1
|
Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone. J Virol 2015. [PMID: 26223636 DOI: 10.1128/jvi.01692-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. IMPORTANCE Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection.
Collapse
|
2
|
Antognoni F, Bagni N. Bis(guanylhydrazones) negatively affect in vitro germination of kiwifruit pollen and alter the endogenous polyamine pool. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:334-341. [PMID: 18426480 DOI: 10.1111/j.1438-8677.2007.00016.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bis(guanylhydrazones) are a class of compounds known to interfere with the metabolism of polyamines (PAs). Among them, the methylglyoxal derivative (MGBG) has been studied most thoroughly. Because PAs and their biosynthetic enzymes are strongly involved in pollen tube organization, emergence and elongation, a number of these inhibitors have been studied in the present work for their effects on the in vitro performance of kiwifruit (Actinidia deliciosa) pollen. Increasing concentrations of several bis(guanylhydrazones) in the range 0.05-1 mM were checked for their effect on pollen germination. Most of the compounds tested showed a dose-dependent inhibitory effect on tube emergence, which was established very early during incubation. At 0.5 mM, the methylpropylglyoxal derivative (MPGBG) had a stronger inhibitory effect than MGBG. To verify whether the inhibitors reached their metabolic target, PA levels and S-adenosylmethionine decarboxylase (SAMDC) activity were determined in pollen germinated in the presence or absence (controls) of 0.5 mM bis(guanylhydrazones). Spermidine (Spd) content was significantly reduced in the treated pollen, and this effect was more pronounced after treatment with MGBG than with MPGBG. An early and strong reduction in SAMDC activity was observed after exposure to either inhibitor. Inhibition of pollen germination by MGBG or MPGBG could not be reversed by the addition of exogenous Spd, which per se was inhibitory. Taken together, our results suggest that bis(guanylhydrazones) alter PA metabolism and negatively affect kiwifruit pollen germination, even though a strict cause-effect relationship could not be established, and other mechanisms, unrelated to PA activity, must be involved.
Collapse
Affiliation(s)
- F Antognoni
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Bologna, Italy.
| | | |
Collapse
|
3
|
Wallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism. Biochem J 2003; 376:1-14. [PMID: 13678416 PMCID: PMC1223767 DOI: 10.1042/bj20031327] [Citation(s) in RCA: 676] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 09/16/2003] [Accepted: 09/18/2003] [Indexed: 01/30/2023]
Abstract
Polyamines are essential for the growth and function of normal cells. They interact with various macromolecules, both electrostatically and covalently and, as a consequence, have a variety of cellular effects. The complexity of polyamine metabolism and the multitude of compensatory mechanisms that are invoked to maintain polyamine homoeostasis argue that these amines are critical to cell survival. The regulation of polyamine content within cells occurs at several levels, including transcription and translation. In addition, novel features such as the +1 frameshift required for antizyme production and the rapid turnover of several of the enzymes involved in the pathway make the regulation of polyamine metabolism a fascinating subject. The link between polyamine content and human disease is unequivocal, and significant success has been obtained in the treatment of a number of parasitic infections. Targeting the polyamine pathway as a means of treating cancer has met with limited success, although the development of drugs such as DFMO (alpha-difluoromethylornithine), a rationally designed anticancer agent, has revolutionized our understanding of polyamine function in cell growth and provided 'proof of concept' that influencing polyamine metabolism and content within tumour cells will prevent tumour growth. The more recent development of the polyamine analogues has been pivotal in advancing our understanding of the necessity to deplete all three polyamines to induce apoptosis in tumour cells. The current thinking is that the polyamine inhibitors/analogues may also be useful agents in the chemoprevention of cancer and, in this area, we may yet see a revival of DFMO. The future will be in adopting a functional genomics approach to identifying polyamine-regulated genes linked to either carcinogenesis or apoptosis.
Collapse
Affiliation(s)
- Heather M Wallace
- Department of Medicine and Therapeutics, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | |
Collapse
|
4
|
Koskinen M, Elo H, Lukkari P, Riekkola ML. Determination of the antileukemic drug mitoguazone and seven other closely related bis(amidinohydrazones) in human blood serum by high-performance liquid chromatography. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 685:141-9. [PMID: 8930762 DOI: 10.1016/0378-4347(96)00126-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A reversed-phase (C18) HPLC method with diode-array detection was developed for the separation and determination of methylglyoxal bis(amidinohydrazone) (mitoguazone) and seven closely related aliphatic analogs thereof, namely the bis(amidinohydrazones) of glyoxal, dimethylglyoxal, ethylmethylglyoxal, methylpropylglyoxal, butylmethylglyoxal, diethylglyoxal and dipropylglyoxal. The mobile phase consisted of a non-linear binary gradient of methanol and 0.03 M aqueous sodium acetate buffer (pH 4.3). Good separation of the eight congeners was achieved. On increasing the methanol content of the eluent, the bis(amidinohydrazones) eluted in the order of increasing number of carbon atoms in the side-chains. The method was also applied to the quantitative analysis of the compounds in aqueous solution and, combined with ultrafiltration, for the separation of the eight congeners in spiked human blood serum. A separate simplified method for the quantitative determination of each of the compounds in spiked human blood serum samples was also developed. The methods developed made for the first time possible the simultaneous HPLC analysis of more than one bis(amidinohydrazones). The results obtained indicate that the bis(amidinohydrazones) studied obviously have a distinct tendency to form ion associates with acetate ions and probably also other carboxylate ions in aqueous solution. This aspect may be of biochemical significance, especially concerning the intracellular binding of the compounds. Each one of the compounds studied invariably gave rise to one peak only, this result supporting the theory that the conventional synthesis of each of the compounds gives rise to one geometrical isomer only. This result is completely in agreement with the results of previous proton and carbon NMR spectroscopic as well as X-ray diffraction studies.
Collapse
Affiliation(s)
- M Koskinen
- Department of Pharmacy, University of Helsinki, Finland
| | | | | | | |
Collapse
|
5
|
Van den Munckhof RJ. In situ heterogeneity of peroxisomal oxidase activities: an update. THE HISTOCHEMICAL JOURNAL 1996; 28:401-29. [PMID: 8863047 DOI: 10.1007/bf02331433] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidases are a widespread group of enzymes. They are present in numerous organisms and organs and in various tissues, cells, and subcellular compartments, such as mitochondria. An important source of oxidases, which is investigated and discussed in this study, are the (micro)peroxisomes. Oxidases share the ability to reduce molecular oxygen during oxidation of their substrate, yielding an oxidized product and hydrogen peroxide. Besides the hydrogen peroxide-catabolizing enzyme catalase, peroxisomes contain one or more hydrogen peroxide-generating oxidases, which participate in different metabolic pathways. During the last four decades, various methods have been developed and elaborated for the histochemical localization of the activities of these oxidases. These methods are based either on the reduction of soluble electron acceptors by oxidase activity or on the capture of hydrogen peroxide. Both methods yield a coloured and/or electron dense precipitate. The most reliable technique in peroxisomal oxidase histochemistry is the cerium salt capture method. This method is based on the direct capture of hydrogen peroxide by cerium ions to form a fine crystalline, insoluble, electron dense reaction product, cerium perhydroxide, which can be visualized for light microscopy with diaminobenzidine. With the use of this technique, it became clear that oxidase activities not only vary between different organisms, organs, and tissues, but that heterogeneity also exists between different cells and within cells, i.e. between individual peroxisomes. A literature review, and recent studies performed in our laboratory, show that peroxisomes are highly differentiated organelles with respect to the presence of active enzymes. This study gives an overview of the in situ distribution and heterogeneity of peroxisomal enzyme activities as detected by histochemical assays of the activities of catalase, and the peroxisomal oxidases D-amino acid oxidase, L-alpha-hydroxy acid oxidase, polyamine oxidase and uric acid oxidase.
Collapse
Affiliation(s)
- R J Van den Munckhof
- University of Amsterdam, Department of Cell Biology and Histology, The Netherlands
| |
Collapse
|
6
|
Abstract
The polyamines putrescine, spermidine and spermine represent a group of naturally occurring compounds exerting a bewildering number of biological effects, yet despite several decades of intensive research work, their exact physiological function remains obscure. Chemically these compounds are organic aliphatic cations with two (putrescine), three (spermidine) or four (spermine) amino or amino groups that are fully protonated at physiological pH values. Early studies showed that the polyamines are closely connected to the proliferation of animal cells. Their biosynthesis is accomplished by a concerted action of four different enzymes: ornithine decarboxylase, adenosylmethionine decarboxylase, spermidine synthase and spermine synthase. Out of these four enzyme, the two decarboxylases represent unique mammalian enzymes with an extremely short half life and dramatic inducibility in response to growth promoting stimuli. The regulation of ornithine decarboxylase, and to some extent also that of adenosylmethionine decarboxylase, is complex, showing features that do not always fit into the generally accepted rules of molecular biology. The development and introduction of specific inhibitors to the biosynthetic enzymes of the polyamines have revealed that an undisturbed synthesis of the polyamines is a prerequisite for animal cell proliferation to occur. The biosynthesis of the polyamines thus offers a meaningful target for the treatment of certain hyperproliferative diseases, most notably cancer. Although most experimental cancer models responds strikingly to treatment with polyamine antimetabolites--namely, inhibitors of various polyamine synthesizing enzymes--a real breakthrough in the treatment of human cancer has not yet occurred. It is, however, highly likely that the concept is viable. An especially interesting approach is the chemoprevention of cancer with polyamine antimetabolites, a process that appears to work in many experimental animal models. Meanwhile, the inhibition of polyamine accumulation has shown great promise in the treatment of human parasitic diseases, such as African trypanosomiasis.
Collapse
Affiliation(s)
- J Jänne
- Department of Biochemistry & Biotechnology, University of Kuopio, Finland
| | | | | |
Collapse
|
7
|
Ito K, Igarashi K. Polyamine regulation of the synthesis of thymidine kinase in bovine lymphocytes. Arch Biochem Biophys 1990; 278:277-83. [PMID: 2108606 DOI: 10.1016/0003-9861(90)90260-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Concanavalin A-activated lymphocytes were made polyamine deficient by treatment with alpha-difluoromethylornithine and ethylglyoxal bis(guanylhydrazone). Thymidine kinase activity in polyamine-deficient cells was 17% of the level in normal cells. Thymidine kinase mRNA increased with time after concanavalin A activation and reached a maximum at 36 h after concanavalin A addition. The amount of thymidine kinase mRNA in polyamine-deficient cells was approximately 75% of that in normal cells. The transcription of thymidine kinase gene in isolated nuclei of polyamine-deficient cells was also 75% of that from normal cells. The turnover rate of thymidine kinase mRNA in both normal and polyamine-deficient cells was nearly equal. In normal cells, 95% of thymidine kinase mRNA was polysome associated, while in polyamine-deficient cells, 60% of the mRNA was polysome associated. In addition, the size of polysomes associated with thymidine kinase mRNA in polyamine-deficient cells was smaller than that in normal cells. Synthesis of thymidine kinase was stimulated approximately seven-fold by 0.3 mM spermidine in a rabbit reticulocyte polyamine-free protein synthetic system. The half-life of thymidine kinase activity in both normal and polyamine-deficient cells was nearly equal. Thymidine kinase activity was not influenced significantly by 0.3 mM spermidine. These combined results suggested that the synthesis of thymidine kinase was mainly regulated by polyamines at the level of translation.
Collapse
Affiliation(s)
- K Ito
- Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | |
Collapse
|
8
|
Hibasami H, Tsukada T, Maekawa S, Nakashima K. Ornithine decarboxylase and spermidine/spermine N1-acetyltransferase are induced in K562 cells by S-adenosylmethionine decarboxylase inhibitor methylglyoxal bis(guanylhydrazone) but not by analogous methylglyoxal bis(butylamidinohydrazone). Biochem Pharmacol 1986; 35:4031-5. [PMID: 3778524 DOI: 10.1016/0006-2952(86)90023-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The activities of ornithine decarboxylase (ODC) and spermidine/spermine N1-acetyltransferase (SAT) were increased by the addition of S-adenosylmethionine decarboxylase (AdoMetDC) inhibitor methylglyoxal bis(guanylhydrazone) (MGBG) in cultured human erythroid leukemia K 562 cells. ODC activity began to increase 4 hr after the addition of the drug and attained a maximum at 12 hr. The increase of SAT activity lagged behind that of ODC activity. The increases of both ODC and SAT activities produced by MGBG were blocked by treatment with cycloheximide, suggesting that the increase of enzyme activity resulted from the synthesis of new enzyme proteins. The putrescine content in cells treated with MGBG increased markedly, whereas the levels of spermidine and spermine were depressed lower. On the other hand, methylglyoxal bis(butylamidinohydrazone) (MGBB), a derivative of MGBG inhibiting AdoMetDC effectively, did not induce ODC or SAT activities.
Collapse
|
9
|
Wallace HM, Cameron GA. Determination of methylglyoxal bis(guanylhydrazone) in cells in culture using high-performance liquid chromatography. JOURNAL OF CHROMATOGRAPHY 1986; 380:122-7. [PMID: 3745373 DOI: 10.1016/s0378-4347(00)83631-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Williams-Ashman HG, Seidenfeld J. Aspects of the biochemical pharmacology of methyl glyoxal bis(guanylhydrazone). Biochem Pharmacol 1986; 35:1217-25. [PMID: 3083820 DOI: 10.1016/0006-2952(86)90263-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
|
12
|
Steeves RM, Lawson DE. Effect of 1,25-dihydroxyvitamin D on S-adenosylmethionine decarboxylase in chick intestine. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 841:292-8. [PMID: 3927986 DOI: 10.1016/0304-4165(85)90071-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of 1,25-dihydroxyvitamin D on the activity of S-adenosylmethionine decarboxylase in the duodenal mucosa of vitamin D-deficient chicks was investigated. Enzyme activity increased dose-dependently in a biphasic manner with maximal responses at 1 and 6 h, due to an increase in Vmax in both cases. A second dose of 1,25-dihydroxyvitamin D, administered 6 h after the first, resulted in a significant increase in activity 1 h later, confirming the rapidity of the response. This early response was not seen with ornithine decarboxylase. The increase in S-adenosylmethionine decarboxylase activity particularly at 6 h may be due to a rise in cytosolic calcium, since hydrocortisone, an inhibitor of 1,25-dihydroxyvitamin D-stimulated calcium absorption, attenuates this enzyme's activity. Inhibitors of polyamine biosynthesis such as DL-alpha-difluoromethyl ornithine and methylglyoxal bis(guanylhydrazone) had no effect on calcium absorption, but the significance of this in evaluating the importance of 1,25-dihydroxyvitamin D stimulation of S-adenosylmethionine decarboxylase activity needs further investigation.
Collapse
|
13
|
Jänne J, Alhonen-Hongisto L, Nikula P, Elo H. S-adenosylmethionine decarboxylase as target of chemotherapy. ADVANCES IN ENZYME REGULATION 1985; 24:125-39. [PMID: 3939095 DOI: 10.1016/0065-2571(85)90073-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although ornithine decarboxylase under most conditions is the rate-controlling enzyme of polyamine biosynthesis and thus the most logical target for chemical intervention, the inhibition of the enzyme triggers a series of compensatory reactions all aimed to circumvent the inhibition. These include secondary induction of adenosylmethionine decarboxylase, enhanced accumulation of extracellular polyamines and an overproduction of ornithine decarboxylase resulting from enhanced expression and gene amplification. Thus chemotherapy based on an intervention of polyamine formation has also to be directed to reactions other than the decarboxylation of ornithine. Adenosylmethionine decarboxylase is the second natural target for chemotherapy. Virtually all effective inhibitors of this enzyme are members of the family of bis(guanylhydrazones). Small modifications, such as increased hydrophobicity at the glyoxal portion of the parent compound glyoxal bis(guanylhydrazone), greatly enhance the inhibition of adenosylmethionine decarboxylase and diminish the undesirable inhibition of diamine oxidase. However, although ethylglyoxal and propylglyoxal bis(guanylhydrazone) appear to utilize the putative polyamine carrier for their cellular entry, their cellular accumulation, in contrast to that of glyoxal and methylglyoxal bis(guanylhydrazone), is not stimulated by putrescine and spermidine deprivation produced by inhibitors of ornithine decarboxylase. It is obvious that the cellular accumulation of each of the bis(guanylhydrazones) is determined by their different efflux rates: GBG and MGBG are effectively retained whereas EGBG is rapidly excreted by the tumor cells. GBG and MGBG, but possibly not EGBG, behave as mitochondrial poisons and rapidly produce extensive morphological damage of the mitochondria. The bis(guanylhydrazones) likewise inhibit carnitine-dependent mitochondrial oxidation of long-chain fatty acids, competitively in respect to carnitine. It is possible that this inhibition has something to do with the mitochondrial damage, as carnitine protects tumor cells from the early mitochondrial damage produced by MGBG. Carnitine also protects experimental animals from MGBG-induced acute toxicity and death.
Collapse
|
14
|
Seppänen P, Fagerström R, Alhonen-Hongisto L, Elo H, Lumme P, Jänne J. Glyoxal bis(guanylhydrazone) as an inhibitor of polyamine biosynthesis in tumour cells. Biochem J 1984; 221:483-8. [PMID: 6433883 PMCID: PMC1144063 DOI: 10.1042/bj2210483] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glyoxal bis(guanylhydrazone), the parent compound of methylglyoxal bis(guanylhydrazone), was synthesized and tested for its ability to inhibit the biosynthesis of polyamines. It was found to be a powerful competitive inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), yet the lack of the methyl group at the glyoxal portion increased the apparent Ki value for the enzyme by about 30-fold in comparison with methylglyoxal bis(guanylhydrazone). Glyoxal bis(guanylhydrazone) inhibited diamine oxidase (EC 1.4.3.6) activity as effectively as did methylglyoxal bis(guanylhydrazone). The cellular accumulation curves of glyoxal bis(guanylhydrazone) in L1210 cells were practically superimposable with those of methylglyoxal bis(guanylhydrazone), and the uptake of both compounds was distinctly stimulated by a prior treatment with 2-difluoromethylornithine. The drug decreased the concentration of spermidine in a dose-dependent manner and, in contrast with methylglyoxal bis(guanylhydrazone), without a concomitant accumulation of putrescine. The fact that putrescine concentrations were decreased in cells exposed to glyoxal bis(guanylhydrazone) was, at least in part, attributable to an inhibition of ornithine decarboxylase (EC 4.1.1.17) activity in cells treated with the compound. Under these experimental conditions equivalent concentrations of methylglyoxal bis(guanylhydrazone) [1,1'-[(methylethanediylidine)dinitrilo]diguanidine] elicited large increases in the enzyme activity. When combined with difluoromethylornithine, glyoxal bis(guanylhydrazone) potentiated the growth-inhibitory effect of that drug. Taking into consideration the proven anti-leukaemic activity of glyoxal bis(guanylhydrazone), its effectiveness to inhibit spermidine biosynthesis (without raising the concentration of putrescine) as well as its suitability for combined use with inhibitors of ornithine decarboxylase, this drug is apparently worthy of further testing in tumour-bearing animals, especially in combination with difluoromethylornithine or related inhibitors of ornithine decarboxylase.
Collapse
|
15
|
Alhonen-Hongisto L, Fagerström R, Laine R, Elo H, Jänne J. Different efflux rates may determine the cellular accumulation of various bis(guanylhydrazones). Biochem J 1984; 221:273-6. [PMID: 6431972 PMCID: PMC1144031 DOI: 10.1042/bj2210273] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Three bis(guanylhydrazones) (those of methylglyoxal, glyoxal and ethylglyoxal) were compared for their affinity for the putative polyamine carrier and for their cellular retention in L1210 mouse leukaemia cells. All the bis(guanylhydrazones) inhibited equally effectively the uptake of spermidine by the tumour cells, indicating that the compounds had roughly equal affinity for the polyamine carrier. The fact that methylglyoxal bis(guanylhydrazone) and glyoxal bis(guanylhydrazone) were much more effectively concentrated in the animal cells than was ethylglyoxal bis(guanylhydrazone) was obviously attributable to the finding that the efflux rate of ethylglyoxal bis(guanylhydrazone) greatly exceeded that of the other bis(guanylhydrazones). The rate of efflux of the drugs was slowed down if the tumour cells were treated with 2-difluoromethylornithine before exposure to the bis(guanylhydrazones). These results suggest that intracellular binding of the bis(guanylhydrazones) determines their cellular accumulation.
Collapse
|
16
|
Seppänen P, Ruohola H, Jänne J. Ethylglyoxal bis(guanylhydrazone) as an inhibitor of polyamine biosynthesis in L1210 leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 803:331-7. [PMID: 6322861 DOI: 10.1016/0167-4889(84)90125-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ethylglyoxal bis(guanylhydrazone), a close derivative of the known anti-cancer drug methylglyoxal bis(guanylhydrazone), is also a powerful inhibitor of S-adenosylmethionine decarboxylase (EC 4.1.1.50), the enzyme needed for the synthesis of spermidine and spermine. There were, however, marked differences between the ethyl and methyl derivatives of glyoxal bis(guanylhydrazone) when tested in cultured L1210 cells. The cellular accumulation of ethylglyoxal bis(guanylhydrazone) represented only a fraction (20-25%) of that of the methyl derivative. Moreover, polyamine depletion, which is known to strikingly stimulate the uptake of methylglyoxal bis(guanylhydrazone), decreased, if anything, the uptake of ethylglyoxal bis(guanylhydrazone) by L1210 cells. The compound produced spermidine and spermine depletion fully comparable to that achieved with methylglyoxal bis(guanylhydrazone) at micromolar concentrations. Ethylglyoxal bis(guanylhydrazone) was growth-inhibitory to L1210 cells and produced an additive antiproliferative action when used together with 2-difluoromethylornithine. Ethylglyoxal bis(guanylhydrazone) was distinctly less effective than methylglyoxal bis(guanylhydrazone) in releasing bound polyamines from isolated cell organelles in vitro. Ethylglyoxal bis(guanylhydrazone) was also devoid of the early and profound mitochondrial toxicity typical to methylglyoxal bis(guanylhydrazone). These findings may indicate that this compound is a more specific inhibitor of polyamine biosynthesis with less intracellular polyamine 'receptor-site' activity than methylglyoxal bis(guanylhydrazone).
Collapse
|