1
|
Dargel C, Gräbitz-Bräuer F, Geisler R, Fandrich P, Hannappel Y, Porcar L, Hellweg T. Stable DOPG/Glycyrrhizin Vesicles with a Wide Range of Mixing Ratios: Structure and Stability as Seen by Scattering Experiments and Cryo-TEM. Molecules 2021; 26:molecules26164959. [PMID: 34443547 PMCID: PMC8399256 DOI: 10.3390/molecules26164959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
Phosphatidylglycerols represent a large share of the lipids in the plasmamembrane of procaryotes. Therefore, this study investigates the role of charged lipids in the plasma membrane with respect to the interaction of the antiviral saponin glycyrrhizin with such membranes. Glycyrrhizin is a natural triterpenic-based surfactant found in licorice. Vesicles made of 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1’-glycerol) (DOPG)/glycyrrhizin are characterized by small-angle scattering with neutrons and X-rays (SANS and SAXS). Small-angle scattering data are first evaluated by the model-independent modified Kratky–Porod method and afterwards fitted by a model describing the shape of small unilamellar vesicles (SUV) with an internal head-tail contrast. Complete miscibility of DOPG and glycyrrhizin was revealed even at a ratio of lipid:saponin of 1:1. Additional information about the chain-chain correlation distance of the lipid/saponin mixtures in the SUV structures is obtained from wide-angle X-ray scattering (WAXS).
Collapse
Affiliation(s)
- Carina Dargel
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Friederike Gräbitz-Bräuer
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Ramsia Geisler
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Pascal Fandrich
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Yvonne Hannappel
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Lionel Porcar
- Institut Laue-Langevin, 71 Avenue des Martyrs CS 20156, CEDEX 9, 38042 Grenoble, France;
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
- Correspondence: ; Tel.: +49-0521-106-2055
| |
Collapse
|
2
|
Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res 2019; 74:31-68. [PMID: 30703388 DOI: 10.1016/j.plipres.2019.01.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Algal lipid metabolism fascinates both scientists and entrepreneurs due to the large diversity of fatty acyl structures that algae produce. Algae have therefore long been studied as sources of genes for novel fatty acids; and, due to their superior biomass productivity, algae are also considered a potential feedstock for biofuels. However, a major issue in a commercially viable "algal oil-to-biofuel" industry is the high production cost, because most algal species only produce large amounts of oils after being exposed to stress conditions. Recent studies have therefore focused on the identification of factors involved in TAG metabolism, on the subcellular organization of lipid pathways, and on interactions between organelles. This has been accompanied by the development of genetic/genomic and synthetic biological tools not only for the reference green alga Chlamydomonas reinhardtii but also for Nannochloropsis spp. and Phaeodactylum tricornutum. Advances in our understanding of enzymes and regulatory proteins of acyl lipid biosynthesis and turnover are described herein with a focus on carbon and energetic aspects. We also summarize how changes in environmental factors can impact lipid metabolism and describe present and potential industrial uses of algal lipids.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - Eric Fedosejevs
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
3
|
Yoshinaga MY, Kellermann MY, Valentine DL, Valentine RC. Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes. Prog Lipid Res 2016; 64:1-15. [PMID: 27448687 DOI: 10.1016/j.plipres.2016.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/29/2016] [Accepted: 07/13/2016] [Indexed: 01/06/2023]
Abstract
Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for carbon dioxide fixation and plant growth. Mitochondria, bacteria and archaea generate proton motive force to energize growth and other physiologies. Energy transducing membranes are at the heart of proton bioenergetics and are responsible for catalyzing the conversion of energy held in high-energy electrons→electron transport chain→proton motive force→ATP. Whereas the electron transport chain is understood in great detail there are major gaps in understanding mechanisms of proton transfer or circulation during proton bioenergetics. This paper is built on the proposition that phospho- and glyco-glycerolipids form proton transport circuitry at the membrane's surface. By this proposition, an emergent membrane property, termed the hyducton, confines active/unbound protons or hydronium ions to a region of low volume close to the membrane surface. In turn, a von Grotthuß mechanism rapidly moves proton substrate in accordance with nano-electrochemical poles on the membrane surface created by powerful proton pumps such as ATP synthase.
Collapse
Affiliation(s)
- Marcos Y Yoshinaga
- University of Bremen, MARUM - Center for Marine and Environmental Sciences, Germany.
| | - Matthias Y Kellermann
- University of California Santa Barbara - Department of Earth Science and Marine Science Institute, USA
| | - David L Valentine
- University of California Santa Barbara - Department of Earth Science and Marine Science Institute, USA
| | | |
Collapse
|
4
|
Bastien O, Botella C, Chevalier F, Block MA, Jouhet J, Breton C, Girard-Egrot A, Maréchal E. New Insights on Thylakoid Biogenesis in Plant Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:1-30. [DOI: 10.1016/bs.ircmb.2015.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Yang W, Tian K, Ye S. Interaction between Potassium Phosphate Buffer Solution and Modeling Cell Membrane Investigated by Sum Frequency Generation Vibrational Spectroscopy. CHINESE J CHEM PHYS 2015. [DOI: 10.1063/1674-0068/28/cjcp1504070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
6
|
Hasan SS, Yamashita E, Ryan CM, Whitelegge JP, Cramer WA. Conservation of lipid functions in cytochrome bc complexes. J Mol Biol 2011; 414:145-62. [PMID: 21978667 DOI: 10.1016/j.jmb.2011.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/05/2011] [Accepted: 09/14/2011] [Indexed: 11/24/2022]
Abstract
Lipid binding sites and properties are compared in two sub-families of hetero-oligomeric membrane protein complexes known to have similar functions in order to gain further understanding of the role of lipid in the function, dynamics, and assembly of these complexes. Using the crystal structure information for both complexes, we compared the lipid binding properties of the cytochrome b(6)f and bc(1) complexes that function in photosynthetic and respiratory membrane energy transduction. Comparison of lipid and detergent binding sites in the b(6)f complex with those in bc(1) shows significant conservation of lipid positions. Seven lipid binding sites in the cyanobacterial b(6)f complex overlap three natural sites in the Chlamydomonas reinhardtii algal complex and four sites in the yeast mitochondrial bc(1) complex. The specific identity of lipids is different in b(6)f and bc(1) complexes: b(6)f contains sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol, whereas cardiolipin, phosphatidylethanolamine, and phosphatidic acid are present in the yeast bc(1) complex. The lipidic chlorophyll a and β-carotene (β-car) in cyanobacterial b(6)f, as well as eicosane in C. reinhardtii, are unique to the b(6)f complex. Inferences of lipid binding sites and functions were supported by sequence, interatomic distance, and B-factor information on interacting lipid groups and coordinating amino acid residues. The lipid functions inferred in the b(6)f complex are as follows: (i) substitution of a transmembrane helix by a lipid and chlorin ring, (ii) lipid and β-car connection of peripheral and core domains, (iii) stabilization of the iron-sulfur protein transmembrane helix, (iv) n-side charge and polarity compensation, and (v) β-car-mediated super-complex with the photosystem I complex.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
7
|
Knauf K, Meister A, Kerth A, Blume A. Interaction of alkyltrimethylammonium bromides with DMPC-d54 and DMPG-d54 monolayers studied by infrared reflection absorption spectroscopy (IRRAS). J Colloid Interface Sci 2010; 342:243-52. [DOI: 10.1016/j.jcis.2009.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 11/17/2022]
|
8
|
Siegenthaler PA, Giroud C. Transversal distribution of phospholipids in prothylakoid and thylakoid membranes from oat. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)80611-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Siegenthaler PA, Sutter J, Rawyler A. The transmembrane distribution of galactolipids in spinach thylakoid inside-out vesicles is opposite to that found in intact thylakoids. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80592-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Duchêne S, Smutny J, Siegenthaler PA. The topology of phosphatidylglycerol populations is essential for sustaining photosynthetic electron flow activities in thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:115-20. [PMID: 10631300 DOI: 10.1016/s0005-2736(99)00183-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The transmembrane distribution of phosphatidylglycerol (PG) was determined in rightside-out (RO) and inside-out vesicles (IO) obtained by fragmentation of spinach thylakoids in a Yeda press, followed by partition in an aqueous dextran-polyethyleneglycol two-phase system. Using the phospholipase A(2) from porcine pancreas to digest selectively PG molecules in the outer monolayer (exposed to the incubation medium) of the membrane, we found the molar outside/inside distribution to be 70/30+/-5 in RO and 40/60+/-3 in IO. The transmembrane distribution of PG in IO was the opposite of that in intact thylakoids (molar ratio 58/42+/-3). The phospholipid population which sustained most of the uncoupled photosystem II electron flow activity was localized in the inner monolayer (exposed to the thylakoid lumen) of both thylakoid and RO membranes. In contrast, the activity in IO membranes was highly dependent on the PG population located in the outer monolayer. This finding brings the first direct demonstration of the dependence of the photosynthetic electron flow activity on the integrity of the inner topological pool of PG in the thylakoid membrane.
Collapse
Affiliation(s)
- S Duchêne
- Laboratoire de Physiologie végétale, Université de Neuchâtel, Rue Emile-Argand 13, CH-2007, Neuchâtel, Switzerland
| | | | | |
Collapse
|
11
|
Zubiri D, Domecq A, Bernik D. Phase behavior of phosphatidylglycerol bilayers as a function of buffer composition: fluorescence studies using Laurdan probe. Colloids Surf B Biointerfaces 1999. [DOI: 10.1016/s0927-7765(98)00106-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Interaction of photosystem II proteins with non-aggregated membranes constituted of phosphatidylglycerol and the electrically neutral phosphatidylcholine enhances the oxygen-evolving activity. Chem Phys Lipids 1998. [DOI: 10.1016/s0009-3084(97)00107-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Andersson B, Barber J. Composition, Organization, and Dynamics of Thylakoid Membranes. MOLECULAR PROCESSES OF PHOTOSYNTHESIS 1994. [DOI: 10.1016/s1569-2558(08)60394-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Affiliation(s)
- W P Williams
- Division of Life Sciences, King's College London, Campden Hill, U.K
| |
Collapse
|
15
|
Siegenthaler PA, Mayor JP. Changes in the binding and inhibitory properties of urea/triazine-type herbicides upon phospholipid and galactolipid depletion in the outer monolayer of thylakoid membranes : Different behaviour of atrazine-susceptible and-resistant biotypes of Solanum nigrum L. PHOTOSYNTHESIS RESEARCH 1992; 31:57-68. [PMID: 24407930 DOI: 10.1007/bf00049537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/1991] [Indexed: 06/03/2023]
Abstract
The binding characteristics and the inhibitory power of atrazine and DCMU towards uncoupled electron flow activity were studied in acyl lipid-depleted thylakoid membranes from atrazine-susceptible and-resistant biotypes of Solanum nigrum L. For this purpose, phospholipase A2 from Vipera russelli and the lipase from Rhizopus arrhizus were used to obtain a selective lipid class (phospholipids or galactolipids) depletion which was restricted to the outer monolayer. Neither phospholipid nor galactolipid removal affected the dissociation constant and the number of binding sites of atrazine. In contrast, the dissociation constant of DCMU was increased in phospholipid-depleted thylakoid membranes but remained unchanged after galactolipid depletion. The number of DCMU binding sites decreased significantly after both lipase treatments, but only in the resistant biotype. The inhibitory effectiveness of the herbicide was either decreased or increased (to different extents) depending on the lipid class which was removed from the membrane and on the biotype considered. These results are discussed with reference to the possible conformational changes of the 32 kDa herbicide-binding polypeptide occurring after lipase treatments.
Collapse
Affiliation(s)
- P A Siegenthaler
- Laboratoire de Physiologie végétale, Université de Neuchâtel, 20, chemin de Chantermerle, CH-2000, Neuchâtel, Switzerland
| | | |
Collapse
|
16
|
MgCl2-induced reversal of oxygen evolution decay in photosystem II particles incubated with phosphatidylglycerol vesicles at high lipid/photosystem II ratio. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1991. [DOI: 10.1016/1011-1344(91)80038-j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Biochemical and biophysical properties of thylakoid acyl lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(09)91002-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Garnier J, Wu B, Jeannine M, Guyon D, Trémolières A. Restoration of both an oligomeric form of the light-harvesting antenna CP II and a fluorescence state II-state I transition by Δ3-trans-hexadecenoic acid-containing phosphatidylglycerol, in cells of a mutant of Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90046-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
The phospholipid population which sustains the uncoupled non-cyclic electron flow activity is localized in the inner monolayer of the thylakoid membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80207-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Siegenthaler PA, Smutny J, Rawyler A. Involvement of distinct populations of phosphatidylglycerol and phosphatidylcholine molecules in photosynthetic electron-flow activities. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90086-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Pascher I, Sundell S, Harlos K, Eibl H. Conformation and packing properties of membrane lipids: the crystal structure of sodium dimyristoylphosphatidylglycerol. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 896:77-88. [PMID: 3790589 DOI: 10.1016/0005-2736(87)90358-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The conformation and molecular packing of sodium 1,2-dimyristoyl-sn-glycero-phospho-rac-glycerol (DMPG) have been determined by single crystal analysis (R = 0.098). The lipid crystallizes in the monoclinic spacegroup P2(1) with the unit cell dimensions a = 10.4, b = 8.5, c = 45.5 A and beta = 95.2 degrees. There are two independent molecules (A and B) in the asymmetric unit which with respect to configuration and conformation of their glycerol headgroup are mirror images. The molecules pack tail to tail in a bilayer structure. The phosphoglycerol headgroups have a layer-parallel orientation giving the molecules an L-shape. At the bilayer surface the (-) phosphoglycerol groups are arranged in rows which are separated by rows of (+) sodium ions. Laterally the polar groups interact by an extensive network of hydrogen, ionic and coordination bonds. The packing cross-section per molecule is 44.0 A2. The hydrocarbon chains are tilted (29 degrees) and have opposite inclination in the two bilayer halves. In the chain matrix the chain planes are arranged according to a so far unknown hybride packing mode which combines the features of T parallel and O perpendicular subcells. The two fatty acid substituted glycerol oxygens have mutually a - synclinal rather than the more common + synclinal conformation. The conformation of the diacylglycerol part of molecule A and B is distinguished by an axial displacement of the two hydrocarbon chains by four methylene units. This results in a reorientation of the glycerol back bone and a change in the conformation and stacking of the hydrocarbon chains. In molecule A the beta-chain is straight and the gamma-chain is bent while in molecule B the chain conformation is reversed.
Collapse
|
22
|
Rawyler A, Unitt MD, Giroud C, Davies H, Mayor JP, Harwood JL, Siegenthaler PA. The transmembrane distribution of galactolipids in chloroplast thylakoids is universal in a wide variety of temperate climate plants. PHOTOSYNTHESIS RESEARCH 1987; 11:3-13. [PMID: 24435458 DOI: 10.1007/bf00117669] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/1985] [Revised: 11/12/1985] [Indexed: 06/03/2023]
Abstract
The transmembrane distribution of monogalactosyldiacylglycerol and digalactosyldiacylglycerol was determined in chloroplast thylakoids from a range of temperate climate plants. These plants included dicotyledons, monocotyledons, C16:3 and C18:3 plants and herbicide-resistant species. In all the thylakoids examined monogalactosyldiacylglycerol was enriched in the outer leaflet (53-65%) while digalactosyldiacylglycerol was highly enriched in the inner leaflet (78-90%). The non-bilayer forming monogalactosyldiacylglycerol represented 55-81% of the total acyl lipids of the outer monolayer. The relative acyl lipid composition of both leaflets of the thylakoid membrane indicates that the lamellar structure is strongly favored in the inner monolayer, whereas the outer one presents a metastable character which allows the probable coexistence of both lamellar and non-lamellar phases. The consequence of this asymmetry for the stability and function of the thylakoid membrane is discussed.
Collapse
Affiliation(s)
- A Rawyler
- Laboratoire de Physiologie végétale, Université de Neuchâtel, Chantemerle 20, CH-2000, Neuchâtel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
|