systems and places a special emphasis on understanding how these systems are used by pathogens to establish infection in host cells and how these systems may be targeted for future therapeutic developments.
Collapse
Affiliation(s)
- Alexander Paredes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Chioma Iheacho
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
4
|
Zhou L, Zhu X, Yang J, Cai L, Zhang L, Jiang H, Ruan H, Chen J. Deciphering the photoactive species-directed antibacterial mechanism of bismuth oxychloride with modulated nanoscale thickness. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117411. [PMID: 36758401 DOI: 10.1016/j.jenvman.2023.117411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
As an environmentally benign disinfection strategy, photocatalytic bacterial inactivation using nanoparticles involves photogenerated reactive species that cause cellular oxidative stress. Rationalising the structural performance of photocatalysts for the practical uses such as wastewater treatment has attracted significant attention; however, the contribution of reactive species to their photocatalytic antibacterial activities at the molecular and transcriptomic levels remains unclear. In this study, nontoxic bismuth oxychloride (BiOCl) photocatalysts with different nanoscale thicknesses, including nanosheets (Ns, ∼5.4 nm), nanoplates (Np, ∼1.8 nm), and ultra-nanosheets (Uns, ∼1.1 nm), were synthesised under hydrothermal conditions. Among the three samples, BiOCl Uns exhibited the most effective photocatalytic degradation efficiency with the calculated apparent rate constant of 0.0294 min-1, ∼4 times faster than that of Ns, whereas BiOCl Ns possessed the most pronounced bactericidal effect (5.4 log inactivation). Such findings indicate the distinct role of the photoactive species responsible for photocatalytic bacterial inactivation. Moreover, transcriptome analysis of Escherichia coli after photocatalytic treatment revealed that the underlying photocatalytic antibacterial mechanism at the genetic expression level involves cellular component biosynthesis, energy metabolism, and material transportation. Notably, the differences between BiOCl Ns and BiOCl Uns were significantly enriched in purine metabolism. Therefore, the cost-effective preparation of BiOCl nanosheets with nanoscale thickness-modulated photocatalytic antibacterial activity has remarkable potential for sustainable environmental and biomedical applications.
Collapse
Affiliation(s)
- Liuzhu Zhou
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinyi Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Yang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ling Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Li Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Hongjie Ruan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Lane, Nanjing, 210004, China.
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Luo Z, Li Z, Sun J, Shi K, Lei M, Tie B, Du H. Multiple mechanisms collectively mediate tungsten homeostasis and resistance in Citrobacter sp. Lzp2. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130877. [PMID: 36731318 DOI: 10.1016/j.jhazmat.2023.130877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Tungsten (W) is an emerging contaminant, and current knowledge on W resistance profiles of microorganisms remains scarce and fragmentary. This study aimed to explore the physiological responses of bacteria under W stress and to resolve genes and metabolic pathways involved in W resistance using a transcriptome expression profiling assay. The results showed that the bacterium Citrobacter sp. Lzp2, screened from W-contaminated soil, could tolerate hundreds of mM W(VI) with a 50% inhibiting concentration of ∼110 mM. To cope with W stress, Citrobacter sp. Lzp2 secreted large amounts of proteins through the type VI secretory system (T6SS) to chelate W oxoanions via carboxylic groups in extracellular polymeric substances (EPS), and could transport cytosolic W outside via the multidrug efflux pumps (mdtABC and acrD). Intracellular W is probably bound by chaperone proteins and metal-binding pterin (tungstopterin) through the sulfur relay system. We propose that tetrathionate respiration is a new metabolic pathway for cellular W detoxification likely producing thio-tungstate. We conclude that multiple mechanisms collectively mediate W homeostasis and resistance in Citrobacter sp. Lzp2. Our results have important implications not only for understanding the intricate regulatory network of W homeostasis in microbes but also for bio-recovery and bioremediation of W in contaminated environments.
Collapse
Affiliation(s)
- Zipei Luo
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Boqing Tie
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China.
| |
Collapse
|
6
|
Cho THS, Pick K, Raivio TL. Bacterial envelope stress responses: Essential adaptors and attractive targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119387. [PMID: 36336206 DOI: 10.1016/j.bbamcr.2022.119387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Millions of deaths a year across the globe are linked to antimicrobial resistant infections. The need to develop new treatments and repurpose of existing antibiotics grows more pressing as the growing antimicrobial resistance pandemic advances. In this review article, we propose that envelope stress responses, the signaling pathways bacteria use to recognize and adapt to damage to the most vulnerable outer compartments of the microbial cell, are attractive targets. Envelope stress responses (ESRs) support colonization and infection by responding to a plethora of toxic envelope stresses encountered throughout the body; they have been co-opted into virulence networks where they work like global positioning systems to coordinate adhesion, invasion, microbial warfare, and biofilm formation. We highlight progress in the development of therapeutic strategies that target ESR signaling proteins and adaptive networks and posit that further characterization of the molecular mechanisms governing these essential niche adaptation machineries will be important for sparking new therapeutic approaches aimed at short-circuiting bacterial adaptation.
Collapse
Affiliation(s)
- Timothy H S Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kat Pick
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Tripathi AK, Saxena P, Thakur P, Rauniyar S, Samanta D, Gopalakrishnan V, Singh RN, Sani RK. Transcriptomics and Functional Analysis of Copper Stress Response in the Sulfate-Reducing Bacterium Desulfovibrio alaskensis G20. Int J Mol Sci 2022; 23:1396. [PMID: 35163324 PMCID: PMC8836040 DOI: 10.3390/ijms23031396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Copper (Cu) is an essential micronutrient required as a co-factor in the catalytic center of many enzymes. However, excess Cu can generate pleiotropic effects in the microbial cell. In addition, leaching of Cu from pipelines results in elevated Cu concentration in the environment, which is of public health concern. Sulfate-reducing bacteria (SRB) have been demonstrated to grow in toxic levels of Cu. However, reports on Cu toxicity towards SRB have primarily focused on the degree of toxicity and subsequent elimination. Here, Cu(II) stress-related effects on a model SRB, Desulfovibrio alaskensis G20, is reported. Cu(II) stress effects were assessed as alterations in the transcriptome through RNA-Seq at varying Cu(II) concentrations (5 µM and 15 µM). In the pairwise comparison of control vs. 5 µM Cu(II), 61.43% of genes were downregulated, and 38.57% were upregulated. In control vs. 15 µM Cu(II), 49.51% of genes were downregulated, and 50.5% were upregulated. The results indicated that the expression of inorganic ion transporters and translation machinery was massively modulated. Moreover, changes in the expression of critical biological processes such as DNA transcription and signal transduction were observed at high Cu(II) concentrations. These results will help us better understand the Cu(II) stress-response mechanism and provide avenues for future research.
Collapse
Affiliation(s)
- Abhilash Kumar Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Vinoj Gopalakrishnan
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Composite and Nanocomposite Advanced Manufacturing Centre—Biomaterials, Rapid City, SD 57701, USA
| |
Collapse
|
8
|
Lazar JT, Tabor JJ. Bacterial two-component systems as sensors for synthetic biology applications. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:100398. [PMID: 34917859 PMCID: PMC8670732 DOI: 10.1016/j.coisb.2021.100398] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Two-component systems (TCSs) are a ubiquitous family of signal transduction pathways that enable bacteria to sense and respond to diverse physical, chemical, and biological stimuli outside and inside the cell. Synthetic biologists have begun to repurpose TCSs for applications in optogenetics, materials science, gut microbiome engineering, and soil nutrient biosensing, among others. New engineering methods including genetic refactoring, DNA-binding domain swapping, detection threshold tuning, and phosphorylation cross-talk insulation are being used to increase the reliability of TCS sensor performance and tailor TCS signaling properties to the requirements of specific applications. There is now potential to combine these methods with large-scale gene synthesis and laboratory screening to discover the inputs sensed by many uncharacterized TCSs and develop a large new family of genetically-encoded sensors that respond to an unrivaled breadth of stimuli.
Collapse
Affiliation(s)
- John T Lazar
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX, USA
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
9
|
Ruan X, Deng X, Tan M, Wang Y, Hu J, Sun Y, Yu C, Zhang M, Jiang N, Jiang R. Effect of resveratrol on the biofilm formation and physiological properties of avian pathogenic Escherichia coli. J Proteomics 2021; 249:104357. [PMID: 34450330 DOI: 10.1016/j.jprot.2021.104357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) is widely distributed, causing great economic losses to the poultry industry. The formation of APEC biofilms causes chronic, persistent, and repeated infections in the clinic, making treatment difficult. Resveratrol is a natural product, which has good health benefits including antimicrobial, anti-inflammatory, and cardiovascular activities. Resveratrol shows efficient inhibition of bacterial biofilm formation. However, a comprehensive understanding of the proteomic properties of APEC treated resveratrol is still lacking. In this study, APEC cells treated by resveratrol were investigated using a label-free differential proteomic method. Several proteins, including those related to a two-component system and chemotaxis, were found to be implicated in APEC biofilm formation. In addition, the physiological properties were significantly changed in terms of purine, pyruvate, and glyoxylate and dicarboxylate metabolism in APEC. Data are available via ProteomeXchange with the identifier PXD025706. We speculated that pyruvate dehydrogenase might be a potential target to inhibit Escherichia coli biofilm formation. Overall, our results indicated that resveratrol inhibits APEC biofilm formation by regulating the levels of proteins in two-component systems, especially chemotaxis proteins. The results showed that resveratrol had a potential application in inhibiting the biofilm formation of APEC. SIGNIFICANCE: This study elucidated the mechanism of resveratrol inhibiting biofilm formation of avian pathogenic Escherichia coli (APEC) based on a label-free differential proteomics. It was indicated that resveratrol inhibits APEC biofilm formation by regulating the levels of proteins in two component systems, especially chemotaxis proteins. Meanwhile, we speculated that pyruvate dehydrogenase might be a potential target to inhibit Escherichia coli biofilm formation. It shows that resveratrol has a potential application prospect in inhibiting the biofilm formation of APEC.
Collapse
Affiliation(s)
- Xiangchun Ruan
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, Anhui 230036, China.
| | - Xiaoling Deng
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Meiling Tan
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Youwei Wang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jidong Hu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ying Sun
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chengbo Yu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Meishi Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Nuohao Jiang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Runshen Jiang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
10
|
Shimada T, Ogasawara H, Kobayashi I, Kobayashi N, Ishihama A. Single-Target Regulators Constitute the Minority Group of Transcription Factors in Escherichia coli K-12. Front Microbiol 2021; 12:697803. [PMID: 34220787 PMCID: PMC8249747 DOI: 10.3389/fmicb.2021.697803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
The identification of regulatory targets of all transcription factors (TFs) is critical for understanding the entire network of genome regulation. A total of approximately 300 TFs exist in the model prokaryote Escherichia coli K-12, but the identification of whole sets of their direct targets is impossible with use of in vivo approaches. For this end, the most direct and quick approach is to identify the TF-binding sites in vitro on the genome. We then developed and utilized the gSELEX screening system in vitro for identification of more than 150 E. coli TF-binding sites along the E. coli genome. Based on the number of predicted regulatory targets, we classified E. coli K-12 TFs into four groups, altogether forming a hierarchy ranging from a single-target TF (ST-TF) to local TFs, global TFs, and nucleoid-associated TFs controlling as many as 1,000 targets. Using the collection of purified TFs and a library of genome DNA segments from a single and the same E. coli K-12, we identified here a total of 11 novel ST-TFs, CsqR, CusR, HprR, NorR, PepA, PutA, QseA, RspR, UvrY, ZraR, and YqhC. The regulation of single-target promoters was analyzed in details for the hitherto uncharacterized QseA and RspR. In most cases, the ST-TF gene and its regulatory target genes are adjacently located on the E. coli K-12 genome, implying their simultaneous transfer in the course of genome evolution. The newly identified 11 ST-TFs and the total of 13 hitherto identified altogether constitute the minority group of TFs in E. coli K-12.
Collapse
Affiliation(s)
| | - Hiroshi Ogasawara
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Nagano, Japan.,Research Center for Fungal and Microbial Dynamism, Shinshu University, Nagano, Japan
| | - Ikki Kobayashi
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Naoki Kobayashi
- Department of Frontier Science, Hosei University, Koganei, Japan
| | - Akira Ishihama
- Department of Frontier Science, Hosei University, Koganei, Japan.,Micro-Nano Technology Research Center, Hosei University, Koganei, Japan
| |
Collapse
|
11
|
Yu Y, Dong J, Wang Y, Gong X. RNA-seq analysis of antibacterial mechanism of Cinnamomum camphora essential oil against Escherichia coli. PeerJ 2021; 9:e11081. [PMID: 33777538 PMCID: PMC7980702 DOI: 10.7717/peerj.11081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 01/19/2023] Open
Abstract
Background Transcriptome analysis plays a central role in elucidating the complexity of gene expression regulation in Escherichia coli. In recent years, the overuse of antibiotics has led to an increase in antimicrobial resistance, which greatly reduces the efficacy of antibacterial drugs and affects people’s health. Therefore, several researchers are focused on finding other materials, which could replace or supplement antibiotic treatment. Methods E. coli was treated with water, acetone and Cinnamomum camphora essential oils, respectively. The antibacterial activity was assessed using the minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC), the dry weight and the wet weight of the cells. To explore the antibacterial mechanism of the oil, the RNA-Seq analysis was adopted under three different treatments. Finally, the expression of related genes was verified by Quantitative PCR. Results In this study, we showed that the C. Camphora essential oil exerted a strong antibacterial effect. Our results showed that the inhibitory efficiency increased with increasing of the concentration of essential oil. RNA-seq analysis indicated that the essential oil inhibited the growth of E. coli by inhibiting the metabolism, chemotaxis, and adhesion, meanwhile, life activities were maintained by enhancing E. coli resistance reactions. These results are contributed to uncover the antimicrobial mechanisms of essential oils against E. coli, and the C. Camphora essential oil could be applied as an antibacterial agent to replace or ally with antibiotic.
Collapse
Affiliation(s)
- Yutian Yu
- Human Aging Research Institute and School of Life Science and Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Dong
- Human Aging Research Institute and School of Life Science and Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, Jiangxi, China
| | - Yanlu Wang
- Human Aging Research Institute and School of Life Science and Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Gong
- Human Aging Research Institute and School of Life Science and Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Zhang L, Bill E, Kroneck PMH, Einsle O. A [3Cu:2S] cluster provides insight into the assembly and function of the Cu Z site of nitrous oxide reductase. Chem Sci 2021; 12:3239-3244. [PMID: 34164092 PMCID: PMC8179356 DOI: 10.1039/d0sc05204c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitrous oxide reductase (N2OR) is the only known enzyme reducing environmentally critical nitrous oxide (N2O) to dinitrogen (N2) as the final step of bacterial denitrification. The assembly process of its unique catalytic [4Cu:2S] cluster CuZ remains scarcely understood. Here we report on a mutagenesis study of all seven histidine ligands coordinating this copper center, followed by spectroscopic and structural characterization and based on an established, functional expression system for Pseudomonas stutzeri N2OR in Escherichia coli. While no copper ion was found in the CuZ binding site of variants H129A, H130A, H178A, H326A, H433A and H494A, the H382A variant carried a catalytically inactive [3Cu:2S] center, in which one sulfur ligand, SZ2, had relocated to form a weak hydrogen bond to the sidechain of the nearby lysine residue K454. This link provides sufficient stability to avoid the loss of the sulfide anion. The UV-vis spectra of this cluster are strikingly similar to those of the active enzyme, implying that the flexibility of SZ2 may have been observed before, but not recognized. The sulfide shift changes the metal coordination in CuZ and is thus of high mechanistic interest. Variants of all seven histidine ligands of the [4Cu:2S] active site of nitrous oxide reductase mostly result in loss of the metal site. However, a H382A variant retains a [3Cu:2S] cluster that hints towards a structural flexibility also present in the intact site.![]()
Collapse
Affiliation(s)
- Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg Albertstrasse 21 79104 Freiburg im Breisgau Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion Stiftstr. 34-36 D-45470 Mülheim an der Ruhr Germany
| | | | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg Albertstrasse 21 79104 Freiburg im Breisgau Germany
| |
Collapse
|
13
|
Taher R, de Rosny E. A structure-function study of ZraP and ZraS provides new insights into the two-component system Zra. Biochim Biophys Acta Gen Subj 2020; 1865:129810. [PMID: 33309686 DOI: 10.1016/j.bbagen.2020.129810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP. METHODS The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system. RESULTS We show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution. CONCLUSION Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system. GENERAL SIGNIFICANCE We bring new input on the so far poorly described Zra system and notably on ZraS.
Collapse
Affiliation(s)
- Raleb Taher
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France; University of California, Irvine, Medical Science Building B, CA 92697, United States of America
| | - Eve de Rosny
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France.
| |
Collapse
|
14
|
Choudhary KS, Kleinmanns JA, Decker K, Sastry AV, Gao Y, Szubin R, Seif Y, Palsson BO. Elucidation of Regulatory Modes for Five Two-Component Systems in Escherichia coli Reveals Novel Relationships. mSystems 2020; 5:e00980-20. [PMID: 33172971 PMCID: PMC7657598 DOI: 10.1128/msystems.00980-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 11/27/2022] Open
Abstract
Escherichia coli uses two-component systems (TCSs) to respond to environmental signals. TCSs affect gene expression and are parts of E. coli's global transcriptional regulatory network (TRN). Here, we identified the regulons of five TCSs in E. coli MG1655: BaeSR and CpxAR, which were stimulated by ethanol stress; KdpDE and PhoRB, induced by limiting potassium and phosphate, respectively; and ZraSR, stimulated by zinc. We analyzed RNA-seq data using independent component analysis (ICA). ChIP-exo data were used to validate condition-specific target gene binding sites. Based on these data, we do the following: (i) identify the target genes for each TCS; (ii) show how the target genes are transcribed in response to stimulus; and (iii) reveal novel relationships between TCSs, which indicate noncognate inducers for various response regulators, such as BaeR to iron starvation, CpxR to phosphate limitation, and PhoB and ZraR to cell envelope stress. Our understanding of the TRN in E. coli is thus notably expanded.IMPORTANCE E. coli is a common commensal microbe found in the human gut microenvironment; however, some strains cause diseases like diarrhea, urinary tract infections, and meningitis. E. coli's two-component systems (TCSs) modulate target gene expression, especially related to virulence, pathogenesis, and antimicrobial peptides, in response to environmental stimuli. Thus, it is of utmost importance to understand the transcriptional regulation of TCSs to infer bacterial environmental adaptation and disease pathogenicity. Utilizing a combinatorial approach integrating RNA sequencing (RNA-seq), independent component analysis, chromatin immunoprecipitation coupled with exonuclease treatment (ChIP-exo), and data mining, we suggest five different modes of TCS transcriptional regulation. Our data further highlight noncognate inducers of TCSs, which emphasizes the cross-regulatory nature of TCSs in E. coli and suggests that TCSs may have a role beyond their cognate functionalities. In summary, these results can lead to an understanding of the metabolic capabilities of bacteria and correctly predict complex phenotype under diverse conditions, especially when further incorporated with genome-scale metabolic models.
Collapse
Affiliation(s)
- Kumari Sonal Choudhary
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Julia A Kleinmanns
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Katherine Decker
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Ye Gao
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Yara Seif
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
15
|
Johanns VC, Ghazisaeedi F, Epping L, Semmler T, Lübke-Becker A, Pfeifer Y, Bethe A, Eichhorn I, Merle R, Walther B, Wieler LH. Effects of a Four-Week High-Dosage Zinc Oxide Supplemented Diet on Commensal Escherichia coli of Weaned Pigs. Front Microbiol 2019; 10:2734. [PMID: 31849886 PMCID: PMC6892955 DOI: 10.3389/fmicb.2019.02734] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Strategies to reduce economic losses associated with post-weaning diarrhea in pig farming include high-level dietary zinc oxide supplementation. However, excessive usage of zinc oxide in the pig production sector was found to be associated with accumulation of multidrug resistant bacteria in these animals, presenting an environmental burden through contaminated manure. Here we report on zinc tolerance among a random selection of intestinal Escherichia coli comprising of different antibiotic resistance phenotypes and sampling sites isolated during a controlled feeding trial from 16 weaned piglets: In total, 179 isolates from "pigs fed with high zinc concentrations" (high zinc group, [HZG]: n = 99) and a corresponding "control group" ([CG]: n = 80) were investigated with regard to zinc tolerance, antimicrobial- and biocide susceptibilities by determining minimum inhibitory concentrations (MICs). In addition, in silico whole genome screening (WGSc) for antibiotic resistance genes (ARGs) as well as biocide- and heavy metal tolerance genes was performed using an in-house BLAST-based pipeline. Overall, porcine E. coli isolates showed three different ZnCl2 MICs: 128 μg/ml (HZG, 2%; CG, 6%), 256 μg/ml (HZG, 64%; CG, 91%) and 512 μg/ml ZnCl2 (HZG, 34%, CG, 3%), a unimodal distribution most likely reflecting natural differences in zinc tolerance associated with different genetic lineages. However, a selective impact of the zinc-rich supplemented diet seems to be reasonable, since the linear mixed regression model revealed a statistically significant association between "higher" ZnCl2 MICs and isolates representing the HZG as well as "lower ZnCl2 MICs" with isolates of the CG (p = 0.005). None of the zinc chloride MICs was associated with a particular antibiotic-, heavy metal- or biocide- tolerance/resistance phenotype. Isolates expressing the 512 μg/ml MIC were either positive for ARGs conferring resistance to aminoglycosides, tetracycline and sulfamethoxazole-trimethoprim, or harbored no ARGs at all. Moreover, WGSc revealed a ubiquitous presence of zinc homeostasis and - detoxification genes, including zitB, zntA, and pit. In conclusion, we provide evidence that zinc-rich supplementation of pig feed selects for more zinc tolerant E. coli, including isolates harboring ARGs and biocide- and heavy metal tolerance genes - a putative selective advantage considering substances and antibiotics currently used in industrial pork production systems.
Collapse
Affiliation(s)
- Vanessa C Johanns
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Berlin, Germany
| | - Fereshteh Ghazisaeedi
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lennard Epping
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yvonne Pfeifer
- Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Berlin, Germany
| | | |
Collapse
|
16
|
Hews CL, Cho T, Rowley G, Raivio TL. Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria. Front Cell Infect Microbiol 2019; 9:313. [PMID: 31552196 PMCID: PMC6737893 DOI: 10.3389/fcimb.2019.00313] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
The Gram-negative bacterial envelope is an essential interface between the intracellular and harsh extracellular environment. Envelope stress responses (ESRs) are crucial to the maintenance of this barrier and function to detect and respond to perturbations in the envelope, caused by environmental stresses. Pathogenic bacteria are exposed to an array of challenging and stressful conditions during their lifecycle and, in particular, during infection of a host. As such, maintenance of envelope homeostasis is essential to their ability to successfully cause infection. This review will discuss our current understanding of the σE- and Cpx-regulated ESRs, with a specific focus on their role in the virulence of a number of model pathogens.
Collapse
Affiliation(s)
- Claire L Hews
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Timothy Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
van der Weel L, As KS, Dekker WJ, van den Eijnden L, van Helmond W, Schiphorst C, Hagen WR, Hagedoorn PL. ZraP, the most prominent zinc protein under zinc stress conditions has no direct role in in-vivo zinc tolerance in Escherichia coli. J Inorg Biochem 2019; 192:98-106. [DOI: 10.1016/j.jinorgbio.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/28/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
18
|
The Two-Component System ZraPSR Is a Novel ESR that Contributes to Intrinsic Antibiotic Tolerance in Escherichia coli. J Mol Biol 2018; 430:4971-4985. [DOI: 10.1016/j.jmb.2018.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/24/2018] [Accepted: 10/26/2018] [Indexed: 11/22/2022]
|
19
|
LaVoie SP, Summers AO. Transcriptional responses of Escherichia coli during recovery from inorganic or organic mercury exposure. BMC Genomics 2018; 19:52. [PMID: 29338696 PMCID: PMC5769350 DOI: 10.1186/s12864-017-4413-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Background The protean chemical properties of mercury have long made it attractive for diverse applications, but its toxicity requires great care in its use, disposal, and recycling. Mercury occurs in multiple chemical forms, and the molecular basis for the distinct toxicity of its various forms is only partly understood. Global transcriptomics applied over time can reveal how a cell recognizes a toxicant and what cellular subsystems it marshals to repair and recover from the damage. The longitudinal effects on the transcriptome of exponential phase E. coli were compared during sub-acute exposure to mercuric chloride (HgCl2) or to phenylmercuric acetate (PMA) using RNA-Seq. Results Differential gene expression revealed common and distinct responses to the mercurials throughout recovery. Cultures exhibited growth stasis immediately after each mercurial exposure but returned to normal growth more quickly after PMA exposure than after HgCl2 exposure. Correspondingly, PMA rapidly elicited up-regulation of a large number of genes which continued for 30 min, whereas fewer genes were up-regulated early after HgCl2 exposure only some of which overlapped with PMA up-regulated genes. By 60 min gene expression in PMA-exposed cells was almost indistinguishable from unexposed cells, but HgCl2 exposed cells still had many differentially expressed genes. Relative expression of energy production and most metabolite uptake pathways declined with both compounds, but nearly all stress response systems were up-regulated by one or the other mercurial during recovery. Conclusions Sub-acute exposure influenced expression of ~45% of all genes with many distinct responses for each compound, reflecting differential biochemical damage by each mercurial and the corresponding resources available for repair. This study is the first global, high-resolution view of the transcriptional responses to any common toxicant in a prokaryotic model system from exposure to recovery of active growth. The responses provoked by these two mercurials in this model bacterium also provide insights about how higher organisms may respond to these ubiquitous metal toxicants. Electronic supplementary material The online version of this article (10.1186/s12864-017-4413-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen P LaVoie
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| | - Anne O Summers
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
20
|
Systematic Analysis of Two-Component Systems in Citrobacter rodentium Reveals Positive and Negative Roles in Virulence. Infect Immun 2017; 85:IAI.00654-16. [PMID: 27872242 DOI: 10.1128/iai.00654-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/13/2016] [Indexed: 02/07/2023] Open
Abstract
Citrobacter rodentium is a murine pathogen used to model intestinal infections caused by the human diarrheal pathogens enterohemorrhagic and enteropathogenic Escherichia coli During infection, bacteria use two-component systems (TCSs) to detect changing environmental cues within the host, allowing for rapid adaptation by altering the expression of specific genes. In this study, 26 TCSs were identified in C. rodentium, and quantitative PCR (qPCR) analysis showed that they are all expressed during murine infection. These TCSs were individually deleted, and the in vitro and in vivo effects were analyzed to determine the functional consequences. In vitro analyses only revealed minor differences, and surprisingly, type III secretion (T3S) was only affected in the ΔarcA strain. Murine infections identified 7 mutants with either attenuated or increased virulence. In agreement with the in vitro T3S assay, the ΔarcA strain was attenuated and defective in colonization and cell adherence. The ΔrcsB strain was among the most highly attenuated strains. The decrease in virulence of this strain may be associated with changes to the cell surface, as Congo red binding was altered, and qPCR revealed that expression of the wcaA gene, which has been implicated in colanic acid production in other bacteria, was drastically downregulated. The ΔuvrY strain exhibited increased virulence compared to the wild type, which was associated with a significant increase in bacterial burden within the mesenteric lymph nodes. The systematic analysis of virulence-associated TCSs and investigation of their functions during infection may open new avenues for drug development.
Collapse
|
21
|
Wątły J, Potocki S, Rowińska-Żyrek M. Zinc Homeostasis at the Bacteria/Host Interface-From Coordination Chemistry to Nutritional Immunity. Chemistry 2016; 22:15992-16010. [DOI: 10.1002/chem.201602376] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | - Sławomir Potocki
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | | |
Collapse
|
22
|
Hartman CE, Samuels DJ, Karls AC. Modulating Salmonella Typhimurium's Response to a Changing Environment through Bacterial Enhancer-Binding Proteins and the RpoN Regulon. Front Mol Biosci 2016; 3:41. [PMID: 27583250 PMCID: PMC4987338 DOI: 10.3389/fmolb.2016.00041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/28/2016] [Indexed: 12/25/2022] Open
Abstract
Transcription sigma factors direct the selective binding of RNA polymerase holoenzyme (Eσ) to specific promoters. Two families of sigma factors determine promoter specificity, the σ(70) (RpoD) family and the σ(54) (RpoN) family. In transcription controlled by σ(54), the Eσ(54)-promoter closed complex requires ATP hydrolysis by an associated bacterial enhancer-binding protein (bEBP) for the transition to open complex and transcription initiation. Given the wide host range of Salmonella enterica serovar Typhimurium, it is an excellent model system for investigating the roles of RpoN and its bEBPs in modulating the lifestyle of bacteria. The genome of S. Typhimurium encodes 13 known or predicted bEBPs, each responding to a unique intracellular or extracellular signal. While the regulons of most alternative sigma factors respond to a specific environmental or developmental signal, the RpoN regulon is very diverse, controlling genes for response to nitrogen limitation, nitric oxide stress, availability of alternative carbon sources, phage shock/envelope stress, toxic levels of zinc, nucleic acid damage, and other stressors. This review explores how bEBPs respond to environmental changes encountered by S. Typhimurium during transmission/infection and influence adaptation through control of transcription of different components of the S. Typhimurium RpoN regulon.
Collapse
Affiliation(s)
| | - David J Samuels
- Department of Microbiology, University of Georgia Athens, GA, USA
| | - Anna C Karls
- Department of Microbiology, University of Georgia Athens, GA, USA
| |
Collapse
|