1
|
Reiser PJ, Belevych N, Shope L, Hanaoka B. Methanol gel electrophoresis: Separation of human fast and slow myosin light chain 1 and other myofibrillar protein isoforms on a single gel format. Electrophoresis 2024; 45:1851-1859. [PMID: 38785173 DOI: 10.1002/elps.202400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
This report describes a novel sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) resolving gel format that consistently yields the electrophoretic separation of the fast and slow isoforms of human sarcomeric myosin light chain 1 (MLC1). The inclusion of methanol as a constituent of the resolving gel impacted the electrophoretic mobility of proteins across a broad range of molecular masses. There was greater separation of the fast and slow isoforms of human MLC1, as well as separation and high resolution of fast and slow isoforms of the three myosin heavy chain isoforms that are expressed in human skeletal muscle on the same gel format. Furthermore, the same resolving gel format substantially altered the electrophoretic mobility of at least one isoform of tropomyosin in human striated muscle. It is possible that the inclusion of methanol in SDS-PAGE resolving gels could improve the separation of other proteins that are expressed in muscle and in other tissues and cell types.
Collapse
Affiliation(s)
- Peter J Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Logan Shope
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Beatriz Hanaoka
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Milhem F, Hamilton LM, Skates E, Wilson M, Johanningsmeier SD, Komarnytsky S. Biomarkers of Metabolic Adaptation to High Dietary Fats in a Mouse Model of Obesity Resistance. Metabolites 2024; 14:69. [PMID: 38276304 PMCID: PMC10819356 DOI: 10.3390/metabo14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Obesity-resistant (non-responder, NR) phenotypes that exhibit reduced susceptibility to developing obesity despite being exposed to high dietary fat are crucial in exploring the metabolic responses that protect against obesity. Although several efforts have been made to study them in mice and humans, the individual protective mechanisms are poorly understood. In this exploratory study, we used a polygenic C57BL/6J mouse model of diet-induced obesity to show that NR mice developed healthier fat/lean body mass ratios (0.43 ± 0.05) versus the obesity-prone (super-responder, SR) phenotypes (0.69 ± 0.07, p < 0.0001) by upregulating gene expression networks that promote the accumulation of type 2a, fast-twitch, oxidative muscle tissues. This was achieved in part by a metabolic adaptation in the form of blood glucose sparing, thus aggravating glucose tolerance. Resistance to obesity in NR mice was associated with 4.9-fold upregulated mitoferrin 1 (Slc25a37), an essential mitochondrial iron importer. SR mice also showed fecal volatile metabolite signatures of enhanced short-chain fatty acid metabolism, including increases in detrimental methyl formate and ethyl propionate, and these effects were reversed in NR mice. Continued research into obesity-resistant phenotypes can offer valuable insights into the underlying mechanisms of obesity and metabolic health, potentially leading to more personalized and effective approaches for managing weight and related health issues.
Collapse
Affiliation(s)
- Fadia Milhem
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (F.M.); (E.S.); (M.W.)
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA;
- Department of Nutrition, University of Petra, 317 Airport Road, Amman 11196, Jordan
| | - Leah M. Hamilton
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA;
- College of Agriculture, Virginia State University, 1 Hayden Drive, Petersburg, VA 23806, USA
| | - Emily Skates
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (F.M.); (E.S.); (M.W.)
| | - Mickey Wilson
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (F.M.); (E.S.); (M.W.)
| | - Suzanne D. Johanningsmeier
- United States Department of Agriculture-Agricultural Research Service, Southeast Area, Food Science and Market Quality & Handling Research Unit, North Carolina State University, 322 Schaub Hall, Box 7624, Raleigh, NC 27695, USA;
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (F.M.); (E.S.); (M.W.)
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA;
| |
Collapse
|
3
|
Mandroukas A, Metaxas TI, Papadopoulou Z, Heller J, Margaritelis NV, Christoulas K, Ekblom B, Vrabas IS. Myosin heavy chain isoform composition in the deltoid and vastus lateralis muscles of elite handball players. J Sports Sci 2020; 38:2390-2395. [PMID: 32602402 DOI: 10.1080/02640414.2020.1788284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of the present study was to compare the myosin heavy chain (MHC) isoform composition of the deltoid and vastus lateralis muscles of the dominant and non-dominant limbs in handball players. Eleven male Greek elite handball players (age 22.6 ± 1.9 yrs, training experience 10.6 ± 2.1 yrs, height 184.1 ± 4.1 cm, and weight 81.0 ± 12.5 kg) participated in the study. Four muscle biopsies were obtained from the dominant and non-dominant deltoid and vastus lateralis muscles during the in-season period. The MHC composition was determined using SDS-PAGE. No significant difference was found between the dominant and non-dominant muscles; Deltoid muscle: MHC I [(95%CI = -1.22, 0.33), P = 0.228], MHC ΙΙa [(95%CI = -0.32, 1.59), P = 0.168] and MHC IIx [(95%CI = -1.49, 1.10), P = 0.749]; Vastus lateralis muscle: MHC I [(95%CI = -0.38, 0.63), P = 0.586], MHC ΙΙa [(95%CI = -0.50, 0.65), P = 0.783] and MHC IIx [(95%CI = -1.08, 0.42), P = 0.355]. The findings of the present study indicate that the greater use of the dominant limbs for throwing actions and body movements in handball do not lead to altered MHC isoform composition compared to the non-dominant limbs.
Collapse
Affiliation(s)
- Athanasios Mandroukas
- Faculty of Physical Education and Sport, Charles University , Prague, Czech Republic
| | - Thomas I Metaxas
- Laboratory of Evaluation of Human Biological Performance, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Zacharoula Papadopoulou
- Laboratory of Evaluation of Human Biological Performance, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki , Thessaloniki, Greece.,School of Physical Education and Sport Science, Department of Competitive Sports, Division of Team Handball, Aristotle University of Thessaloniki , Thessaloniki, Greece.,Laboratory of Exercise Physiology & Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Jan Heller
- Faculty of Physical Education and Sport, Charles University , Prague, Czech Republic
| | - Nikos V Margaritelis
- Laboratory of Exercise Physiology & Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Kosmas Christoulas
- Laboratory of Evaluation of Human Biological Performance, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Bjorn Ekblom
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences , Stockholm, Sweden
| | - Ioannis S Vrabas
- Laboratory of Exercise Physiology & Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki , Thessaloniki, Greece
| |
Collapse
|
4
|
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019; 99:427-511. [PMID: 30427277 PMCID: PMC6442923 DOI: 10.1152/physrev.00061.2017] [Citation(s) in RCA: 919] [Impact Index Per Article: 153.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/14/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Hans Degens
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Meishan Li
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Leonardo Salviati
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Young Il Lee
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Wesley Thompson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - James L Kirkland
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Sandri
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
5
|
Carraro U. Exciting perspectives for Translational Myology in the Abstracts of the 2018Spring PaduaMuscleDays: Giovanni Salviati Memorial - Chapter I - Foreword. Eur J Transl Myol 2018; 28:7363. [PMID: 29686822 PMCID: PMC5895991 DOI: 10.4081/ejtm.2018.7363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022] Open
Abstract
Myologists working in Padua (Italy) were able to continue a half-century tradition of studies of skeletal muscles, that started with a research on fever, specifically if and how skeletal muscle contribute to it by burning bacterial toxin. Beside main publications in high-impact-factor journals by Padua myologists, I hope to convince readers (and myself) of the relevance of the editing Basic and Applied Myology (BAM), retitled from 2010 European Journal of Translational Myology (EJTM), of the institution of the Interdepartmental Research Center of Myology of the University of Padova (CIR-Myo), and of a long series of International Conferences organized in Euganei Hills and Padova, that is, the PaduaMuscleDays. The 2018Spring PaduaMuscleDays (2018SpPMD), were held in Euganei Hills and Padua (Italy), in March 14-17, and were dedicated to Giovanni Salviati. The main event of the "Giovanni Salviati Memorial", was held in the Aula Guariento, Accademia Galileiana di Scienze, Lettere ed Arti of Padua to honor a beloved friend and excellent scientist 20 years after his premature passing. Using the words of Prof. Nicola Rizzuto, we all share his believe that Giovanni "will be remembered not only for his talent and originality as a biochemist, but also for his unassuming and humanistic personality, a rare quality in highly successful people like Giovanni. The best way to remember such a person is to gather pupils and colleagues, who shared with him the same scientific interests and ask them to discuss recent advances in their own fields, just as Giovanni have liked to do". Since Giovanni's friends sent many abstracts still influenced by their previous collaboration with him, all the Sessions of the 2018SpPMD reflect both to the research aims of Giovanni Salviati and the traditional topics of the PaduaMuscleDays, that is, basics and applications of physical, molecular and cellular strategies to maintain or recover functions of skeletal muscles. The translational researches summarized in the 2018SpPMD Abstracts are at the appropriate high level to attract approval of Ethical Committees, the interest of International Granting Agencies and approval for publication in top quality, international journals. This was true in the past, continues to be true in the present and will be true in the future. All 2018SpPMD Abstracts are indexed at the end of the Chapter IV.
Collapse
Affiliation(s)
- Ugo Carraro
- Laboratory of Translational Myology, Department of Biomedical Sciences, University of Padova.,A&C M-C Foundation for Translational Myology, Padova.,IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| |
Collapse
|
6
|
Dissecting human skeletal muscle troponin proteoforms by top-down mass spectrometry. J Muscle Res Cell Motil 2015; 36:169-81. [PMID: 25613324 DOI: 10.1007/s10974-015-9404-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/07/2015] [Indexed: 01/26/2023]
Abstract
Skeletal muscles are the most abundant tissues in the human body. They are composed of a heterogeneous collection of muscle fibers that perform various functions. Skeletal muscle troponin (sTn) regulates skeletal muscle contraction and relaxation. sTn consists of 3 subunits, troponin I (TnI), troponin T (TnT), and troponin C (TnC). TnI inhibits the actomyosin Mg(2+)-ATPase, TnC binds Ca(2+), and TnT is the tropomyosin (Tm)-binding subunit. The cardiac and skeletal isoforms of Tn share many similarities but the roles of modifications of Tn in the two muscles may differ. The modifications of cardiac Tn are known to alter muscle contractility and have been well-characterized. However, the modification status of sTn remains unclear. Here, we have employed top-down mass spectrometry (MS) to decipher the modifications of human sTnT and sTnI. We have extensively characterized sTnT and sTnI proteoforms, including alternatively spliced isoforms and post-translationally modified forms, found in human skeletal muscle with high mass accuracy and comprehensive sequence coverage. Moreover, we have localized the phosphorylation site of slow sTnT isoform III to Ser1 by tandem MS with electron capture dissociation. This is the first study to comprehensively characterize human sTn and also the first to identify the basal phosphorylation site for human sTnT by top-down MS.
Collapse
|
7
|
Liu W, Olson SD. Compartment calcium model of frog skeletal muscle during activation. J Theor Biol 2015; 364:139-53. [DOI: 10.1016/j.jtbi.2014.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/17/2022]
|
8
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
9
|
|
10
|
Monnier N, Lunardi J, Marty I, Mezin P, Labarre-Vila A, Dieterich K, Jouk PS. Absence of β-tropomyosin is a new cause of Escobar syndrome associated with nemaline myopathy. Neuromuscul Disord 2009; 19:118-23. [DOI: 10.1016/j.nmd.2008.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/02/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
|
11
|
Kesidis N, Metaxas TI, Vrabas IS, Stefanidis P, Vamvakoudis E, Christoulas K, Mandroukas A, Balasas D, Mandroukas K. Myosin heavy chain isoform distribution in single fibres of bodybuilders. Eur J Appl Physiol 2008; 103:579-83. [PMID: 18461351 DOI: 10.1007/s00421-008-0751-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2008] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to investigate the long-term effects of high intensity resistance training on myosin heavy chain (MHC) isoform composition of single fibres. Muscle biopsies were obtained from the right vastus lateralis of eight bodybuilders (BB) and seven physical education students (PES). Histochemical analyses were used to determine the fibre type distribution and the fibre cross-sectional area. MHC isoform composition of single fibres was determined with protein electrophoresis. The percentage of fibres expressing MHC IIA and MHC I/IIA was larger in BB (P < 0.05), while MHC IIX was completely absent (P < 0.05). In contrast, myofibrilar ATPase histochemistry only revealed a significantly lower percentage of type IIX fibres in BB (P < 0.05). The muscle fibre profile in the vastus lateralis muscle of BB may represent an adaptation based on the mechanical and biochemical demands of the long-term resistance training.
Collapse
Affiliation(s)
- Nikolaos Kesidis
- Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Skeletal Muscle Disease Due to Mutations in Tropomyosin, Troponin and Cofilin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:40-54. [DOI: 10.1007/978-0-387-84847-1_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
Abstract
Skeletal muscle is the largest single organ of the body. Skeletal muscle damage may lead to loss of muscle function, and widespread muscle damage may have serious systemic implications due to leakage of intracellular constituents to the circulation. Ca2+ acts as a second messenger in all muscle and may activate a whole range of processes ranging from activation of contraction to degradation of the muscle cell. It is therefore of vital importance for the muscle cell to control [Ca2+] in the cytoplasm ([Ca2+]c). If the permeability of the sarcolemma for Ca2+ is increased, the muscle cell may suffer Ca2+ overload, defined as an inability to control [Ca2+]c. This could lead to the activation of calpains, resulting in proteolysis of cellular constituents, activation of phospholipase A2 (PLA2), affecting membrane integrity, an increased production of reactive oxygen species (ROS), causing lipid peroxidation, and possibly mitochondrial Ca2+ overload, all of which may further worsen the damage in a self-reinforcing process. An increased influx of Ca2+ leading to Ca2+ overload in muscle may occur in a range of situations such as exercise, mechanical and electrical trauma, prolonged ischemia, Duchenne muscular dystrophy, and cachexia. Counteractions include membrane stabilizing agents, Ca2+ channel blockers, calpain inhibitors, PLA2 inhibitors, and ROS scavengers.
Collapse
Affiliation(s)
- Hanne Gissel
- Institute of Physiology and Biophysics, University of Aarhus, Ole Worms Alle 1160, DK-8000 Arhus C, Denmark.
| |
Collapse
|
14
|
Reggiani C, te Kronnie T. RyR isoforms and fibre type-specific expression of proteins controlling intracellular calcium concentration in skeletal muscles. J Muscle Res Cell Motil 2006; 27:327-35. [PMID: 16874451 DOI: 10.1007/s10974-006-9076-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 06/21/2006] [Indexed: 11/28/2022]
Abstract
Muscle fibres which shorten with high maximum shortening velocity also exhibit fast kinetics of contraction, i.e. short values of time to peak tension and time to half relaxation. This short review aims to discuss the molecular basis of such correlation, to reach, based on the available literature, an answer to the question whether there is a correlation in expression of proteins determining shortening velocity, myosin isoforms in the first place, and proteins controlling cytosolic calcium concentration and its variations at rest or during contraction. Although the isoforms of RyR, the sarcoplasmic calcium release channels, do not show a tightly coordinated expression with myosin isoforms, other proteins involved in controlling intracellular calcium do. This is likely sufficient to guarantee the correlation between maximum shortening velocity and speed of isometric contraction.
Collapse
Affiliation(s)
- Carlo Reggiani
- Department of Anatomy and Physiology, University of Padova, Via Marzolo 3, 35131, Padova, Italy.
| | | |
Collapse
|
15
|
Reiser PJ, Bicer S. Multiple isoforms of myosin light chain 1 in pig diaphragm slow fibers: correlation with maximal shortening velocity and force generation. Arch Biochem Biophys 2006; 456:112-8. [PMID: 16884681 DOI: 10.1016/j.abb.2006.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 05/24/2006] [Accepted: 06/09/2006] [Indexed: 11/17/2022]
Abstract
Pig diaphragm slow fibers exhibit heterogeneity in myosin light chain 1 (MLC1) isoform expression, with many expressing fast-type MLC1 (MLC1F), as well as two isoforms of slow-type MLC1 (MLC1Sa and MLC1Sb). The goal of this study was to test if there is a relationship between MLC1 isoform expression and contractile properties among these fibers. Maximal shortening velocity (V(max)) and maximal isometric force generation, normalized with fiber cross-sectional area (P(o)/CSA), were measured in single fibers. V(max) was inversely related to the relative level of MLC1Sa. The level of MLC1Sa was reciprocally related to the levels of MLC1Sb and of MLC1F among individual fibers. Fibers expressing MLC1Sa and in which MLC1Sb was not detected generated greater P(o)/CSA, compared to fibers expressing MLC1Sb and not MLC1Sa. The results indicate a complex pattern of MLC1 isoform expression among pig diaphragm slow fibers and suggest that shortening velocity and force generation are modulated, in these fibers, by the MLC1 isoform composition.
Collapse
Affiliation(s)
- Peter J Reiser
- Oral Biology, Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
16
|
Koulmann N, Bigard AX. Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise. Pflugers Arch 2006; 452:125-39. [PMID: 16437222 DOI: 10.1007/s00424-005-0030-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/23/2005] [Accepted: 11/24/2005] [Indexed: 12/29/2022]
Abstract
The purpose of this review is to summarise the latest literature on the signalling pathways involved in transcriptional modulations of genes that encode contractile and metabolic proteins in response to endurance exercise. A special attention has been paid to the cooperation between signalling pathways and coordinated expression of protein families that establish myofibre phenotype. Calcium acts as a second messenger in skeletal muscle during exercise, conveying neuromuscular activity into changes in the transcription of specific genes. Three main calcium-triggered regulatory pathways acting through calcineurin, Ca(2+)-calmodulin-dependent protein kinases (CaMK) and Ca(2+)-dependent protein kinase C, transduce alterations in cytosolic calcium concentration to target genes. Calcineurin signalling, the most important of these Ca(2+)-dependent pathways, stimulates the activation of many slow-fibre gene expression, including genes encoding proteins involved in contractile process, Ca(2+) uptake and energy metabolism. It involves the interaction between multiple transcription factors and the collaboration of other Ca(2+)-dependent CaMKs. Although members of mitogen-activated protein kinase (MAPK) pathways are activated during exercise, their integration into other signalling pathways remains largely unknown. The peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) constitutes a pivotal factor of the circuitry which coordinates mitochondrial biogenesis and which couples to the expression of contractile and metabolic genes with prolonged exercise.
Collapse
Affiliation(s)
- Nathalie Koulmann
- Département des Facteurs Humains, Centre de Recherches du Service de Santé des Armées, BP 87 38 702 La Tronche cedex, France
| | | |
Collapse
|
17
|
Nguyen T, Rubinstein NA, Vijayasarathy C, Rome LC, Kaiser LR, Shrager JB, Levine S. Effect of chronic obstructive pulmonary disease on calcium pump ATPase expression in human diaphragm. J Appl Physiol (1985) 2005; 98:2004-10. [PMID: 15718407 DOI: 10.1152/japplphysiol.00767.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously demonstrated that human diaphragm remodeling elicited by severe chronic obstructive pulmonary disease (COPD) is characterized by a fast-to-slow myosin heavy chain isoform transformation. To test the hypothesis that COPD-induced diaphragm remodeling also elicits a fast-to-slow isoform shift in the sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA), the other major ATPase in skeletal muscle, we obtained intraoperative biopsies of the costal diaphragm from 10 severe COPD patients and 10 control subjects. We then used isoform-specific monoclonal antibodies to characterize diaphragm fibers with respect to the expression of SERCA isoforms. Compared with control diaphragms, COPD diaphragms exhibited a 63% decrease in fibers expressing only fast SERCA (i.e., SERCA1; P < 0.001), a 190% increase in fibers containing both fast and slow SERCA isoforms (P < 0.01), and a 19% increase (P < 0.05) in fibers expressing only the slow SERCA isoform (i.e., SERCA2). Additionally, immunoblot experiments carried out on diaphragm homogenates indicated that COPD diaphragms expressed only one-third the SERCA1 content noted in control diaphragms; in contrast, COPD and control diaphragms did not differ with respect to SERCA2 content. The combination of these histological and immunoblot results is consistent with the hypothesis that diaphragm remodeling elicited by severe COPD is characterized by a fast-to-slow SERCA isoform transformation. Moreover, the combination of these SERCA data and our previously reported myosin heavy chain isoform data (Levine S, Nguyen T, Kaiser LR, Rubinstein NA, Maislin G, Gregory C, Rome LC, Dudley GA, Sieck GC, and Shrager JB. Am J Respir Crit Care Med 168: 706-713, 2003) suggests that diaphragm remodeling elicited by severe COPD should decrease ATP utilization by the diaphragm.
Collapse
Affiliation(s)
- Taitan Nguyen
- Respiratory Muscle Research Laboratory, Section of General Thoracic Surgery (4 Silverstein Pavilion), Hospital of the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104-4283, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kim NK, Joh JH, Park HR, Kim OH, Park BY, Lee CS. Differential expression profiling of the proteomes and their mRNAs in porcine white and red skeletal muscles. Proteomics 2004; 4:3422-8. [PMID: 15449374 DOI: 10.1002/pmic.200400976] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Skeletal muscle is an heterogeneous tissue with various biochemical and physical properties of several fiber types. In this study, we carried out the comparative study of protein expression patterns in white and red muscles using two-dimensional gel electrophoresis (2-DE). From more than 500 protein spots detected on each 2-DE gel, we screened five proteins that were differentially expressed between white and red muscles. Using peptide mass fingerprint and tandem mass spectrometry analysis these proteins were identified as myoglobin, two slow-twitch isoforms of myosin light chain and two small heat shock proteins (HSP20 and HSP27). The protein levels of myoglobin, myosin light chain and HSP20 were higher in red muscle, whereas HSP27 was higher in white muscle. In addition, genes of the identified proteins were cloned and their mRNAs were examined. Positive correlations between protein content and their mRNA levels were observed in white and red muscle. These results may provide us with valuable information to understand the different expression profiling between white and red muscle at the protein level.
Collapse
Affiliation(s)
- Nam-Kuk Kim
- Department of Applied Biochemistry, College of Natural Science, Konkuk University, Chung-ju, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Andruchov O, Andruchova O, Wang Y, Galler S. Functional differences in type-I fibres from two slow skeletal muscles of rabbit. Pflugers Arch 2003; 446:752-9. [PMID: 12898259 DOI: 10.1007/s00424-003-1143-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Revised: 05/23/2003] [Accepted: 06/06/2003] [Indexed: 11/27/2022]
Abstract
The present study addressed the question of whether the slow fibres of mammalian skeletal muscle, containing the myosin heavy chain MHCI (type-I fibres), are a functionally homogeneous population. We compared various properties of Ca(2+)-activated, skinned, type-I fibres from the soleus and semitendinosus muscles of a rabbit. Soleus type-I fibres showed significantly faster kinetics of stretch activation, measured as the time-to-peak of the stretch-induced, delayed force increase, t(3), than semitendinosus fibres (1239+/-438 ms, n=136, vs. 1600+/-409 ms, n=208 respectively) (means+/-SD, 22 degrees C). Similarly, the speed of unloaded shortening at 15 degrees C was faster in soleus than in semitendinosus fibres [0.79+/-0.16 fibre lengths (FL) s(-1), n=44, vs. 0.65+/-0.15 FL s(-1), n=35 respectively]. The kinetics of stretch activation were more temperature sensitive in semitendinosus than in soleus fibres. Finally, the generation of steady-state isometric force was more sensitive to Ca(2+) in semitendinosus than in soleus fibres: [pCa(50) (-log [Ca(2+)] for half-maximal activation) at 22 degrees C: 6.29+/-0.15, n=28, vs. 6.19+/-0.10, n=18 respectively]. These results suggest strongly that there is no functional homogeneity within type-I fibres of different muscles. The observed differences might reflect the existence of more than one functionally different slow myosin heavy chain isoforms or other modifications of contractile proteins.
Collapse
Affiliation(s)
- Oleg Andruchov
- Institut für Zoologie, Universität Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | | | | | | |
Collapse
|
20
|
Chapter 8 Effects of aging on motor unit structure and function. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1567-4231(09)70118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Sinha-Hikim I, Artaza J, Woodhouse L, Gonzalez-Cadavid N, Singh AB, Lee MI, Storer TW, Casaburi R, Shen R, Bhasin S. Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am J Physiol Endocrinol Metab 2002; 283:E154-64. [PMID: 12067856 DOI: 10.1152/ajpendo.00502.2001] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Administration of replacement doses of testosterone to healthy hypogonadal men and supraphysiological doses to eugonadal men increases muscle size. To determine whether testosterone-induced increase in muscle size is due to muscle fiber hypertrophy, 61 healthy men, 18-35 yr of age, received monthly injections of a long-acting gonadotropin-releasing hormone (GnRH) agonist to suppress endogenous testosterone secretion and weekly injections of 25, 50, 125, 300, or 600 mg testosterone enanthate (TE) for 20 wk. Thigh muscle volume was measured by magnetic resonance imaging (MRI) scan, and muscle biopsies were obtained from vastus lateralis muscle in 39 men before and after 20 wk of combined treatment with GnRH agonist and testosterone. Administration of GnRH agonist plus TE resulted in mean nadir testosterone concentrations of 234, 289, 695, 1,344, and 2,435 ng/dl at the 25-, 50-, 125-, 300-, and 600-mg doses, respectively. Graded doses of testosterone administration were associated with testosterone dose and concentration-dependent increase in muscle volume measured by MRI (changes in vastus lateralis volume, -4, +7, +15, +32, and +48 ml at 25-, 50-, 125-, 300-, and 600-mg doses, respectively). Changes in cross-sectional areas of both type I and II fibers were dependent on testosterone dose and significantly correlated with total (r = 0.35, and 0.44, P < 0.0001 for type I and II fibers, respectively) and free (r = 0.34 and 0.35, P < 0.005) testosterone concentrations during treatment. The men receiving 300 and 600 mg of TE weekly experienced significant increases from baseline in areas of type I (baseline vs. 20 wk, 3,176 +/- 186 vs. 4,201 +/- 252 microm(2), P < 0.05 at 300-mg dose, and 3,347 +/- 253 vs. 4,984 +/- 374 microm(2), P = 0.006 at 600-mg dose) muscle fibers; the men in the 600-mg group also had significant increments in cross-sectional area of type II (4,060 +/- 401 vs. 5,526 +/- 544 microm(2), P = 0.03) fibers. The relative proportions of type I and type II fibers did not change significantly after treatment in any group. The myonuclear number per fiber increased significantly in men receiving the 300- and 600-mg doses of TE and was significantly correlated with testosterone concentration and muscle fiber cross-sectional area. In conclusion, the increases in muscle volume in healthy eugonadal men treated with graded doses of testosterone are associated with concentration-dependent increases in cross-sectional areas of both type I and type II muscle fibers and myonuclear number. We conclude that the testosterone induced increase in muscle volume is due to muscle fiber hypertrophy.
Collapse
MESH Headings
- Adolescent
- Adult
- Anatomy, Cross-Sectional
- Body Composition
- Dose-Response Relationship, Drug
- Double-Blind Method
- Gonadotropin-Releasing Hormone/agonists
- Humans
- Hypertrophy/chemically induced
- Magnetic Resonance Imaging
- Male
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/growth & development
- Reference Values
- Testosterone/analogs & derivatives
- Testosterone/blood
- Testosterone/pharmacology
Collapse
Affiliation(s)
- Indrani Sinha-Hikim
- Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bottinelli R, Reggiani C. Human skeletal muscle fibres: molecular and functional diversity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 73:195-262. [PMID: 10958931 DOI: 10.1016/s0079-6107(00)00006-7] [Citation(s) in RCA: 374] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Contractile and energetic properties of human skeletal muscle have been studied for many years in vivo in the body. It has been, however, difficult to identify the specific role of muscle fibres in modulating muscle performance. Recently it has become possible to dissect short segments of single human muscle fibres from biopsy samples and make them work in nearly physiologic conditions in vitro. At the same time, the development of molecular biology has provided a wealth of information on muscle proteins and their genes and new techniques have allowed analysis of the protein isoform composition of the same fibre segments used for functional studies. In this way the histological identification of three main human muscle fibre types (I, IIA and IIX, previously called IIB) has been followed by a precise description of molecular composition and functional and biochemical properties. It has become apparent that the expression of different protein isoforms and therefore the existence of distinct muscle fibre phenotypes is one of the main determinants of the muscle performance in vivo. The present review will first describe the mechanisms through which molecular diversity is generated and how fibre types can be identified on the basis of structural and functional characteristics. Then the molecular and functional diversity will be examined with regard to (1) the myofibrillar apparatus; (2) the sarcolemma and the sarcoplasmic reticulum; and (3) the metabolic systems devoted to producing ATP. The last section of the review will discuss the advantage that fibre diversity can offer in optimizing muscle contractile performance.
Collapse
Affiliation(s)
- R Bottinelli
- Institute of Human Physiology, University of Pavia, Via Forlanni 6, 27100, Pavia, Italy.
| | | |
Collapse
|
23
|
Moraczewska J, Greenfield NJ, Liu Y, Hitchcock-DeGregori SE. Alteration of tropomyosin function and folding by a nemaline myopathy-causing mutation. Biophys J 2000; 79:3217-25. [PMID: 11106625 PMCID: PMC1301196 DOI: 10.1016/s0006-3495(00)76554-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mutations in the human TPM3 gene encoding gamma-tropomyosin (alpha-tropomyosin-slow) expressed in slow skeletal muscle fibers cause nemaline myopathy. Nemaline myopathy is a rare, clinically heterogeneous congenital skeletal muscle disease with associated muscle weakness, characterized by the presence of nemaline rods in muscle fibers. In one missense mutation the codon corresponding to Met-8, a highly conserved residue, is changed to Arg. Here, a rat fast alpha-tropomyosin cDNA with the Met8Arg mutation was expressed in Escherichia coli to investigate the effect of the mutation on in vitro function. The Met8Arg mutation reduces tropomyosin affinity for regulated actin 30- to 100-fold. Ca(2+)-sensitive regulatory function is retained, although activation of the actomyosin S1 ATPase in the presence of Ca(2+) is reduced. The poor activation may reflect weakened actin affinity or reduced effectiveness in switching the thin filament to the open, force-producing state. The presence of the Met8Arg mutation severely, but locally, destabilizes the tropomyosin coiled coil in a model peptide, and would be expected to impair end-to-end association between TMs on the thin filament. In muscle, the mutation may alter thin filament assembly consequent to lower actin affinity and altered binding of the N-terminus to tropomodulin at the pointed end of the filament. The mutation may also reduce force generation during activation.
Collapse
Affiliation(s)
- J Moraczewska
- Department of Neuroscience and Cell Biology, UMDMJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
24
|
Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 2000; 80:1215-65. [PMID: 10893434 DOI: 10.1152/physrev.2000.80.3.1215] [Citation(s) in RCA: 617] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise. Additionally, the muscle fibers are arranged in compartments that often function as largely independent muscular subunits. All muscle fibers use Ca(2+) as their main regulatory and signaling molecule. Therefore, contractile properties of muscle fibers are dependent on the variable expression of proteins involved in Ca(2+) signaling and handling. Molecular diversity of the main proteins in the Ca(2+) signaling apparatus (the calcium cycle) largely determines the contraction and relaxation properties of a muscle fiber. The Ca(2+) signaling apparatus includes 1) the ryanodine receptor that is the sarcoplasmic reticulum Ca(2+) release channel, 2) the troponin protein complex that mediates the Ca(2+) effect to the myofibrillar structures leading to contraction, 3) the Ca(2+) pump responsible for Ca(2+) reuptake into the sarcoplasmic reticulum, and 4) calsequestrin, the Ca(2+) storage protein in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2+)-triggered muscle contraction under certain conditions or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca(2+) signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca(2+) handling seem to be responsible for the pathophysiological conditions seen in dystrophinopathies, Brody's disease, and malignant hyperthermia. These also underline the importance of the affected molecules for correct muscle performance.
Collapse
Affiliation(s)
- M W Berchtold
- Department of Molecular Cell Biology, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
25
|
Canepari M, Rossi R, Pellegrino MA, Bottinelli R, Schiaffino S, Reggiani C. Functional diversity between orthologous myosins with minimal sequence diversity. J Muscle Res Cell Motil 2000; 21:375-82. [PMID: 11032348 DOI: 10.1023/a:1005640004495] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To define the structural differences that are responsible for the functional diversity between orthologous sarcomeric myosins, we compared the rat and human beta/slow myosins. Functional comparison showed that rat beta/slow myosin has higher ATPase activity and moves actin filaments at higher speed in in vitro motility assay than human beta/slow myosin. Sequence analysis shows that the loop regions at the junctions of the 25 and 50 kDa domains (loop 1) and the 50 and 20 kDa domains (loop 2), which have been implicated in determining functional diversity of myosin heavy chains, are essentially identical in the two orthologs. There are only 14 non-conservative substitutions in the two myosin heavy chains, three of which are located in the secondary actin-binding loop and flanking regions and others correspond to residues so far not assigned a functional role, including two residues in the proximal S2 domain. Interestingly, in some of these positions the rat beta/slow myosin heavy chain has the same residues found in human cardiac alpha myosin, a fast-type myosin, and fast skeletal myosins. These observations indicate that functional and structural analysis of myosin orthologs with limited sequence diversity can provide useful clues to identify amino acid residues involved in modulating myosin function.
Collapse
Affiliation(s)
- M Canepari
- Institute of Human Physiology, University of Pavia, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Biral D, Ballarin F, Toscano I, Salviati G, Yu F, Larsson L, Betto R. Gender- and thyroid hormone-related transitions of essential myosin light chain isoform expression in rat soleus muscle during ageing. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 167:317-23. [PMID: 10632633 DOI: 10.1046/j.1365-201x.1999.00621.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this brief review, the modulatory influence of essential myosin light chain (MLC) isoforms on muscle cell contractility is discussed. Specific interest is focused on the expression of the MLC1Sa and MLC1Sb isoforms in the slow-twitch soleus muscle in male and female rats, during ageing and after thyroid hormone treatment. According to two-dimensional gel electrophoresis analysis, the MLC1Sa/MLC1SB ratio increased during ageing in both males and females in parallel with the age-related decrease in shortening velocity reported in muscle fibres expressing the slow (type 1) myosin heavy chain (MHC) isoform. However, the MLC1Sa and MLC1Sb isoform expression responded to thyroid hormone treatment in a complex manner which did not parallel the age-related changes in shortening velocity reported in hyperthyroid animals. Thus, if MLC1Sa and MLC1Sb isoforms modulate shortening velocity in type 1 fibres, then other modulators of shortening velocity are not regulated by thyroid hormone in co-ordination with these essential MLCs.
Collapse
Affiliation(s)
- D Biral
- National Research Council Unit for Muscle Biology and Physiopathology, c/o Department of Biomedical Sciences, University of Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The purpose of this investigation was to describe and compare various methods of recovering atrophied fast-twitch skeletal muscle following long-term impaired physical mobility. An animal model was used to study morphological adaptations of atrophied plantaris muscles to the effects of 28 days of hindlimb suspension (HS) followed by either sedentary recovery or run training during a 28-day recovery period. Significant atrophy, demonstrated by decreased mean fiber area (MFA, micron 2), occurred during the 28-day period of HS. However, run training following long-term atrophy induced by HS did not result in the high levels of frank muscle damage and type IIC fibers previously reported in slow-twitch soleus muscle following long-term (28 days) atrophy.
Collapse
Affiliation(s)
- C E Kasper
- Doctoral Programs, Johns Hopkins University, School of Nursing, USA
| |
Collapse
|
28
|
Andersen JL, Terzis G, Kryger A. Increase in the degree of coexpression of myosin heavy chain isoforms in skeletal muscle fibers of the very old. Muscle Nerve 1999; 22:449-54. [PMID: 10204778 DOI: 10.1002/(sici)1097-4598(199904)22:4<449::aid-mus4>3.0.co;2-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myosin heavy chain (MHC) isoform composition was determined in 2264 single skeletal muscle fibers from vastus lateralis muscle of a group (n = 12) of very old subjects (average age, 88 years). The number of fibers containing only MHC I, IIA, or IIX was 19.9%, 27.2%, and 0.3%, respectively. Surprisingly, 28.5% of the fibers displayed coexpression of both MHC I and IIA, a phenotype that is present in younger adults in very small percentages. Among these fibers coexpressing MHC I and IIA, the majority had a dominant expression of MHC I. Additionally, a small number of fibers coexpressing MHC I and IIX without any MHC IIA, and fibers co-expressing all three isoforms were observed. Altogether, 52.6% of all fibers examined in these very old subjects coexpressed two or three MHC isoforms. The present study provides evidence that advanced age leads to a significant elevation of skeletal muscle fibers displaying coexpression of two MHC isoforms and that a separation into slow and fast fibers in very old individuals may therefore be somewhat misleading. The clinical significance of the elevated number of fibers coexpressing MHC I and IIA is uncertain.
Collapse
Affiliation(s)
- J L Andersen
- Department of Human Physiology, Copenhagen, Muscle Research Centre, August Krogh Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
29
|
Jostarndt-Fögen K, Puntschart A, Hoppeler H, Billeter R. Fibre-type specific expression of fast and slow essential myosin light chain mRNAs in trained human skeletal muscles. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 164:299-308. [PMID: 9853018 DOI: 10.1046/j.1365-201x.1998.00444.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fibre-type specific expression patterns of fast and slow isoforms of essential (alkali) myosin light chains (ELC) was analysed in trained, untrained and pathological human muscles. Biopsies from m. vastus lateralis of moderately trained and untrained persons, as well as highly trained endurance and strength athletes were analysed, by in situ hybridization, for the expression of the 'fast' ELC 1f/3f and the 'slow' ELC 1 sb. We wanted to investigate if changes in the fibre-type specific ELC mRNA pattern could be used as markers for training adaptation, especially, if the mRNA of the slow ELC 1sb isoform would appear in type IIA fibres as a result of endurance training (Baumann et al. 1987). We found the fast/slow ELC expression patterns in the fibre types to be remarkably stable. Physiological stress, even high training loads, did not affect it. No IIA fibres expressing ELC 1sb mRNA were found. They could be detected, however, in pathological muscle samples, where fast/slow ELC patterns not found in normal muscles were frequent. Our data suggest that in healthy muscles, only a subset of the theoretically possible combinations of myosin heavy and light chain isoforms are expressed at the level of their mRNAs.
Collapse
|
30
|
Reggiani C, Potma EJ, Bottinelli R, Canepari M, Pellegrino MA, Stienen GJ. Chemo-mechanical energy transduction in relation to myosin isoform composition in skeletal muscle fibres of the rat. J Physiol 1997; 502 ( Pt 2):449-60. [PMID: 9263923 PMCID: PMC1159562 DOI: 10.1111/j.1469-7793.1997.449bk.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. ATP consumption and force development were determined in single skinned muscle fibres of the rat at 12 degrees C. Myofibrillar ATPase consumption was measured photometrically from NADH oxidation which was coupled to ATP hydrolysis. Myosin heavy chain (MHC) and light chain (MLC) isoforms were identified by gel electrophoresis. 2. Slow fibres (n = 14) containing MHCI and fast fibres (n = 18) containing MHCIIB were compared. Maximum shortening velocity was 1.02 +/- 0.63 and 3.05 +/- 0.23 lengths s-1, maximum power was 1.47 +/- 0.22 and 9.59 +/- 0.84 W l-1, and isometric ATPase activity was 0.034 +/- 0.003 and 0.25 +/- 0.01 mM s-1 in slow and in fast fibres, respectively. 3. In fast as well as in slow fibres ATP consumption during shortening increased above isometric ATP consumption. The increase was much greater in fast fibres than in slow fibres, but became similar when expressed relative to the isometric ATPase rate. 4. Efficiency was calculated from mechanical power and free energy change associated with ATP hydrolysis. Maximum efficiency was larger in slow than in fast fibres (0.38 +/- 0.04 versus 0.28 +/- 0.03) and was reached at a lower shortening velocity. 5. Within the group of fast fibres efficiency was lower in fibres which contained more MLC3f. We conclude that both MHC and essential MLC isoforms contribute to determine efficiency of chemo-mechanical transduction.
Collapse
Affiliation(s)
- C Reggiani
- Institute of Cardiovascular Research, Free University, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Galler S, Hilber K, Gohlsch B, Pette D. Two functionally distinct myosin heavy chain isoforms in slow skeletal muscle fibres. FEBS Lett 1997; 410:150-2. [PMID: 9237619 DOI: 10.1016/s0014-5793(97)00556-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The head part of the myosin heavy chain (MHC) represents the essential component of the molecular force-generating system of muscle [1-3]. To date, three fast but only one slow MHC isoforms have been identified in adult mammalian limb muscles [4,5]. We show here two functionally different slow MHC isoforms, MHCIbeta and MHCIa, coexisting in a considerable fraction of slow fibres of rabbit plantaris muscle. The two isoforms exhibit distinct electrophoretic mobilities and different kinetic properties. Thus, as it is known for the fast muscle, also the slow muscle seems to use different MHC isoforms in order to fulfil different functional demands.
Collapse
Affiliation(s)
- S Galler
- Department of Animal Physiology, Institute of Zoology, University of Salzburg, Austria.
| | | | | | | |
Collapse
|
32
|
Andersen JL, Mohr T, Biering-Sørensen F, Galbo H, Kjaer M. Myosin heavy chain isoform transformation in single fibres from m. vastus lateralis in spinal cord injured individuals: effects of long-term functional electrical stimulation (FES). Pflugers Arch 1996; 431:513-8. [PMID: 8596693 DOI: 10.1007/bf02191897] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The myosin heavy chain (MHC) composition of single fibres from m. vastus lateralis of five spinal- cord-injured (SCI) individuals was analysed by Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) before, and after 6 and 12 months of functional electrical stimulation (FES)-training, administrated for 30 min three times per week. Prior to FES training 37.2% of the fibres contained only MHC IIB, 21.2% only MHC IIA, and 40.7% co-expressed MHC IIA and MHC IIB. After 6 months of FES-training the number of fibres containing only MHC IIB was reduced to 2.6% (P < 0.05), the number of fibres containing only MHC IIA was increased to 44.3% (P < 0.05), and the number of fibres co-expressing MHC IIA and MHC IIB was 50.9% (ns). After 12 months almost all fibres (91.2%, P < 0.05) contained only MHC IIA. The number of fibres containing only MHC IIB was 2.3% and the fibres co-expressing MHC IIA and IIB had decreased to 4.6% (P < 0.05). The amount of fibres containing only MHC I never exceeded 0.5%. Likewise, the number of fibres co-expressing MHC I and MHC IIA was below 2% throughout the study period. In total, the MHC composition of 1596 single fibres was determined. This study shows that FES-training of paralysed human skeletal muscle administrated over a prolonged period of time, can lead to a marked switch in MHC expression from about equal amounts of MHC IIA and MHC IIB to an almost total dominance of MHC IIA.
Collapse
Affiliation(s)
- J L Andersen
- August Krogh Institute, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
33
|
Danieli-Betto D, Betto R, Megighian A, Midrio M, Salviati G, Larsson L. Effects of age on sarcoplasmic reticulum properties and histochemical composition of fast- and slow-twitch rat muscles. ACTA PHYSIOLOGICA SCANDINAVICA 1995; 154:59-64. [PMID: 7572203 DOI: 10.1111/j.1748-1716.1995.tb09886.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Calcium release activity of sarcoplasmic reticulum and enzyme-histochemical properties were investigated in extensor digitorum longus (e.d.l.) and soleus muscles in young (4 months and old (24 months) male rats. With age, the caffeine threshold concentration for calcium release from the sarcoplasmic reticulum of soleus skinned muscle fibres showed only minor modifications. On the other hand, in e.d.l. skinned muscle fibres, the caffeine threshold concentration decreased significantly (P < 0.05). The histochemical fibre type composition changed with age both in soleus and in e.d.l. muscles, showing a common transformation toward a more oxidative histochemical profile. In fact, in aged soleus, a significant (P < 0.05) increase was observed of type 1 fibres to represent almost the totality of the muscle fibres (more than 98%), while types 2C and 2A were reduced in proportion. In aged e.d.l. the percentage of type 1 (P < 0.05), 2A and 2X (a recently identified fourth component of the fast-twitch muscle types) fibres increased, with a reduction of type 2B (P < 0.01) fibres. The present results suggest that the changes in contractile properties of aged muscles may be related to the changes not only in fibre composition but also in the mechanism of calcium release from sarcoplasmic reticulum.
Collapse
|
34
|
Ennion S, Sant'ana Pereira J, Sargeant AJ, Young A, Goldspink G. Characterization of human skeletal muscle fibres according to the myosin heavy chains they express. J Muscle Res Cell Motil 1995; 16:35-43. [PMID: 7751403 DOI: 10.1007/bf00125308] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using a method of single muscle fibre analysis, we investigated the presence of RNA transcripts for various isoforms of the myosin heavy chain (MyoHC) gene in histochemically, immunohistochemically and electrophoretically characterized individual muscle fibres (n = 65) from adult human vastus lateralis muscle. A cDNA clone isolated in this study was shown to contain the 3' end of a previously uncharacterized human MyoHC gene which is expressed specifically in human fast IIA muscle fibres and we conclude that this clone contains part of the human fast IIA MyoHC gene. In all the fibres histochemically, immunohistochemically and electrophoretically characterized as containing the previously classified IIB MyoHC (n = 23), it was shown that the human equivalent to the rat type IIX MyoHC gene is expressed. This observation was taken to suggest that the previously classified IIB muscles fibres in human muscle express a MyoHC isoform equivalent to the rat IIX, not the IIB, and would therefore be more accurately classified as IIX fibres.
Collapse
Affiliation(s)
- S Ennion
- Department of Anatomy and Developmental Biology, Royal Free Hospital School of Medicine, University of London, UK
| | | | | | | | | |
Collapse
|
35
|
Zardini DM, Parry DJ. Identification, distribution, and myosin subunit composition of type IIX fibers in mouse muscles. Muscle Nerve 1994; 17:1308-16. [PMID: 7935553 DOI: 10.1002/mus.880171110] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of the present investigation was to study the distribution and subunit composition of type IIX fibers in mouse muscles. The existence of a population of type IIX fibers in fast-twitch muscles of the mouse was shown by mean of immunohistochemistry and gel electrophoresis. In the hindlimb muscles, tibialis anterior (TA) and extensor digitorum longus (EDL), type IIX fibers account for approximately one third of the total fiber number, with the superficial portion of the TA (TAS) being composed exclusively of type IIB and IIX fibers. A similar proportion of IIX fibers was found in diaphragm (DIA) while in tongue muscles approximately 40% of the fibers were IIX. Single fiber gel electrophoresis revealed a significant number of fibers in TAS that contain both IIB and IIX myosin heavy chain (MyHC). This was confirmed with immunohistochemistry, which revealed the presence of fibers with various degrees of staining intensity. This suggests that there may exist a degree of plasticity which results in the conversion of IIX fibers to IIB fibers and vice versa. Analysis of myosin light chain (MyLC) composition of type IIX fibers revealed that the ratio of MyLC3f to MyLC1f was significantly lower than in type IIB fibers.
Collapse
Affiliation(s)
- D M Zardini
- Department of Physiology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
36
|
Andersen JL, Klitgaard H, Saltin B. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: influence of training. ACTA PHYSIOLOGICA SCANDINAVICA 1994; 151:135-42. [PMID: 7942047 DOI: 10.1111/j.1748-1716.1994.tb09730.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The myosin heavy chain (MHC) composition of single fibres from m. vastus lateralis of a group of male sprint athletes (n = 6) was analysed, before and after a three months period of intensive strength- and interval-training, using a sensitive gel electrophoretic technique. Significant improvements were observed after training in almost all of a series of performance tests. After training the sprinters revealed a decrease in fibres containing only MHC isoform I (52.0 +/- 3.0% vs. 41.2 +/- 4.7% (mean +/- SE) (P < 0.05)) and an increase in the amount of fibres containing only MHC isoform IIA (34.7 +/- 6.1% vs. 52.3 +/- 3.6% (P < 0.05)). Fibres showing co-existence of MHC isoforms IIA and IIB decreased with training (12.9 +/- 5.0% vs. 5.1 +/- 3.1% (P < 0.05)). Only one out of 1000 fibres analysed contained only MHC isoform IIB. In contrast, a higher amount of type IIB fibres (18.8 +/- 3.6% vs. 10.5 +/- 3.9%, (P < 0.05)) was observed with myofibrillar ATPase histochemistry. The majority of histochemically determined type IIB fibres of sprinters seems therefore to contain both MHC isoforms IIA and IIB. Sprint-training appears to induce an increased expression of MHC isoform IIA in skeletal muscles. This seems related to a bi-directional transformation from both MHC isoforms I and IIB towards MHC isoform IIA.
Collapse
Affiliation(s)
- J L Andersen
- August Krogh Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
37
|
Staron RS, Johnson P. Myosin polymorphism and differential expression in adult human skeletal muscle. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1993; 106:463-75. [PMID: 8281747 DOI: 10.1016/0305-0491(93)90120-t] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Myosin heavy chain (HC) and light chain (LC) isoforms are expressed in a tissue-specific and developmentally-regulated manner in human skeletal muscle. 2. At least seven myosin HC isoforms are expressed in skeletal muscle of the adult. 3. Histochemically-delineated fibre types (based on the stability of myofibrillar actomyosin adenosine triphosphatase activity) in limb muscles correlate with the myosin HC content. 4. Alterations in the phenotypic expression of myosin provides a mechanism of adaptation to stresses placed upon the muscle (e.g. increased and decreased usage).
Collapse
Affiliation(s)
- R S Staron
- College of Osteopathic Medicine, Department of Biological Sciences, Ohio University, Athens 45701
| | | |
Collapse
|
38
|
Bertini E, Bosman C, Salviati G, Boldrini R, Servidei S, Ricci E, Del Nonno F, Gagliardi MG, Bevilacqua M. Myopathy and hypertrophic cardiomyopathy with selective lysis of thick filaments. VIRCHOWS ARCHIV. A, PATHOLOGICAL ANATOMY AND HISTOPATHOLOGY 1993; 422:327-31. [PMID: 8506626 DOI: 10.1007/bf01608343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We present a undescribed condition in a girl who died at 8 years of hypertrophic cardiomyopathy. Muscle and endomyocardial biopsies disclosed a selective loss of thick filaments ultrastructurally. In muscle biopsy histochemical abnormalities of myofibrillar AT-Pase were confined to type 1 fibres. Gel electrophoresis of muscle homogenate showed no qualitative abnormalities of slow and fast myosin heavy chains (MHC) and light chains, and the amount of the different myosin isozymes was in agreement with histochemical myofibrillar ATPase findings. The pathogenetic mechanisms have not been elucidated in this case but we suspect an abnormality of the beta-cardiac MHC gene, the only gene expressed in the heart and in type 1 skeletal muscle fibres.
Collapse
Affiliation(s)
- E Bertini
- Department of Pediatric Neurology, Bambino Gesu Hospital, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wada M, Pette D. Relationships between alkali light-chain complement and myosin heavy-chain isoforms in single fast-twitch fibers of rat and rabbit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:157-61. [PMID: 8508787 DOI: 10.1111/j.1432-1033.1993.tb17908.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present study compares the alkali myosin light chain (LC) complement of the fast fiber types IIB, IID and IIA in single fibers from rat muscle, as well as in type IID and type IIA fibers from rabbit muscle. Single fibers were classified according to their electrophoretically determined myosin heavy chain (HC) isoforms, HCIIb, HCIId, and HCIIa. Alkali myosin light chains were analysed by densitometric evaluation of two-dimensional electrophoresis performed on extracts from the same fibers. On the average, the fraction of LC3f, i.e. LC3f/(LC1f+LC3f), was highest in type IIB fibers and lowest in type IIA fibers. Type IID fibers occupied an intermediate position. Also in the rabbit, type IID fibers displayed a higher fraction of LC3f than type IIA fibers. Large scattering of the LC3f fraction in IIB, IID, and IIA fibers indicated that each fiber type is composed of fibers identical with regard to their specific myosin heavy chain complement, but heterogeneous with regard to their fast alkali light chain composition and the resulting light-chain-based isomyosins. It is suggested that the variable proportions of the two alkali light chains in the three fast fiber populations serve as a fine tuning of contractile velocities within the ranges determined by the three fast myosin heavy-chain isoforms.
Collapse
Affiliation(s)
- M Wada
- Fakultät für Biologie, Universität Konstanz, Germany
| | | |
Collapse
|
40
|
|
41
|
Klitgaard H, Zhou M, Schiaffino S, Betto R, Salviati G, Saltin B. Ageing alters the myosin heavy chain composition of single fibres from human skeletal muscle. ACTA PHYSIOLOGICA SCANDINAVICA 1990; 140:55-62. [PMID: 2275405 DOI: 10.1111/j.1748-1716.1990.tb08975.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The myosin heavy chain composition of single fibres (n = 1088) was analysed with an electrophoretic technique in biopsy material from m. vastus lateralis (n = 5) and m. biceps brachii (n = 4) of young (23-31 years old) and elderly men (68-70 years old). In m. vastus lateralis, elderly subjects had a higher proportion of fibres showing a coexistence of myosin heavy chain types I and IIa (20 +/- 3% vs 8 +/- 1%, P less than 0.05) and of myosin heavy chain types IIa and IIb (33 +/- 2% vs 12 +/- 4%, P less than 0.05). In contrast, the young subjects had a higher proportion of fibres containing only myosin heavy chain type I (50 +/- 5% vs 33 +/- %, P less than 0.05) and type IIa (26 +/- 3% vs 12 +/- 2%, P less than 0.05). A similar pattern of myosin heavy chain expression was found in single fibres from m. biceps brachii, with the exception that the elderly subjects had a lower proportion of fibres with coexistence of types IIa and IIb (23 +/- 1% vs 34 +/- 2%, P less than 0.05) and a higher proportion of fibres containing only myosin heavy chain type IIa (25 +/- 5% vs 12 +/- 2%, P less than 0.05). Three fibres from m. biceps brachii contained all three isoforms. These results indicate that coexistence of myosin heavy chain isoforms in single fibres is present in skeletal muscles of young adults, and that there is an increased occurrence of this phenomenon with ageing.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Klitgaard
- August Krogh Institute, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
42
|
Klitgaard H, Mantoni M, Schiaffino S, Ausoni S, Gorza L, Laurent-Winter C, Schnohr P, Saltin B. Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. ACTA PHYSIOLOGICA SCANDINAVICA 1990; 140:41-54. [PMID: 2275404 DOI: 10.1111/j.1748-1716.1990.tb08974.x] [Citation(s) in RCA: 364] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The function and morphology of knee extension/m. vastus lateralis and elbow flexion/m. biceps brachii were studied in young (28 +/- 0.1 years, n = 7) and elderly (68 +/- 0.5 years, n = 8) sedentary subjects and in elderly swimmers (69 +/- 1.9 years, n = 6), runners (70 +/- 0.7 years, n = 5) and strength-trained subjects (68 +/- 0.8 years, n = 7). On average, the training groups had, for the 12-17 years before the measurements were taken, performed their training regimen 3 +/- 0.1 times a week. Compared with the young subjects, the maximal isometric torque of the sedentary elderly subjects was 44% (P less than 0.05) lower in knee extension and 32% (P less than 0.05) lower in elbow flexion, and speed of movement was between 20 and 26% (P less than 0.05) lower in both knee extension and elbow flexion. The cross-sectional area of m. quadriceps femoris and the elbow flexors was also 24% (P less than 0.05) and 20% lower respectively, and the specific tension was 27% (P less than 0.05) lower in m. quadriceps femoris and 14% (P less than 0.05) lower in the elbow flexors. A 27% (P less than 0.05) higher content of myosin heavy chain type I and a 39% (P less than 0.05) higher content of the slow-type myosin light chain--2 was observed in m. vastus lateralis of the sedentary elderly subjects as compared with the young subjects. The same tendency was also seen with m. biceps brachii. Since the histochemical fibre-type distribution was identical and no major co-expression of type I and type II myosin heavy-chain isoforms was observed with immunocytochemistry, the increase in slow myosin isoforms with ageing seems mainly related to a larger relative area of type I fibres, induced by a selective atrophy of type II fibre area. An increased content of the beta-isoform of tropomyosin was also demonstrated with ageing. In contrast to the swimmers and runners, the elderly strength-trained subjects had maximal isometric torques, speed of movements, cross-sectional areas, specific tensions and a content of myosin and tropomyosin isoforms in both muscles studied identical to those of the young controls. These results seem to suggest that strength training can counteract the age-related changes in function and morphology of the ageing human skeletal muscle.
Collapse
Affiliation(s)
- H Klitgaard
- August Krogh Institute, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Characterization of human myosin light chains 1sa and 3nm: implications for isoform evolution and function. Mol Cell Biol 1990. [PMID: 2304459 DOI: 10.1128/mcb.10.3.1095] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have isolated a cDNA clone for the human slow-twitch muscle isoform myosin light-chain 1slow-a (MLC1sa) from a skeletal muscle library and for the human nonmuscle isoform myosin light-chain 3nonmuscle (MLC3nm) from a fibroblast library. The nucleotide sequence of both isoforms was determined, and isoform-specific probes were constructed. In addition, MLC1sa was subsequently isolated from the fibroblast library. MLC1sa and MLC3nm were found to be very closely related to each other and distant from all other myosin light-chain isoforms so far described. We concluded that MLC1sa arose by duplication of MLC3nm rather than from any other isoform. A comparison was made between all human myosin light chains described to date and a model proposed for the evolution of this multigene family. A comparison between human and chicken myosin light-chain isoforms showed that human isoforms are more similar to their chicken counterparts than to human MLC1sa. The expression of MLC1sa and MLC3nm was studied in humans, rabbits, mice, and rats. MLC1sa was detected at the onset of both human and murine myogenesis in vitro. With development, MLC1sa may be replaced by the other slow-twitch muscle isoform, 1sb, in slow-twitch skeletal muscle, but the proportion of MLC1sa to 1sb expression varies between different species. MLC1sa was detected in nonmuscle cells in humans, mice, and rats. MLC3nm was the major nonmuscle alkaline myosin light chain in all species tested, but its pattern of expression in nonmuscle tissues was not identical to that of beta- or gamma-actin. We have shown that in the human, as in the chicken, one exon is spliced out of the MLC3nm transcript in smooth muscle to give an alternative product. We concluded that all alkali myosin light-chain isoforms may be functionally different.
Collapse
|
44
|
Hailstones DL, Gunning PW. Characterization of human myosin light chains 1sa and 3nm: implications for isoform evolution and function. Mol Cell Biol 1990; 10:1095-104. [PMID: 2304459 PMCID: PMC360973 DOI: 10.1128/mcb.10.3.1095-1104.1990] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have isolated a cDNA clone for the human slow-twitch muscle isoform myosin light-chain 1slow-a (MLC1sa) from a skeletal muscle library and for the human nonmuscle isoform myosin light-chain 3nonmuscle (MLC3nm) from a fibroblast library. The nucleotide sequence of both isoforms was determined, and isoform-specific probes were constructed. In addition, MLC1sa was subsequently isolated from the fibroblast library. MLC1sa and MLC3nm were found to be very closely related to each other and distant from all other myosin light-chain isoforms so far described. We concluded that MLC1sa arose by duplication of MLC3nm rather than from any other isoform. A comparison was made between all human myosin light chains described to date and a model proposed for the evolution of this multigene family. A comparison between human and chicken myosin light-chain isoforms showed that human isoforms are more similar to their chicken counterparts than to human MLC1sa. The expression of MLC1sa and MLC3nm was studied in humans, rabbits, mice, and rats. MLC1sa was detected at the onset of both human and murine myogenesis in vitro. With development, MLC1sa may be replaced by the other slow-twitch muscle isoform, 1sb, in slow-twitch skeletal muscle, but the proportion of MLC1sa to 1sb expression varies between different species. MLC1sa was detected in nonmuscle cells in humans, mice, and rats. MLC3nm was the major nonmuscle alkaline myosin light chain in all species tested, but its pattern of expression in nonmuscle tissues was not identical to that of beta- or gamma-actin. We have shown that in the human, as in the chicken, one exon is spliced out of the MLC3nm transcript in smooth muscle to give an alternative product. We concluded that all alkali myosin light-chain isoforms may be functionally different.
Collapse
Affiliation(s)
- D L Hailstones
- Muscle Genetics Unit, Children's Medical Research Foundation, Camperdown, New South Wales, Australia
| | | |
Collapse
|
45
|
Pette D, Staron RS. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 1990; 116:1-76. [PMID: 2149884 DOI: 10.1007/3540528806_3] [Citation(s) in RCA: 188] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D Pette
- Fakultät für Biologie, Universität Konstanz, FRG
| | | |
Collapse
|
46
|
Wade R, Feldman D, Gunning P, Kedes L. Sequence and expression of human myosin alkali light chain isoforms. Mol Cell Biochem 1989; 87:119-36. [PMID: 2475760 DOI: 10.1007/bf00219255] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In order to initiate the study of the functional differences between myosin alkali light chain isoforms and to investigate the mechanisms of their differential expression, we have isolated cDNA clones for two human alkali light chain isoforms. Here we report DNA sequence and RNA blotting analyses that demonstrate that these cDNAs represent transcripts encoding human MLC3F and MLC1Sb. The sequence of the human MLC1Sb cDNA offers the first fully characterized example of a slow-fiber skeletal muscle alkali light chain isoform from any species. The sequence analysis of these two cDNAs allows an examination of evolutionarily conserved features of mammalian alkali light chain genes. Examination of the genomic organization of the human alkali light chain isoform genes revealed that, in contrast with some strains of mice, both are single copy genes. RNA blot analysis conclusively demonstrates that the human skeletal muscle MLC1Sb gene is also expressed in the heart ventricle but not the atria. In addition, we examined the expression of alkali light chain isoforms during the in vitro differentiation of a variety of human and rodent myogenic cells and found striking variation in the pattern of alkali light chain isoform gene expression in different myogenic cells.
Collapse
Affiliation(s)
- R Wade
- Department of Medicine, Stanford Medical School, Palo Alto, CA
| | | | | | | |
Collapse
|
47
|
Damiani E, Barillari A, Tobaldin G, Pierobon S, Margreth A. Biochemical characteristics of free and junctional sarcoplasmic reticulum and of transverse tubules in human skeletal muscle. Muscle Nerve 1989; 12:323-31. [PMID: 2549416 DOI: 10.1002/mus.880120411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The microsomal fraction of normal human skeletal muscle was subfractionated by isopycnic sucrose-density centrifugation, using the procedure originally described by Saito et al. for rabbit fast muscle, and specific markers of the junctional face membrane of terminal cisternae (TC) (ryanodine receptor, high-molecular-weight feet proteins and membrane-associated calcium-binding protein calsequestrin), of the sarcoplasmic reticulum (SR) Ca-pump membrane (chicken antibody to rabbit Ca-ATPase), and of transverse tubules (TT) (dihydropiridine receptor, membrane cholesterol), respectively. The results show that isolated TC from human skeletal muscle share extensive morphological characteristics, protein composition, as well as Ca-release properties with rabbit TC, as tested with an inhibitor (Ruthenium red) and an activator (doxorubicin) of SR Ca-release. The Ca-pump membrane of human muscle SR, in distinction to rabbit fast muscle SR, showed a relatively low specific activity of the Ca-ATPase, as expected from the mixed fiber composition of human muscles, but shared the presence of minor protein components, such as a Con A binding protein of about 57 kDa and blue-staining peptides in the 170-120 kDa range of molecular weights. Human muscle TT, as isolated from the same sucrose gradient, demonstrated a high affinity (3H)-dihydropiridine binding activity in the range of previously reported values for purified TT from rabbit skeletal muscle.
Collapse
Affiliation(s)
- E Damiani
- National Research Council Center for Muscle Biology and Physiopathology, Institute of General Pathology, Padova, Italy
| | | | | | | | | |
Collapse
|
48
|
Midrio M, Danieli Betto D, Betto R, Noventa D, Antico F. Cordotomy-denervation interactions on contractile and myofibrillar properties of fast and slow muscles in the rat. Exp Neurol 1988; 100:216-36. [PMID: 3350090 DOI: 10.1016/0014-4886(88)90214-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cordotomy-denervation interactions were studied on contractile and myofibrillar properties of slow (soleus) and fast (extensor digitorum longus) muscles of the rat. The spinal cord was transected midthoracically in neonatal (2-day-old) animals. Two months after birth, a unilateral transection of the sciatic nerve was carried out in both cordotomized and control animals. Five weeks after denervation, contractile properties were tested isometrically in vitro; myofibrillar properties were assessed by histochemical staining of the muscle fibers and by electrophoretic analysis of the myosin heavy chain composition. The following results were obtained: (i) In cordotomized animals the contraction time of the soleus was significantly shorter (-23.3% on average) than that in the control animals and this shortening was accompanied by a proportional slow-to-fast shift in myofibrillar properties. (ii) The extensor digitorum longus properties were not significantly different in the control and cordotomized animals. (iii) Denervation in control animals was followed by a marked increase of contraction and half-relaxation times in the extensor digitorum longus, whereas in the soleus only the half-relaxation time was significantly increased; myofibrillar properties in the soleus showed an appreciable slow-to-fast shift, whereas in the fast muscle the main change was an increase in type 2A fibers to the detriment of type 2B. (iv) In cordotomized animals, denervation caused the soleus contraction time to increase to control values, whereas myofibrillar properties shifted to an even faster pattern; in the extensor digitorum longus denervation caused the same changes seen in the control animals. The results showed that cordotomy at birth caused the soleus to develop as a faster muscle than in the control animals. The concurrent effects of cordotomy and denervation on the myofibrillar properties of the soleus suggest that the slow-to-fast change in these properties is a common consequence of the reduction in the level of motor activity. The opposite effects of the two experimental conditions in the soleus contraction time support the view that the contractile alterations that follow denervation mainly reflect alterations in the muscle activation process.
Collapse
Affiliation(s)
- M Midrio
- Institute of Human Physiology, University of Padova, Italy
| | | | | | | | | |
Collapse
|
49
|
Biral D, Betto R, Danieli-Betto D, Salviati G. Myosin heavy chain composition of single fibres from normal human muscle. Biochem J 1988; 250:307-8. [PMID: 3355518 PMCID: PMC1148850 DOI: 10.1042/bj2500307] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electrophoretic analysis in the presence of 33% glycerol of purified myosin from normal human muscle shows three distinct protein bands which are identified as type 1, 2B, and 2A myosin heavy chain (MHC) isoforms by affinity-purified polyclonal antibodies. Analysis of MHC of single human muscle fibres shows that human muscles contain a large population of fibres showing the coexistence of type 2A and 2B MHC.
Collapse
Affiliation(s)
- D Biral
- Centro del C.N.R. per lo Studio della Biologia e Fisiopatologia Muscolare, Università di Padova, Italy
| | | | | | | |
Collapse
|
50
|
Koga K, Abe S, Hashimoto H, Yamaguchi M. Western-blotting method for detecting antibodies against human muscle contractile proteins in myositis. J Immunol Methods 1987; 105:15-21. [PMID: 3316405 DOI: 10.1016/0022-1759(87)90409-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many investigators report anti-muscle antibodies using various kinds of methods. The Western-blotting method, however, has not previously been used for this purpose. We have detected antibodies to muscle contractile proteins in sera from patients with collagen disease and muscular dystrophy by this method. The antigens detected included myosin heavy and light chains, tropomyosin and troponin complex. Our method is a quick and sensitive way to determine which are the antigenic muscle contractile proteins.
Collapse
Affiliation(s)
- K Koga
- Department of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|