1
|
Martínez Moreno JM, Reyes-Ortiz A, Lage Sánchez JM, Sánchez-Gallegos P, Garcia-Caballero M. Timeline of Intestinal Adaptation After Malabsortive Surgery: Effect of Luminal Nutrients, Biliopancreatic Secretion, and Glutamine Supplementation. Obes Surg 2017; 27:3133-3141. [PMID: 28578495 DOI: 10.1007/s11695-017-2754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The aim of this study was to study the process of intestinal adaptation in the three limbs of the small intestine after malabsorptive bariatric surgery: the biliopancreatic limb, the alimentary limb, and the common channel. These limbs are exposed to different stimuli, namely, gastrointestinal transit and nutrients in the alimentary limb, biliopancreatic secretions in the biliopancreatic limb, and a mix of both in the common channel. We also wished to investigate the effect of glutamine supplementation on the adaptation process. METHODS Three types of surgery were performed using a porcine model: biliopancreatic bypass (BPBP), massive (75%) short bowel resection as the positive control, and a sham operation (transection) as the negative control. We measured the height and width of intestinal villi, histidine decarboxylase (HDC) activity, and amount of HDC messenger RNA (mRNA) (standard diet or a diet supplemented with glutamine). RESULTS An increase in HDC activity and mRNA expression was observed in the BPBP group. This increase coincided with an increase in the height and width of the intestinal villi. The increase in villus height was observed immediately after surgery and peaked at 2 weeks. Levels remained higher than those observed in sham-operated pigs for a further 4 weeks. CONCLUSIONS The intestinal adaptation process in animals that underwent BPBP was less intense than in those that underwent massive short bowel resection and more intense than in those that underwent transection only. Supplementation with glutamine did not improve any of the parameters studied, although it did appear to accelerate the adaptive process.
Collapse
Affiliation(s)
- José Manuel Martínez Moreno
- Department of Surgical Specialities, Biochemistry and Immunology, Faculty of Medicine, University of Málaga, 29071, Málaga, Spain.
| | | | | | - Pilar Sánchez-Gallegos
- Department of Surgical Specialities, Biochemistry and Immunology, Faculty of Medicine, University of Málaga, 29071, Málaga, Spain
| | - Manuel Garcia-Caballero
- Department of Surgical Specialities, Biochemistry and Immunology, Faculty of Medicine, University of Málaga, 29071, Málaga, Spain
| |
Collapse
|
2
|
von Besser H, Niemann G, Domdey B, Walter RD. Molecular cloning and characterization of ornithine decarboxylase cDNA of the nematode Panagrellus redivivus. Biochem J 1995; 308 ( Pt 2):635-40. [PMID: 7772052 PMCID: PMC1136973 DOI: 10.1042/bj3080635] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In a PCR with degenerate primers encoding highly conserved amino acids within ornithine decarboxylases (ODCs) of several organisms, a fragment of the ODC gene of the free-living nematode Panagrellus redivivus was isolated. Northern blot analysis revealed a single 1.7 kb transcript in a mixed-stage population of animals. From this RNA source, a cDNA library was constructed and screened with the PCR fragment. Several cDNA clones were isolated, one of which encodes the complete 435-amino-acid ODC enzyme with a calculated molecular mass of 47.1 kDa. The P. redivivus ODC possesses 126 of the 136 highly conserved amino acids in the enzymes from fungi, invertebrates and vertebrates. Functional amino acids are conserved, suggesting that the two active sites of the P. redivivus ODC are formed at the interface of a homodimer, as described for mammalian ODCs.
Collapse
Affiliation(s)
- H von Besser
- Bernhard Nochi Institute for Tropical Medicine, Department of Biochemistry, Hamburg, Germany
| | | | | | | |
Collapse
|
3
|
Kameji T, Hayashi S, Hoshino K, Kakinuma Y, Igarashi K. Multiple regulation of ornithine decarboxylase in enzyme-overproducing cells. Biochem J 1993; 289 ( Pt 2):581-6. [PMID: 8424799 PMCID: PMC1132208 DOI: 10.1042/bj2890581] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have isolated from mouse FM3A cells a variant cell line, termed EXOD-1, that overproduces ornithine decarboxylase (ODC). The cells were resistant to alpha-difluoromethylornithine, an irreversible inhibitor of the enzyme, and produced the enzyme protein to the extent of approx. 3-6% of total cytosolic protein. The rate of ODC synthesis in this cell line accounted for 25-50% of the rate of total protein synthesis. The amounts of the ODC gene and its mRNA in the variant cells were both about 60 times as much as those in wild-type FM3A cells. Upon removal of the inhibitor, the growth of the ODC-overproducing cells was stimulated approx. 2-fold. Under these conditions, the rate of ODC synthesis increased about 4-fold on day 1 and then decreased to near the original level by day 3. The amount of ODC mRNA increased about 1.7-fold on day 1 and 2.5-fold on day 3. No correlation was observed between changes in ODC synthesis rate and in ODC mRNA content, suggesting a translational repression of ODC mRNA due to accumulation of polyamines. In fact, the cellular contents of putrescine and spermidine markedly increased and that of spermine inversely decreased during the same period. Pulse-chase experiments showed that the accumulation of putrescine and spermidine also elicited a rapid degradation of ODC. Excess amounts of newly synthesized putrescine and cadaverine were excreted into the medium, whereas spermidine, spermine and acetylated polyamines were undetectable there. We conclude that ODC regulation upon removal of the inhibitor is dependent on at least three steps, namely the level of mRNA, the translational efficiency of mRNA and the stability of the enzyme, the last two of which are involved in cellular polyamines.
Collapse
Affiliation(s)
- T Kameji
- Department of Nutrition, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
4
|
Lundgren D. Effect of hypotonic stress on ornithine decarboxylase mRNA expression in cultured cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50503-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
5
|
Matés JM, Sánchez-Jiménez F, López-Herrera J, Núñez de Castro I. Regulation by 1,4-diamines of the ornithine decarboxylase activity induced by ornithine in perifused tumor cells. Biochem Pharmacol 1991; 42:1045-52. [PMID: 1872891 DOI: 10.1016/0006-2952(91)90287-f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ornithine decarboxylase (ODC) activity of Ehrlich carcinoma cells was increased more than 36-fold after being maintained for 3.5 hr in vitro in a special chamber which allowed continuous perifusion with 0.5 mM ornithine; if incubated in vitro without perifusion the ODC activity was, of course, only 9-fold by the same concentration of ornithine. Ornithine withdrawal from the perifusion medium resulted in a decay of enzyme activity observed after 90 min; this decay was prevented by addition of 55 microM pyridoxal to the medium. The 1,4-diamines putrescine, spermidine, spermine, agmatine, histamine, serotonin, tryptamine, chlorpheniramine and harmaline at 55 microM strongly suppressed ODC induction by 0.5 mM ornithine in perifused Ehrlich ascites cells. Methyl derivatives also behave as strong inhibitors of ODC induction. On the contrary, N-acetylation paralleled with a decrease in the inhibition capacity: 55 microM N-acetyl putrescine, N-acetyl serotonin or N-omega-acetylhistamine suppressed ODC induction by ornithine in 66, 64 and 19%, respectively. The addition to the perifusion medium of the same concentrations of 1,3-diamines (1,3-diaminopropane, 1,3-diamino-2-propanol or the alkaloid gramine) as well as 1,5-diamines (1,5-diaminopentane and the antihistamic doxylamine or cimetidine) failed to suppress the induction of ODC activity by ornithine. Interestingly, 1,4-benzenediamine, which strongly inhibits ODC activity when the induced enzyme is assayed in its presence, did not suppress the induction of the enzyme when both 0.5 mM ornithine and 55 microM 1,4-benzenediamine were present in the perifusion medium. The inhibitory capacity in down-regulating ODC is not due to differences in the diamine uptake by the cells. The results suggest that the N-N distance (6A) and the charge of one amino group are important chemical characteristics for regulatory effects.
Collapse
Affiliation(s)
- J M Matés
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | |
Collapse
|
6
|
Autelli R, Stjernborg L, Khomutov AR, Khomutov RM, Persson L. Regulation of S-adenosylmethionine decarboxylase in L1210 leukemia cells. Studies using an irreversible inhibitor of the enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:551-6. [PMID: 2013278 DOI: 10.1111/j.1432-1033.1991.tb15849.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A potent irreversible inhibitor of S-adenosylmethionine (AdoMet) decarboxylase, S-(5'-adenosyl)-methylthio-2-aminooxyethane (AdoMeSaoe), was used to study the regulatory control of this key enzyme in the polyamine biosynthetic pathway. Treatment of L1210 cells with the inhibitor completely eradicated the growth-induced rise in AdoMet decarboxylase activity, resulting in a marked decrease in cellular content of spermidine and spermine. The putrescine content, on the other hand, was greatly elevated. Although no detectable AdoMet decarboxylase activity was found in the L1210 cells after treatment with AdoMeSaoe, the cells contained 50-fold higher amounts of AdoMet decarboxylase protein, compared to untreated cells during exponential growth. Part of this increase was shown to be due to elevated synthesis of the enzyme. This stimulation appeared to be related to the decrease in cellular spermidine and spermine content, since addition of either one of the polyamines counteracted the rise in AdoMet decarboxylase synthesis. The synthesis rate was determined by immunoprecipitation of labeled enzyme after a short pulse with [35S]methionine. In addition to a protein that co-migrated with pure rat AdoMet decarboxylase (Mr approximately 32,000), the antibody precipitated a somewhat larger labeled protein (Mr approximately 37,000) that most likely represents the proenzyme form. Treatment of the L1210 cells with AdoMetSaoe also gave rise to a marked stabilization of the decarboxylase which contributed to the increase in its cellular protein content. Addition of spermidine did not significantly affect this stabilization, whereas the addition of spermine reduced the half-life of the enzyme to almost that of the control cells.
Collapse
Affiliation(s)
- R Autelli
- Department of Physiology, University of Lund, Sweden
| | | | | | | | | |
Collapse
|
7
|
Frydman J, Ruiz O, Robetto E, Dellacha JM, Frydman RB. Modulation of insulin induced ornithine decarboxylase by putrescine and methylputrescines in H-35 hepatoma cells. Mol Cell Biochem 1991; 100:9-23. [PMID: 2051998 DOI: 10.1007/bf00230805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect of several methylputrescines on the activity of insulin-induced ornithine decarboxylase (ODC) was examined in H-35 hepatoma cells. The induction involved both protein and m-RNA synthesis. Actinomycin D inhibited ODC activity when given up to 1 h after insulin treatment. When added to the medium 2 h or 3 h after the insulin, the activity was increased 100% and 80% respectively. Insulin-induced ODC from H-35 cells had a biphasic half-life, a shorter one of 46 min and a longer one of 90 min. 1-Methylputrescine and 2-methylputrescine were found to be competitive inhibitors of the ODC from H-35 cells with Ki values of 2.8 and 0.1 mM respectively. Putrescine itself was found to have a Ki = 2.4 mM. N-Methylputrescine was a very poor inhibitor of the cell free ODC while 1,4-dimethylputrescine did not show any inhibitory effect. When cellular ODC activity was measured, the four methylputrescines assayed as well as putrescine entirely abolished its activity in the H-35 cells when given at a 1 mM concentration together with insulin. 1-Methylputrescine and 1,4-dimethylputrescine abolished 60% of the activity at a 0.1 microM concentration. All the methylputrescines given at 0.1 mM concentrations decreased the putrescine content of the stimulated cells to the levels found in quiescent cells, but only 1-methyl and 2-methylputrescines decreased spermidine and spermine content. 1,4-Dimethyl and 1-methylputrescines showed a strong inhibition of ODC synthesis, while the other diamines were less inhibitory. At concentrations that abolished ODC activity, 1,4-dimethylputrescine decreased 70% of the total immunoreactive ODC bands, while 1-methyl and 2-methylputrescine decreased them by 50%, and N-methylputrescine and putrescine decreased them by 20%. The lack of decrease in immuno-reactive ODC with the latter two compounds was mainly due to the appearance of immunoreactive degradation products of ODC of low molecular weight. Putrescine and N-methylputrescine affected protein synthesis to a small extent in stimulated cells, while 1-methylputrescine decreased it to the level of non-stimulated cells. Insulin (1 microM concentration) stimulated DNA synthesis in the cells, and this stimulation was doubled in the presence of 2-methylputrescine or putrescine. It can be concluded that, among the methylputrescines assayed, 2-methylputrescine was the best inhibitor of cell-free ODC activity, while 1,4-dimethylputrescine and 1-methylputrescine were the best inhibitors of cellular ODC activity.
Collapse
Affiliation(s)
- J Frydman
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
8
|
Mitchell JL, Chen HJ. Conformational changes in ornithine decarboxylase enable recognition by antizyme. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1037:115-21. [PMID: 2104755 DOI: 10.1016/0167-4838(90)90109-s] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rapid, polyamine-induced degradation of mammalian ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) (ODC) is though to be controlled by the availability of a small, ODC-binding protein termed antizyme. In this study we have investigated the ability of antizyme to bind ODC protein in various altered physiological states. In particular, cold, NaCl, spermidine and deprivation of coenzyme and substrate enhance enzyme-antizyme complex formation and are all found to promote ODC homodimer dissociation. Conversely, conditions that maintain the active ODC homodimer state prevent antizyme binding and inactivation of ODC. Further, covalent modification of ODC near its active site by difluoromethylornithine or phosphate also increases its sensitivity to antizyme. These results suggest that the initial signal in ODC degradation may actually be a subtle conformational change in the enzyme that enables antizyme to bind to the enzyme and may subsequently facilitate its degradation.
Collapse
Affiliation(s)
- J L Mitchell
- Department of Biological Sciences, Northern Illinois University, DeKalb 60115
| | | |
Collapse
|
9
|
Richards JF, Fox K, Peng T, Hsiao J, Gout PW. Inhibition of hormone-stimulated ornithine decarboxylase activity by lithium chloride. Life Sci 1990; 47:233-40. [PMID: 2167419 DOI: 10.1016/0024-3205(90)90325-l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Effects of Li+ on hormone-stimulated ornithine decarboxylase (ODC) activity were determined in kidney and liver of rats treated with dexamethasone or prolactin (PRL) and also in cultured, PRL-stimulated Nb2 lymphoma cells. In both systems, LiCl led to rapid and marked decreases in ODC activity. The inhibitory effect of Li+ in exponentially growing Nb2 lymphoma cell cultures, measured at 45 min, was dose-dependent, ranging from 10% at 0.1 mM LiCl to 95% at 10 mM LiCl. Surprisingly, on continued incubation with 10 mM LiCl, the lymphoma cells partially overcame the inhibition, showing ODC activities which reached a maximal value of ca 50% of the control at 4.5 h. The inhibition by Li+ could not be reduced by adding myo-inositol to the culture medium. LiCl did not inhibit ODC activity when added to cell-free extracts of rat tissues and Nb2 lymphoma cells indicating it did not act directly on the enzyme; however, there is evidence that, in intact cells, Li+ enhances the rate of inactivation of the enzyme.
Collapse
Affiliation(s)
- J F Richards
- Department of Biochemistry, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
10
|
Hölttä E, Hirvonen A, Wahlfors J, Alhonen L, Jänne J, Kallio A. Human ornithine decarboxylase(ODC)-encoding gene: cloning and expression in ODC-deficient CHO cells. Gene 1989; 83:125-35. [PMID: 2556329 DOI: 10.1016/0378-1119(89)90410-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have cloned a full-length human ornithine decarboxylase (ODC)-encoding gene from a genomic library of human myeloma cells which overproduce ODC due to a selective gene amplification. Correct expression of the cloned gene was assessed by transfecting it into a Chinese hamster ovary (CHO) cell mutant devoid of ODC activity. Transfection with a 10-kb BamHI DNA fragment of the genomic clone, conferred ODC activity to the recipient cells and relieved them of dependence on exogenous polyamines for growth. A set of 40 transformants was isolated, eight of which were further characterized. The transfected ODC gene appeared to be hypomethylated at the cytosine residues in the sequence CpG. The transfectants were all responsive to serum stimulation, but showed different levels of ODC expression depending on both copy number and integration site of the transfected ODC gene. ODC serum induction in the transfectants was sensitive to cycloheximide and polyamine additions, and the half-life of the enzyme was very short, like that in normal CHO cells. These results suggest that the human ODC gene we transfected contains all the elements needed for normal control of ODC expression.
Collapse
Affiliation(s)
- E Hölttä
- Department of Pathology, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
11
|
Rosenberg-Hasson Y, Bercovich Z, Ciechanover A, Kahana C. Degradation of ornithine decarboxylase in mammalian cells is ATP dependent but ubiquitin independent. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 185:469-74. [PMID: 2555193 DOI: 10.1111/j.1432-1033.1989.tb15138.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines in mammalian cells is characterized by an extremely short half-life. In the present study, ODC degradation was investigated in 653-1 mouse myeloma cells that overproduce ODC and in ts85 cells that are thermosensitive for conjunction of ubiquitin to target proteins. Addition of 2-deoxyglucose and dinitrophenol (agents that efficiently deplete cellular ATP) to the growth medium of these cells inhibited ODC degradation. In contrast, chloroquine and leupeptin, inhibitors of intralysosomal proteolysis, did not affect ODC degradation. Shifting ts85 cells to 42 degrees C (a non-permissive temperature that inhibited conjugation of ubiquitin to target proteins) did not prevent ODC degradation. The ATP-dependent degradation of ODC in 653-1 cells was inhibited substantially by N alpha-tosyl-L-lysine chloromethane (TosPheMeCl), iodoacetamide and o-phenanthroline. These results suggest that ODC degradation occurs via a non-lysosomal. ATP-requiring and ubiquitin-independent cellular proteolytic mechanism, and that serine proteases and enzymes containing sulphydryl groups and metalloenzyme(s) may be involved in this process.
Collapse
|
12
|
Flamigni F, Marmiroli S, Guarnieri C, Caldarera CM. Stabilization of ornithine decarboxylase in erythroleukemia cells depleted of ATP. Biochem Biophys Res Commun 1989; 163:1217-22. [PMID: 2783134 DOI: 10.1016/0006-291x(89)91107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ornithine decarboxylase activity in Friend erythroleukemia cells decayed with a half-life of 50 minutes after addition of cycloheximide and at a faster rate after addition of spermidine. Incubation with a medium containing dinitrophenol and 2-deoxy-glucose in place of glucose caused ATP depletion and blocked the turnover of ornithine decarboxylase, even after addition of spermidine. Dinitrophenol in the presence of glucose was able to provoke only a slight increase of the half-life of the enzyme. These results suggest that degradation of ornithine decarboxylase in erythroleukemia cells is ATP-dependent.
Collapse
Affiliation(s)
- F Flamigni
- Dipartimento di Biochimica, Università di Bologna, Italy
| | | | | | | |
Collapse
|
13
|
Matés JM, Sánchez-Jiménez FM, García-Caballero M, Núñez de Castro I. Histamine and serotonin inhibit induction of ornithine decarboxylase by ornithine in perifused Ehrlich ascites tumour cells. FEBS Lett 1989; 250:257-61. [PMID: 2753136 DOI: 10.1016/0014-5793(89)80733-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ornithine induced more than 36-fold the ornithine decarboxylase activity in confined Ehrlich ascites tumour cells after 3.5 h of continuous perifusion with 0.5 mM ornithine; arginine and glutamine also induced the activity 3- and 4-fold, respectively. The addition of cycloheximide or actinomycin D antibiotics to the perifusion medium confirmed that the regulation of the enzyme synthesis takes place at the level of translation. Perifusion in the presence of 0.5 mM ornithine and 55, 25, and 10 microM histamine suppressed the induction by 91, 53, and 35% respectively. Similar results were obtained in the presence of serotonin. Histidine also showed inhibitory effect but 5 mM histidine was required to produce 21% inhibition; other basic amino acids were ineffective.
Collapse
Affiliation(s)
- J M Matés
- Cátedra de Bioquimica y Biologia Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | |
Collapse
|
14
|
Savage RE, Nofzinger K, Bedell C, DeAngelo AB, Pereira MA. Chloroform-induced multiple forms of ornithine decarboxylase: differential sensitivity of forms to enhancement by diethyl maleate and inhibition by ODC-antizyme. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1989; 27:57-64. [PMID: 2724368 DOI: 10.1080/15287398909531278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The role of glutathione (GSH) and ornithine decarboxylase-antizyme (ODC-AZ) in the regulation of the chloroform-mediated stimulation of rat hepatic ornithine decarboxylase (ODC) was investigated. We have previously implicated roles for each while examining the chloroform effect on crude cytosolic enzyme preparations. In this study we examined the effect of pretreatment with diethyl maleate (DEM), a GSH-depleting agent, on the chloroform stimulation of the two forms of the rat hepatic ODC enzyme and the sensitivity of these two forms to inhibition by the ODC-AZ. While the pretreatment with DEM provided a greater amount of the two forms of the ODC enzyme, it also resulted in a differential stimulation of each form when compared to chloroform alone. Additionally, Peak II was 20-25% more sensitive to the same amount of ODC-AZ then Peak I ODC activity.
Collapse
Affiliation(s)
- R E Savage
- Bioassay Branch, U.S. Environmental Protection Agency, Cincinnati, Ohio
| | | | | | | | | |
Collapse
|
15
|
Numazawa S, Oguro T, Yoshida T, Kuroiwa Y. Synergistic induction of rat hepatic ornithine decarboxylase by multiple doses of cobalt chloride. Chem Biol Interact 1989; 72:157-67. [PMID: 2605669 DOI: 10.1016/0009-2797(89)90002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The level of rat hepatic ornithine decarboxylase (ODC) induced by repetitive administration of Co2+ was determined by affinity labeling with [3H]difluoromethylornithine. Such a treatment with Co2+ ion induced ODC level to a 10-fold greater extent than single dose of the metal ion or well-known inducers of the enzyme, such as thioacetamide or carbon tetrachloride. The half life of ODC activity induced by repetitive treatment with Co2+ (95 min) was substantially increased to about 10-fold over the value obtained from the enzyme induced by single treatment with the metal ion (10 min). ODC activity induced by repetitive treatment with Co2+ was separated into two peaks by DEAE-Sepharose column chromatography. The two independently collected fractions of ODC peaks exhibited different affinity for pyridoxal 5'-phosphate in vitro and sensitivity to cycloheximide in vivo.
Collapse
Affiliation(s)
- S Numazawa
- Department of Biochemical Toxicology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | |
Collapse
|
16
|
Márquez J, Matés JM, Quesada AR, Medina MA, Núñez de Castro I, Sánchez-Jiménez F. Altered ornithine metabolism in tumor-bearing mice. Life Sci 1989; 45:1877-84. [PMID: 2601556 DOI: 10.1016/0024-3205(89)90541-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A flux of ornithine from the host tissues to the tumor was deduced from the concentrations of ornithine in plasma, ascitic liquid, liver and tumor cells during tumor growth. The activities of arginase and ornithine decarboxylase in both liver and tumor cells confirmed this proposed ornithine supply. Moreover, "in vitro" incubations of tumor cells showed that glutamine could be an additional source of ornithine for tumors. Finally, shortly before death, when tumor cell proliferation had ceased, altered hepatic ornithine metabolism was also detected.
Collapse
Affiliation(s)
- J Márquez
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The addition of Earle's balanced salt solution (EBSS) of amino acids that are transported by a Na+-dependent cotransport system was not required by Vero cells for ornithine decarboxylase (ODC:EC 4.1.1.17) amplification. Vero cell ODC activity was elevated tenfold above basal levels when confluent cells were incubated for 5 hr in EBSS alone. ODC activity increased as a function of the incubation time in EBSS and was not elevated above basal enzyme levels when cells were incubated in EBSS minus glucose. ODC expression increased as a function of the glucose concentration in EBSS, with 20 mM glucose producing a 90-fold increase in ODC activity. ODC expression is more responsive to glucose in high-density quiescent cultures than in low-density growing cultures. Enhanced ODC expression by glucose depended on Na+ and K+ concentrations. The specific activity of ODC was also elevated above basal levels when mannose or fructose replaced glucose in EBSS. The addition of alanine or asparagine to EBSS enhanced ODC activity above levels obtained with EBSS containing standard (5.5 mM) glucose concentrations. In the absence of glucose, alanine was more effective than asparagine in enhancing ODC expression. These results suggest that the transport of amino acids is not an absolute requirement for Vero cell ODC expression and that ODC expression is linked to changes in cellular energetics and/or ion fluxes.
Collapse
Affiliation(s)
- D W Lundgren
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109
| | | |
Collapse
|
18
|
Polyamines control human chorionic gonadotropin production in the JEG-3 choriocarcinoma cell. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37819-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Pegg AE, Madhubala R, Kameji T, Bergeron RJ. Control of ornithine decarboxylase activity in alpha-difluoromethylornithine-resistant L1210 cells by polyamines and synthetic analogues. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)38070-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Barnett GR, Seyfzadeh M, Davis RH. Putrescine and spermidine control degradation and synthesis of ornithine decarboxylase in Neurospora crassa. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81617-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Peng T, Richards JF. Multiple ionic forms of ornithine decarboxylase differ in degree of phosphorylation. Biochem Biophys Res Commun 1988; 153:135-41. [PMID: 3163922 DOI: 10.1016/s0006-291x(88)81199-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two major ionic forms of ornithine decarboxylase were separated by column chromatography of extracts of kidneys from androgen-treated male CD-1 mice on DEAE-Sepharose CL-6B, and purified individually to apparent homogeneity. On SDS-PAGE, a single major protein band of Mr 50000 was present in each. When incubated with casein kinase II, purified from rat liver cytosol, only one form of the enzyme, which represented 20% of the total ornithine decarboxylase in the tissue, became phosphorylated. The major form, which was eluted later from the column, could be phosphorylated only after treatment with alkaline phosphatase, indicating that the phosphatase removed enzyme-bound phosphate already attached at the casein kinase II phosphorylation site. Evidence for the occurrence of a phosphorylated form of the enzyme in kidneys of dexamethasone-treated rats is also presented.
Collapse
Affiliation(s)
- T Peng
- Department of Biochemistry, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
22
|
Zuretti MF, Brossa O, Gili P, Gravela E. Ornithine decarboxylase properties: is there a role for a microsome-bound inactivating activity? Cell Biochem Funct 1988; 6:107-14. [PMID: 3378315 DOI: 10.1002/cbf.290060205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Liver microsomes have a strong ornithine decarboxylase (ODC) inactivating capacity in vitro. The present results suggest that this may be involved in regulation of ODC activity in vivo: (1) the ODC inactivating capacity of microsomes appears susceptible to in vivo modulation: a single administration of thioacetamide, which induces ODC, also causes a significant increase in the inactivating capacity of the microsomes; (2) under conditions leading to increased microsome-bound ODC-inactivating capacity (e.g. liver from thioacetamide-treated rates versus regenerating liver) ODC displays a greater thermal lability and inactivability in vitro. A possible involvement of this microsomal activity in an autoregulatory pathway of ODC is suggested by the fact that it is induced by the administration of polyamines. However, inhibition of ODC activity by alpha-difluoromethylornithine does not prevent the increase of the microsomal activity caused by thioacetamide. Thus, polyamine biosynthesis does not appear to be an absolute requirement for induction of the microsomal ODC-inactivating capacity. The apparent half-life of ODC in vivo, as evaluated after cycloheximide administration, does not appear to correlate with the microsomal ODC-inactivating capacity content and the stability properties of ODC in vitro.
Collapse
Affiliation(s)
- M F Zuretti
- Istituto di Patologia Generale dell' Univeristà di Torino, Italy
| | | | | | | |
Collapse
|
23
|
Flamigni F, Guarnieri C, Caldarera CM. Rat liver cytosol contains NADPH- and GSH-dependent factors able to restore ornithine decarboxylase inactivated by removal of thiol reducing agents. Biochem J 1988; 250:53-8. [PMID: 3355522 PMCID: PMC1148813 DOI: 10.1042/bj2500053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Removal of dithiothreitol (DTT) from partially purified ornithine decarboxylase (ODC) led to an almost complete inhibition of enzymic activity. The inactivation was reversed by addition of millimolar concentrations of DTT, whereas natural reductants such as NADPH or NADH were ineffective, and GSH had only a limited effect. Addition of rat liver cytosol to the incubation mixture resulted in a noticeable re-activation of ODC; however, dialysed cytosol had little effect unless NADPH or GSH was present. Fractionation of rat liver cytosol by gel filtration on Sephadex G-75 yielded two fractions involved in the NADPH- and GSH-dependent re-activation of ODC: one designated 'A', eluted near the void volume (Mr greater than or equal to 60,000), and the other designated 'B', eluted later (Mr approx. 12,000). The NADPH-dependent mechanism required both fractions A and B for maximal ODC re-activation; the most effective concentration of NADPH was 0.15 mM, although a significant effect was observed at a concentration more than 10-fold lower. The GSH-dependent mechanism involved the mediation of Fraction B only, and operated at millimolar concentrations of GSH. These results suggest the existence of reducing systems in the cytosol, which may play a role in maintaining, and potentially in regulating, ODC activity by modulation of its thiol status.
Collapse
Affiliation(s)
- F Flamigni
- Dipartimento di Biochimica, Università di Bologna, Italy
| | | | | |
Collapse
|
24
|
Mitchell JL, Rynning MD, Chen HJ, Hicks MF. Interrelation between the charge isoforms of mammalian ornithine decarboxylase. Arch Biochem Biophys 1988; 260:585-94. [PMID: 3341758 DOI: 10.1016/0003-9861(88)90485-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ornithine decarboxylase (ODC) isolated from a variety of tissues has been separated, using DEAE ion-exchange chromatography, into multiple peaks of activity that appear to be related to control of this enzyme stability. Reports of these charge isoforms in current literature are generally unclear as to whether these represent a covalent posttranslational modification or merely an alteration in structural conformation or association. In this study we investigated the relationship of this form separation to the degree of enzyme polymerization, interaction with other proteins and buffer components, and the multiple isoelectric forms of this enzyme noted in denaturing concentrations of urea. High-performance chromatography techniques were used to demonstrate that two of the major enzyme forms, ODC I and II, are really monomers of the enzyme, while minor peaks of activity frequently observed to elute after ODC II contain various dimeric enzyme states. Pyridoxal 5'-phosphate (0.05 mM) added to isolated enzyme preparations composed of I and II monomers induced the formation of I and II dimers as well as a mixed I-II dimer. All three dimer forms were observed to be natural components of freshly isolated crude cell homogenates. The charge distinction between the monomer forms I and II was found to be maintained during ion-exchange chromatography in the presence of 8 M urea, and the enzyme isoforms demonstrated distinct bands on isoelectric focusing gels run in the presence of 9 M urea. Thus, although some of the multiple ornithine decarboxylase forms identified by ion-exchange chromatography of crude mammalian cell homogenates are related to enzyme conformation, the two major forms are distinctly charged protein states that can be visualized using two-dimensional gel electrophoresis of highly purified samples.
Collapse
Affiliation(s)
- J L Mitchell
- Department of Biological Sciences, Northern Illinois University, DeKalb 60115
| | | | | | | |
Collapse
|
25
|
Porter CW, Bergeron RJ. Enzyme regulation as an approach to interference with polyamine biosynthesis--an alternative to enzyme inhibition. ADVANCES IN ENZYME REGULATION 1988; 27:57-79. [PMID: 3250233 DOI: 10.1016/0065-2571(88)90009-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The progress reviewed here would seem to validate the regulatory approach to interference with polyamine biosynthesis as an antiproliferative strategy. To our knowledge, this is the first example, among anticancer drugs, of pharmacological intervention of a biochemical pathway based strictly on regulatory control. Several features of polyamine biology naturally favor this approach and may account for its relative success. These include (a) the nature of the regulatory mechanisms themselves, (b) the exquisite sensitivity of the pathway to regulatory control, (c) the rapid turnover of ODC and AdoMetDC, (d) the different structural specificity of ODC and AdoMetDC regulation versus growth-dependent functions, and (e) the direct dependence of growth on sustained polyamine biosynthesis. As such, the regulatory approach to interference with polyamine biosynthesis offers several advantages over the use of specific enzyme inhibitors (Table 10). Of these, perhaps, the more significant are the facts that more than one enzyme can be simultaneously and specifically suppressed and that compensatory mechanisms, which otherwise counter the effects of enzyme inhibitors (11), are not invoked. We are encouraged by the concurrence of in vitro mechanistic findings with the predictions of the hypothesis for the regulatory approach and by the in vitro and in vivo growth inhibitory effects of the analogs against murine leukemia. One disadvantage of the regulatory analogs, such as BESm, has been that, as with specific polyamine inhibitors such as DFMO, analog-induced polyamine depletion results in cytostatic growth inhibition. While this response may help to minimize host toxicities, it clearly compromises antitumor activity. An intriguing exception to this generality has recently been found among human lung carcinoma cell lines. Previously, Luk et al. (93, 94) and others (95) reported that, among a spectrum of human lung carcinoma lines, small cell carcinoma was exquisitely sensitive to the ODC inhibitor, DFMO. Not only did these cells display a cessation of growth but also an inability to survive during DFMO-induced polyamine depletion. Studies extending these findings to long term maintenance therapy in human small cell lung carcinoma implants in athymic mice revealed sustained growth inhibition of the tumor for longer than one year (96). Casero et al. (97) now find that human large cell carcinoma, which is otherwise refractory to chemotherapeutic intervention, displays a cytotoxic response in vitro to polyamine depletion induced by BES or BESm but not by DFMO.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C W Porter
- Grace Cancer Drug Center, Roswell Park Memorial Institute, Buffalo, New York 14263
| | | |
Collapse
|
26
|
Mitchell JL, Hicks MF, Chen HJ, Hoff JA. Modifications of ornithine decarboxylase induced by phosphatases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 250:55-70. [PMID: 2855562 DOI: 10.1007/978-1-4684-5637-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- J L Mitchell
- Department of Biological Sciences, Northern Illinois University, DeKalb 60115
| | | | | | | |
Collapse
|
27
|
Flamigni F, Meggio F, Marmiroli S, Guarnieri C, Pinna LA, Caldarera CM. Phosphorylation by casein kinase-2 and reversible alteration of thiol groups: mechanisms of control of ornithine decarboxylase? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 250:45-53. [PMID: 3255237 DOI: 10.1007/978-1-4684-5637-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- F Flamigni
- Dipartimento di Biochimica, University of Bologna, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Porter CW, Berger FG, Pegg AE, Ganis B, Bergeron RJ. Regulation of ornithine decarboxylase activity by spermidine and the spermidine analogue N1N8-bis(ethyl)spermidine. Biochem J 1987; 242:433-40. [PMID: 3036091 PMCID: PMC1147723 DOI: 10.1042/bj2420433] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polyamine biosynthesis in intact cells can be exquisitely controlled with exogenous polyamines through the regulation of rate-limiting biosynthetic enzymes, particularly ornithine decarboxylase (ODC). In an attempt to exploit this phenomenon as an antiproliferative strategy, certain polyamine analogues have been identified [Porter, Cavanaugh, Stolowich, Ganis, Kelly & Bergeron (1985) Cancer Res. 45, 2050-2057] which lower ODC activity in intact cells, have no direct inhibitory effects on ODC, are incapable of substituting for spermidine (SPD) in supporting cell growth, and are growth-inhibitory at micromolar concentrations. In the present study, the most effective of these analogues, N1N8-bis(ethyl)SPD (BES), is compared with SPD in its ability to regulate ODC activity in intact L1210 cells and in the mechanism(s) by which this is accomplished. With respect to time and dose-dependence of ODC suppression, both polyamines closely paralleled one another in their response curves, although BES was slightly less effective than SPD. Conditions of minimal treatment leading to near-maximal ODC suppression (70-80%) were determined and found to be 3 microM for 2 h with either SPD or BES. After such treatment, ODC activity was fully recovered within 2-4 h when cells were re-seeded in drug-free media. By assessing BES or [3H]SPD concentrations in treated and recovered cells, it was possible to deduce that an intracellular accumulation of BES or SPD equivalent to less than 6.5% of the combined cellular polyamine pool was sufficient to invoke ODC regulatory mechanisms. Decreases in ODC activity after BES or SPD treatment were closely paralleled by concomitant decreases in ODC protein. Since cellular ODC mRNA was not similarly decreased by either BES or SPD, it was concluded that translational and/or post-translational mechanisms, such as increased degradation of ODC protein or decreased translation of ODC mRNA, were probably responsible for regulation of enzyme activity. Experimental evidence indicated that neither of these mechanisms seemed to be mediated by cyclic AMP or ODC-antizyme induction. On the basis of the consistent similarities between BES and SPD in all parameters studied, it is concluded that the analogue most probably acts by the same mechanisms as SPD in regulating polyamine biosynthesis.
Collapse
|
29
|
Glass JR, Gerner EW. Spermidine mediates degradation of ornithine decarboxylase by a non-lysosomal, ubiquitin-independent mechanism. J Cell Physiol 1987; 130:133-41. [PMID: 3027106 DOI: 10.1002/jcp.1041300119] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanism of spermidine-induced ornithine decarboxylase (ODC, E.C. 4.1.1.17) inactivation was investigated using Chinese hamster ovary (CHO) cells, maintained in serum-free medium, which display a stabilization of ODC owing to the lack of accumulation of putrescine and spermidine (Glass and Gerner: Biochem. J., 236:351-357, 1986; Sertich et al.: J. Cell Physiol., 127:114-120, 1986). Treatment of cells with 10 microM exogenous spermidine leads to rapid decay of ODC activity accompanied by a parallel decrease in enzyme protein. Analysis of the decay of [35S]methionine-labeled ODC and separation by two-dimensional electrophoresis revealed no detectable modification in ODC structure during enhanced degradation. Spermidine-mediated inactivation of ODC occurred in a temperature-dependent manner exhibiting pseudo-first-order kinetics over a temperature range of 22-37 degrees C. In cultures treated continuously, an initial lag was observed after treatment with spermidine, followed by a rapid decline in activity as an apparent critical concentration of intracellular spermidine was achieved. Treating cells at 22 degrees C for 3 hours with 10 microM spermidine, followed by removal of exogenous polyamine, and then shifting to varying temperatures, resulted in rates of ODC inactivation identical with that determined with a continuous treatment. Arrhenius analysis showed that polyamine mediated inactivation of ODC occurred with an activation energy of approximately 16 kcal/mol. Treatment of cells with lysosomotrophic agents (NH4Cl, chloroquine, antipain, leupeptin, chymostatin) had no effect on ODC degradation. ODC turnover was not dependent on ubiquitin-dependent proteolysis. Shift of ts85 cells, a temperature-sensitive mutant for ubiquitin conjugation, to 39 degrees C (nonpermissive for ubiquitin-dependent proteolysis) followed by addition of spermidine led to a rapid decline in ODC activity, with a rate similar to that seen at 32 degrees C (the permissive temperature). In contrast, spermidine-mediated ODC degradation was substantially decreased by inhibitors of protein synthesis (cycloheximide, emetine, and puromycin). These data support the hypothesis that spermidine regulates ODC degradation via a mechanism requiring new protein synthesis, and that this occurs via a non-lysosomal, ubiquitin-independent pathway.
Collapse
|
30
|
Hölttä E, Pohjanpelto P. Control of ornithine decarboxylase in Chinese hamster ovary cells by polyamines. Translational inhibition of synthesis and acceleration of degradation of the enzyme by putrescine, spermidine, and spermine. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67685-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
31
|
Glass JR, Gerner EW. Polyamine-mediated turnover of ornithine decarboxylase in Chinese-hamster ovary cells. Biochem J 1986; 236:351-7. [PMID: 3092809 PMCID: PMC1146847 DOI: 10.1042/bj2360351] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have used Chinese-hamster ovary (CHO) cells maintained in a chemically defined medium to study the regulation of ornithine decarboxylase (ODC) by polyamines. Cells maintained in the defined medium had no detectable putrescine, and approx. 1-3 units of ODC activity/10(6) cells, where 1 unit corresponds to 1 nmol of substrate decarboxylated in 30 min. The defined medium is ornithine-deficient, thus limiting the exogenous substrate for ODC, and subsequently decreasing intracellular polyamine accumulation. Restoration of intracellular putrescine and increased formation of spermidine by addition of exogenous ornithine or putrescine led to a marked decrease in ODC activity, which was paralleled by a decrease in a alpha-DL-difluoromethyl[3,4-3H]ornithine (DFMO)-binding protein of Mr approx. 53,000, which is precipitable with anti-ODC antibody. Calculation of DFMO binding per unit of activity showed no change in the specific activity of the enzyme. We identified [35S]methionine-labelled peptides corresponding to ODC by immunoprecipitation of radiolabeled whole cell proteins. Only one protein was precipitated, of Mr approx. 53 000, which co-migrated with the DFMO-binding protein. Immunoprecipitation of radiolabelled proteins from cells incubated in the presence of exogenous ornithine indicated that the observed activity decrease was not due to an inhibition of ODC protein synthesis. Analysis of immunoprecipitable ODC protein from cells that had been pulse-labelled with [35S]methionine, and then treated for 5 h with 100 microM-ornithine, -putrescine or -spermidine, revealed a distinct disappearance of labelled ODC protein after restoration of intracellular polyamine pools. No detectable turnover of ODC was observed in the absence of exogenous polyamine treatment. These data support the hypothesis that ODC protein, and subsequent activity, is regulated by intracellular polyamine content through mechanisms that influence turnover of the enzyme.
Collapse
|
32
|
|