1
|
Klug YA, Schwarzer R, Ravula T, Rotem E, Ramamoorthy A, Shai Y. Structural and Mechanistic Evidence for Calcium Interacting Sites in the HIV Transmembrane Protein gp41 Involved in Membrane Fusion. Biochemistry 2022; 61:1915-1922. [PMID: 35994087 PMCID: PMC9454089 DOI: 10.1021/acs.biochem.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Indexed: 11/29/2022]
Abstract
The HIV envelope protein gp160 comprises two subunits, gp120 and gp41, responsible for receptor binding and membrane fusion during viral entry, respectively. In the course of the membrane fusion process, gp41 undergoes a conformational change, leading to the formation of a six-helix bundle (SHB), which ultimately drives membrane fusion. The gp41 C-terminal and N-terminal heptad repeats (CHR and NHR) interact with one another to form the SHB, and this step can be targeted by peptide inhibitors, which are used in the clinic to mitigate HIV infection. Here, we discover the calcium interaction motifs (CIMs) in the gp41 CHR and NHR regions via NMR spectroscopy. We find that the assembly of the CHR-NHR SHB is facilitated in Ca2+-containing media and impaired in CIM mutants. Of note, the clinically approved, gp41-derived fusion inhibitor T20, which does not contain the CIM motif, exhibits reduced inhibitory efficiency when challenged with calcium. This finding could have important implications for the development of better fusion inhibitors for HIV.
Collapse
Affiliation(s)
- Yoel A. Klug
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 7632701, Israel
| | - Roland Schwarzer
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 7632701, Israel
- Institute
for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Thirupathi Ravula
- Biophysics
Program, Department of Chemistry, Macromolecular Science and Engineering,
Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Etai Rotem
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 7632701, Israel
| | - Ayyalusamy Ramamoorthy
- Biophysics
Program, Department of Chemistry, Macromolecular Science and Engineering,
Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Yechiel Shai
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 7632701, Israel
| |
Collapse
|
2
|
Kobayakawa T, Ebihara K, Tsuji K, Kawada T, Fujino M, Honda Y, Ohashi N, Murakami T, Tamamura H. Bivalent HIV-1 fusion inhibitors based on peptidomimetics. Bioorg Med Chem 2020; 28:115812. [PMID: 33157478 DOI: 10.1016/j.bmc.2020.115812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Membrane fusion is a valid target for inhibition of HIV-1 replication. A 34-mer fragment peptide (C34), which is contained in the HIV-1 envelope protein gp41, has significant anti-HIV activity. Previously, a dimeric derivative of C34 linked by a disulfide bridge at its C-terminus was found to have more potent anti-HIV activity than the C34 peptide monomer. To date, several peptidomimetic small inhibitors have been reported, but most have lower potency than peptide derivatives related to C34. In the present study we applied this dimerization concept to these peptidomimetic small inhibitors and designed several bivalent peptidomimetic HIV-1 fusion inhibitors. The importance of the length of linkers crosslinking two peptidomimetic compounds was demonstrated and several potent bivalent inhibitors containing tethered peptidomimetics were produced.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kento Ebihara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuma Kawada
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuzuna Honda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
3
|
Ancy I, Sivanandam M, Kalaivani R, Kumaradhas P. Insights of inhibition mechanism of sifuvirtide and MT-sifuvirtide against wild and mutant HIV-1 envelope glycoprotein41: a molecular dynamics simulation and binding free energy study. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1716978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Iruthayaraj Ancy
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Magudeeswaran Sivanandam
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Raju Kalaivani
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Poomani Kumaradhas
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| |
Collapse
|
4
|
Kobayakawa T, Ebihara K, Honda Y, Fujino M, Nomura W, Yamamoto N, Murakami T, Tamamura H. Dimeric C34 Derivatives Linked through Disulfide Bridges as New HIV-1 Fusion Inhibitors. Chembiochem 2019; 20:2101-2108. [PMID: 31012222 DOI: 10.1002/cbic.201900187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 11/12/2022]
Abstract
C34, a 34-mer fragment peptide, is contained in the HIV-1 envelope protein gp41. A dimeric derivative of C34 linked through a disulfide bridge at its C terminus was synthesized and found to display potent anti-HIV activity, comparable with that of a previously reported PEGylated dimer of C34REG. The reduction in the size of the linker moiety for dimerization was thus successful, and this result might shed some light on the mechanism of the suppression of six-helix bundle formation by these C34 dimeric derivatives. Addition of a Gly-Cys(CH2 CONH2 )-Gly-Gly motif at the N-terminal position of a C34 monomeric derivative significantly increased the anti-HIV-1 activity. This moiety functions as a new pharmacophore, and this might provide a useful insight into the design of potent HIV-1 fusion inhibitors.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kento Ebihara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yuzuna Honda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Naoki Yamamoto
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
5
|
Klug YA, Schwarzer R, Rotem E, Charni M, Nudelman A, Gramatica A, Zarmi B, Rotter V, Shai Y. The HIV gp41 Fusion Protein Inhibits T-Cell Activation through the Lentiviral Lytic Peptide 2 Motif. Biochemistry 2019; 58:818-832. [PMID: 30602116 DOI: 10.1021/acs.biochem.8b01175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human immunodeficiency virus enters its host cells by membrane fusion, initiated by the gp41 subunit of its envelope protein. gp41 has also been shown to bind T-cell receptor (TCR) complex components, interfering with TCR signaling leading to reduced T-cell activation. This immunoinhibitory activity is suggested to occur during the membrane fusion process and is attributed to various membranotropic regions of the gp41 ectodomain and to the transmembrane domain. Although extensively studied, the cytosolic region of gp41, termed the cytoplasmic tail (CT), has not been examined in the context of immune suppression. Here we investigated whether the CT inhibits T-cell activation in different T-cell models by utilizing gp41-derived peptides and expressed full gp41 proteins. We found that a conserved region of the CT, termed lentiviral lytic peptide 2 (LLP2), specifically inhibits the activation of mouse, Jurkat, and human primary T-cells. This inhibition resulted in reduced T-cell proliferation, gene expression, cytokine secretion, and cell surface expression of CD69. Differential activation of the TCR signaling cascade revealed that CT-based immune suppression occurs downstream of the TCR complex. Moreover, LLP2 peptide treatment of Jurkat and primary human T-cells impaired Akt but not NFκB and ERK1/2 activation, suggesting that immune suppression occurs through the Akt pathway. These findings identify a novel gp41 T-cell suppressive element with a unique inhibitory mechanism that can take place post-membrane fusion.
Collapse
Affiliation(s)
- Yoel A Klug
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Roland Schwarzer
- Gladstone Institute for Virology and Immunology , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Etai Rotem
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Meital Charni
- Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Alon Nudelman
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Andrea Gramatica
- Gladstone Institute for Virology and Immunology , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Batya Zarmi
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Varda Rotter
- Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| |
Collapse
|
6
|
Rotem E, Faingold O, Charni M, Klug YA, Harari D, Shmuel-Galia L, Nudelman A, Rotter V, Shai Y. The HTLV-1 gp21 fusion peptide inhibits antigen specific T-cell activation in-vitro and in mice. PLoS Pathog 2018; 14:e1007044. [PMID: 29727445 PMCID: PMC5955599 DOI: 10.1371/journal.ppat.1007044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 04/18/2018] [Indexed: 11/17/2022] Open
Abstract
The ability of the Lentivirus HIV-1 to inhibit T-cell activation by its gp41 fusion protein is well documented, yet limited data exists regarding other viral fusion proteins. HIV-1 utilizes membrane binding region of gp41 to inhibit T-cell receptor (TCR) complex activation. Here we examined whether this T-cell suppression strategy is unique to the HIV-1 gp41. We focused on T-cell modulation by the gp21 fusion peptide (FP) of the Human T-lymphotropic Virus 1 (HTLV-1), a Deltaretrovirus that like HIV infects CD4+ T-cells. Using mouse and human in-vitro T-cell models together with in-vivo T-cell hyper activation mouse model, we reveal that HTLV-1's FP inhibits T-cell activation and unlike the HIV FP, bypasses the TCR complex. HTLV FP inhibition induces a decrease in Th1 and an elevation in Th2 responses observed in mRNA, cytokine and transcription factor profiles. Administration of the HTLV FP in a T-cell hyper activation mouse model of multiple sclerosis alleviated symptoms and delayed disease onset. We further pinpointed the modulatory region within HTLV-1's FP to the same region previously identified as the HIV-1 FP active region, suggesting that through convergent evolution both viruses have obtained the ability to modulate T-cells using the same region of their fusion protein. Overall, our findings suggest that fusion protein based T-cell modulation may be a common viral trait.
Collapse
Affiliation(s)
- Etai Rotem
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Omri Faingold
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Meital Charni
- Department of molecular cell biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yoel A Klug
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Harari
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Liraz Shmuel-Galia
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Alon Nudelman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of molecular cell biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Klug YA, Rotem E, Schwarzer R, Shai Y. Mapping out the intricate relationship of the HIV envelope protein and the membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:550-560. [PMID: 27793589 DOI: 10.1016/j.bbamem.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023]
Abstract
The HIV gp160 envelope fusion protein is situated in the viral membrane and mediates virus entry into its host cell. Increasing evidence suggests that virtually all parts of the HIV envelope are structurally and functionally dependent on membranes. Protein-lipid interactions and membrane properties influence the dynamics of a manifold of gp160 biological activities such as membrane fusion, immune suppression and gp160 incorporation into virions during HIV budding and assembly. In the following we will summarize our current understanding of this interdependence between membrane interaction, structural conformation and functionality of the different gp160 domains. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Yoel A Klug
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Etai Rotem
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Roland Schwarzer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|