1
|
Stewart TM, Foley JR, Holbert CE, Khomutov M, Rastkari N, Tao X, Khomutov AR, Zhai RG, Casero RA. Difluoromethylornithine rebalances aberrant polyamine ratios in Snyder-Robinson syndrome. EMBO Mol Med 2023; 15:e17833. [PMID: 37702369 PMCID: PMC10630878 DOI: 10.15252/emmm.202317833] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Snyder-Robinson syndrome (SRS) results from mutations in spermine synthase (SMS), which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonia, and seizures. Symptom management is the only treatment. Reduced SMS activity causes spermidine accumulation while spermine levels are reduced. The resulting exaggerated spermidine:spermine ratio is a biochemical hallmark of SRS that tends to correlate with symptom severity. Our studies aim to pharmacologically manipulate polyamine metabolism to correct this imbalance as a therapeutic strategy for SRS. Here we report the repurposing of 2-difluoromethylornithine (DFMO), an FDA-approved inhibitor of polyamine biosynthesis, in rebalancing spermidine:spermine ratios in SRS patient cells. Mechanistic in vitro studies demonstrate that, while reducing spermidine biosynthesis, DFMO also stimulates the conversion of spermidine into spermine in hypomorphic SMS cells and induces uptake of exogenous spermine, altogether reducing the aberrant ratios. In a Drosophila SRS model characterized by reduced lifespan, DFMO improves longevity. As nearly all SRS patient mutations are hypomorphic, these studies form a strong foundation for translational studies with significant therapeutic potential.
Collapse
Affiliation(s)
- Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Jackson R Foley
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Cassandra E Holbert
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Maxim Khomutov
- Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
| | - Noushin Rastkari
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Xianzun Tao
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Alex R Khomutov
- Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
| | - R Grace Zhai
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| |
Collapse
|
2
|
Stewart TRM, Foley JR, Holbert CE, Khomutov MA, Rastkari N, Tao X, Khomutov AR, Zhai RG, Casero RA. Difluoromethylornithine rebalances aberrant polyamine ratios in Snyder-Robinson syndrome: mechanism of action and therapeutic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534977. [PMID: 37034775 PMCID: PMC10081208 DOI: 10.1101/2023.03.30.534977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/19/2023]
Abstract
Snyder-Robinson Syndrome (SRS) is caused by mutations in the spermine synthase (SMS) gene, the enzyme product of which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonic musculature, and seizures, along with other more variable symptoms. Currently, medical management focuses on treating these symptoms without addressing the underlying molecular cause of the disease. Reduced SMS catalytic activity in cells of SRS patients causes the accumulation of spermidine, while spermine levels are reduced. The resulting exaggeration in spermidine-to-spermine ratio is a biochemical hallmark of SRS that tends to correlate with symptom severity in the patient. Our studies aim to pharmacologically manipulate polyamine metabolism to correct this polyamine imbalance and investigate the potential of this approach as a therapeutic strategy for affected individuals. Here we report the use of difluoromethylornithine (DFMO; eflornithine), an FDA-approved inhibitor of polyamine biosynthesis, in re-establishing normal spermidine-to-spermine ratios in SRS patient cells. Through mechanistic studies, we demonstrate that, while reducing spermidine biosynthesis, DFMO also stimulates the conversion of existing spermidine into spermine in cell lines with hypomorphic variants of SMS. Further, DFMO treatment induces a compensatory uptake of exogenous polyamines, including spermine and spermine mimetics, cooperatively reducing spermidine and increasing spermine levels. In a Drosophila SRS model characterized by reduced lifespan, adding DFMO to the feed extended lifespan. As nearly all known SRS patient mutations are hypomorphic, these studies form a foundation for future translational studies with significant therapeutic potential.
Collapse
|
3
|
Zhang T, Hu L, Tang JF, Xu H, Tian K, Wu MN, Huang SY, Du YM, Zhou P, Lu RJ, He S, Xu JM, Si JJ, Li J, Chen DL, Ran JH. Metformin Inhibits the Urea Cycle and Reduces Putrescine Generation in Colorectal Cancer Cell Lines. Molecules 2021; 26:molecules26071990. [PMID: 33915902 PMCID: PMC8038129 DOI: 10.3390/molecules26071990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/20/2022] Open
Abstract
The urea cycle (UC) removes the excess nitrogen and ammonia generated by nitrogen-containing compound composites or protein breakdown in the human body. Research has shown that changes in UC enzymes are not only related to tumorigenesis and tumor development but also associated with poor survival in hepatocellular, breast, and colorectal cancers (CRC), etc. Cytoplasmic ornithine, the intermediate product of the urea cycle, is a specific substrate for ornithine decarboxylase (ODC, also known as ODC1) for the production of putrescine and is required for tumor growth. Polyamines (spermidine, spermine, and their precursor putrescine) play central roles in more than half of the steps of colorectal tumorigenesis. Given the close connection between polyamines and cancer, the regulation of polyamine metabolic pathways has attracted attention regarding the mechanisms of action of chemical drugs used to prevent CRC, as the drug most widely used for treating type 2 diabetes (T2D), metformin (Met) exhibits antitumor activity against a variety of cancer cells, with a vaguely defined mechanism. In addition, the influence of metformin on the UC and putrescine generation in colorectal cancer has remained unclear. In our study, we investigated the effect of metformin on the UC and putrescine generation of CRC in vivo and in vitro and elucidated the underlying mechanisms. In nude mice bearing HCT116 tumor xenografts, the administration of metformin inhibited tumor growth without affecting body weight. In addition, metformin treatment increased the expression of monophosphate (AMP)-activated protein kinase (AMPK) and p53 in both HCT116 xenografts and colorectal cancer cell lines and decreased the expression of the urea cycle enzymes, including carbamoyl phosphate synthase 1 (CPS1), arginase 1 (ARG1), ornithine trans-carbamylase (OTC), and ODC. The putrescine levels in both HCT116 xenografts and HCT116 cells decreased after metformin treatment. These results demonstrate that metformin inhibited CRC cell proliferation via activating AMPK/p53 and that there was an association between metformin, urea cycle inhibition and a reduction in putrescine generation.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
- Chongqing Three Gorges Medical College, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing 404120, China
| | - Ling Hu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Jia-Feng Tang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
- Chongqing Three Gorges Medical College, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing 404120, China
| | - Hang Xu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Kuan Tian
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
| | - Meng-Na Wu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Shi-Ying Huang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Yu-Mei Du
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Peng Zhou
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Rui-Jin Lu
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Shuang He
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Jia-Mei Xu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
| | - Jian-Jun Si
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
| | - Jing Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Di-Long Chen
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
- Chongqing Three Gorges Medical College, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing 404120, China
| | - Jian-Hua Ran
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
- Correspondence: ; Tel.: +86-150-8681-4824
| |
Collapse
|
4
|
Li L, Mao Y, Zhao L, Li L, Wu J, Zhao M, Du W, Yu L, Jiang P. p53 regulation of ammonia metabolism through urea cycle controls polyamine biosynthesis. Nature 2019; 567:253-256. [PMID: 30842655 DOI: 10.1038/s41586-019-0996-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2017] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Cancer cells exhibit altered and usually increased metabolic processes to meet their high biogenetic demands1,2. Under these conditions, ammonia is concomitantly produced by the increased metabolic processing. However, it is unclear how tumour cells dispose of excess ammonia and what outcomes might be caused by the accumulation of ammonia. Here we report that the tumour suppressor p53, the most frequently mutated gene in human tumours, regulates ammonia metabolism by repressing the urea cycle. Through transcriptional downregulation of CPS1, OTC and ARG1, p53 suppresses ureagenesis and elimination of ammonia in vitro and in vivo, leading to the inhibition of tumour growth. Conversely, downregulation of these genes reciprocally activates p53 by MDM2-mediated mechanism(s). Furthermore, the accumulation of ammonia causes a significant decline in mRNA translation of the polyamine biosynthetic rate-limiting enzyme ODC, thereby inhibiting the biosynthesis of polyamine and cell proliferation. Together, these findings link p53 to ureagenesis and ammonia metabolism, and further reveal a role for ammonia in controlling polyamine biosynthesis and cell proliferation.
Collapse
Affiliation(s)
- Le Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Youxiang Mao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lina Zhao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lijia Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinjun Wu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Mengjia Zhao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjing Du
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Yu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Hoyt MA, Zhang M, Coffino P. Ubiquitin-independent mechanisms of mouse ornithine decarboxylase degradation are conserved between mammalian and fungal cells. J Biol Chem 2003; 278:12135-43. [PMID: 12562772 DOI: 10.1074/jbc.m211802200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The polyamine biosynthetic enzyme ornithine decarboxylase (ODC) is degraded by the 26 S proteasome via a ubiquitin-independent pathway in mammalian cells. Its degradation is greatly accelerated by association with the polyamine-induced regulatory protein antizyme 1 (AZ1). Mouse ODC (mODC) that is expressed in the yeast Saccharomyces cerevisiae is also rapidly degraded by the proteasome of that organism. We have now carried out in vivo and in vitro studies to determine whether S. cerevisiae proteasomes recognize mODC degradation signals. Mutations of mODC that stabilized the protein in animal cells also did so in the fungus. Moreover, the mODC degradation signal was able to destabilize a GFP or Ura3 reporter in GFP-mODC and Ura3-mODC fusion proteins. Co-expression of AZ1 accelerated mODC degradation 2-3-fold in yeast cells. The degradation of both mODC and the endogenous yeast ODC (yODC) was unaffected in S. cerevisiae mutants with various defects in ubiquitin metabolism, and ubiquitinylated forms of mODC were not detected in yeast cells. In addition, recombinant mODC was degraded in an ATP-dependent manner by affinity-purified yeast 26 S proteasomes in the absence of ubiquitin. Degradation by purified yeast proteasomes was sensitive to mutations that stabilized mODC in vivo, but was not accelerated by recombinant AZ1. These studies demonstrate that cell constituents required for mODC degradation are conserved between animals and fungi, and that both mammalian and fungal ODC are subject to proteasome-mediated proteolysis by ubiquitin-independent mechanisms.
Collapse
Affiliation(s)
- Martin A Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA
| | | | | |
Collapse
|
6
|
Bhatnagar P, Glasheen BM, Bains SK, Long SL, Minocha R, Walter C, Minocha SC. Transgenic manipulation of the metabolism of polyamines in poplar cells. PLANT PHYSIOLOGY 2001; 125:2139-53. [PMID: 11299393 PMCID: PMC88869 DOI: 10.1104/pp.125.4.2139] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/29/2000] [Revised: 11/15/2000] [Accepted: 01/10/2001] [Indexed: 05/18/2023]
Abstract
The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra x maximowiczii) expressing a mouse Orn decarboxylase (odc) cDNA. The transgenic cells showed elevated levels of mouse ODC enzyme activity, severalfold higher amounts of putrescine, a small increase in spermidine, and a small reduction in spermine as compared with NT cells. The conversion of labeled ornithine (Orn) into putrescine was significantly higher in the transgenic than the NT cells. Whereas exogenously supplied Orn caused an increase in cellular putrescine in both cell lines, arginine at high concentrations was inhibitory to putrescine accumulation. The addition of urea and glutamine had no effect on polyamines in either of the cell lines. Inhibition of glutamine synthetase by methionine sulfoximine led to a substantial reduction in putrescine and spermidine in both cell lines. The results show that: (a) Transgenic expression of a heterologous odc gene can be used to modulate putrescine metabolism in plant cells, (b) accumulation of putrescine in high amounts does not affect the native arginine decarboxylase activity, (c) Orn biosynthesis occurs primarily from glutamine/glutamate and not from catabolic breakdown of arginine, (d) Orn biosynthesis may become a limiting factor for putrescine production in the odc transgenic cells, and (e) assimilation of nitrogen into glutamine keeps pace with an increased demand for its use for putrescine production.
Collapse
Affiliation(s)
- P Bhatnagar
- Department of Plant Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Tome ME, Gerner EW. Hypusine modification in eukaryotic initiation factor 5A in rodent cells selected for resistance to growth inhibition by ornithine decarboxylase-inhibiting drugs. Biochem J 1996; 320 ( Pt 1):55-60. [PMID: 8947467 PMCID: PMC1217897 DOI: 10.1042/bj3200055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023]
Abstract
Selection of HTC cells in drugs that inhibit ornithine decarboxylase (ODC) has produced two cell lines, HMOA and DH23A/b, that contain increased amounts of more stable ODC. In addition to alterations in ODC, these cells appear to produce modified eukaryotic initiation factor 5A (eIF-5A) at different rates, a reaction that both requires spermidine and is essential for proliferation. Alterations to the modification of eIF-5A by spermidine cannot be accounted for by changes in eIF-5A protein or modified eIF-5A turnover. Deoxyhypusine synthetase activity is similar in the parental and variant cell lines and is unaltered by growth into plateau phase or by spermidine depletion. The increased rate of eIF-5A modification in DH23A/b cells is due to an increased accumulation of the unmodified eIF-5A precursor. Increased precursor accumulation is not due to increased eIF-5A transcription, but rather it can be attributed to a metabolic accumulation caused by growth under conditions of chronically limiting spermidine. Selection using drugs that inhibit ODC apparently does not cause alterations in the eIF-5A modification pathway. These data support the hypothesis that one of the main effects of spermidine depletion is depletion of the modified eIF-5A pool, and that this is a critical factor in the cytostasis often observed after depletion of cellular polyamines.
Collapse
Affiliation(s)
- M E Tome
- Department of Radiation Oncology, Arizona Health Sciences Center, University of Arizona, Tucson 85724, USA
| | | |
Collapse
|
8
|
Mitchell JL, Choe CY, Judd GG. Ornithine decarboxylase stability in HMOA and DH23b cells is not due to post-translational truncation of a C-terminal recognition site. Biochem J 1996; 318 ( Pt 3):879-82. [PMID: 8836132 PMCID: PMC1217699 DOI: 10.1042/bj3180879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
The normally labile ornithine decarboxylase (ODC) becomes unusually stable when Cys-441 is replaced with Trp in the variant cell lines HMOA and DH23b. This stable ODC is also observed to have higher mobility on SDS/PAGE. Because previous studies have shown that ODC stability can be achieved when as few as five amino acid residues are removed from its C-terminus, it was suggested that the amino acid substitution in the variant ODC might alter its conformation sufficiently to promote a similar proteolytic loss of a C-terminal degradation signal, resulting in a stable yet active ODC. To examine this mechanism, amino acids in the C-terminal regions of both wild-type and stable (Trp-441) ODC proteins were released, by means of carboxypeptidase-Y digestion, and identified by HPLC. The C-terminal ends were found to be the same, and are as predicted from the cDNA sequence. This study proves that stability of the Trp-441 form of ODC is not simply due to proteolytic removal of a C-terminal proteasome-targeting sequence, thereby implying that the stabilization of this mutant ODC form must result directly from a conformational change associated with the loss of Cys-441.
Collapse
Affiliation(s)
- J L Mitchell
- Department of Biological Sciences, Northern Illinois University, DeKalb 60115, USA
| | | | | |
Collapse
|
9
|
Koguchi K, Murakami Y, Hayashi S. Control of ornithine decarboxylase activity by polyamines and absence of antizyme in Tetrahymena. Comp Biochem Physiol B Biochem Mol Biol 1996; 113:157-62. [PMID: 8936049 DOI: 10.1016/0305-0491(95)02017-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023]
Abstract
1. In cells of Tetrahymena pyriformis and thermophila, ODC activity was significantly suppressed but ODC decay was not stimulated by putrescine. 2. Free antizyme and ODC-antizyme complex were both not detected in extracts of cells of T. pyriformis treated with putrescine. 3. It was concluded that in Tetrahymena, unlike vertebrate cells, ODC is not subject to polyamine-induced destabilization mediated by antizyme.
Collapse
Affiliation(s)
- K Koguchi
- Department of Nutrition, Jikei University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
10
|
Jumarie C, Malo C. Ornithine decarboxylase activity is associated with proliferation but not with T3-induced differentiation of Caco-2 cells. J Cell Physiol 1995; 165:639-46. [PMID: 7593244 DOI: 10.1002/jcp.1041650323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
Ornithine decarboxylase (ODC) activity and polyamine (putrescine, spermidine, spermine) concentrations were measured in parallel in enterocyte-like Caco-2 cells maintained under various culture conditions. ODC activity was maximal at the beginning of the exponential growth phase, decreasing dramatically thereafter to a negligible level at confluency (day 9). Kinetic studies performed on day 3 revealed the presence of a single enzyme with a Km around 200 microM and a Vmax of about 2 nmol CO2 released/h/mg protein. Similar values were obtained in both serum-supplemented and transferrin/selenium (TS)-defined culture media, indicating that ODC kinetic parameters are not affected by any factors present in serum. Polyamine concentrations were maximal on day 5. By day 9, they returned to initial levels and remained at these fairly high values until day 21. Since we have previously shown (Jumarie and Malo, 1994, in Vitro Cell. Dev. Biol., 30A:753-760) that triiodothyronine (T3) stimulates differentiation but not proliferation of Caco-2 cells maintained in TS-defined medium, we investigated if it induces differentiation by a polyamine-dependent mechanism. Short- and long-term measurements revealed similar ODC activity and polyamine levels whether T3 was present or not in the culture medium. These results clearly demonstrate that polyamine synthesis is more likely to be associated with Caco-2 cell proliferation, and that the T3 effect on Caco-2 cell differentiation does not involve polyamine biosynthesis. Moreover, our data show that ODC activity is not solely regulated by intracellular polyamine concentration.
Collapse
Affiliation(s)
- C Jumarie
- Department of Physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | | |
Collapse
|
11
|
Tome ME, Fiser SM, Gerner EW. Consequences of aberrant ornithine decarboxylase regulation in rat hepatoma cells. J Cell Physiol 1994; 158:237-44. [PMID: 8106560 DOI: 10.1002/jcp.1041580205] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
Abstract
DH23A cells, an alpha-difluoromethylornithine (DFMO)-resistant variant of rat hepatoma tissue culture cells (HTC), contain high levels of very stable ornithine decarboxylase (ODC). In the absence of DFMO, the high ODC activity results in a large accumulation of endogenous putrescine. Concomitant with the putrescine increase is a period of cytostasis and a subsequent loss of viable cells. In contrast, HTC cells with a moderate polyamine content can be maintained in exponential growth. This suggests that a moderate polyamine concentration is necessary for both optimal cell growth and survival. The cytotoxicity observed in the DH23A cells is apparently not due to byproducts of polyamine oxidation or alterations in steady state intracellular pH or free [Ca2+]. It is possible to mimic the effects of high levels of stable ODC by treatment of cells with exogenous putrescine in the presence of DFMO. This suggests that overaccumulation of putrescine is the causative agent in the observed cytotoxicity, although the mechanism is unclear. These data support the hypothesis that downregulation of ODC may be necessary to prevent accumulation of cytotoxic concentrations of the polyamines.
Collapse
Affiliation(s)
- M E Tome
- Department of Radiation Oncology, University of Arizona, Tucson 85724
| | | | | |
Collapse
|
12
|
Yarlett N, Goldberg B, Moharrami MA, Bacchi CJ. Trichomonas vaginalis: characterization of ornithine decarboxylase. Biochem J 1993; 293 ( Pt 2):487-93. [PMID: 8343128 PMCID: PMC1134387 DOI: 10.1042/bj2930487] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023]
Abstract
Ornithine decarboxylase (ODC), the lead enzyme in polyamine biosynthesis, was partially purified from Trichomonas vaginalis and its kinetic properties were studied. The enzyme appears to be of special significance in this anaerobic parasite, since the arginine dihydrolase pathway generates ATP as well as putrescine from arginine. ODC from T. vaginalis had a broad substrate specificity, decarboxylating ornithine (100%), lysine (1.0%) and arginine (0.1%). The enzyme had a pH optimum of 6.5, a temperature optimum of 37 degrees C and was pyridoxal 5'-phosphate-dependent. Attempts to separate ornithine- from lysine-decarboxylating activity by thermal-stability and pH-optima curves were not successful. Although Km values for ornithine and lysine were 109 and 91 microM respectively, and the Vmax values for these substrates were 1282 and 13 nmol/min per mg of protein respectively, the most important intracellular substrate is ornithine, since intracellular ornithine levels are 3.5 times those of lysine and extracellular putrescine levels are 7.5 times those of cadaverine. Ornithine was also an effective inhibitor of lysine-decarboxylating activity (Ki 150 microM), whereas lysine was relatively ineffective as inhibitor of ornithine-decarboxylating activity (Ki 14.5 mM). Crude ODC activity was localized (86%) in the 43,000 g supernatant and 3303-fold purification was obtained by (NH4)2SO4 salting and DEAE-Sephacel, agarose-gel and hydroxyapatite chromatography steps. The enzyme bound difluoro[3H]methylornithine ([3H]DFMO) with a ratio of drug bound to activity of 2500 fmol/unit, where 1 unit corresponds to 1 nmol of CO2 released from ornithine/min. The enzyme had a native M(r) of 210000 (gel filtration), with a subunit M(r) of 55,000 (by SDS/PAGE), suggesting that the trichomonad enzyme is a tetramer. From the subunit M(r) and binding ratio of DFMO, there is about 137 ng of ODC per mg of T. vaginalis protein (0.013%). The significant amount of ODC protein present supports the view that putrescine synthesis in T. vaginalis plays an important role in the metabolism of the parasite.
Collapse
Affiliation(s)
- N Yarlett
- Haskins Laboratories, Pace University, New York, NY 10038
| | | | | | | |
Collapse
|
13
|
Poston GJ, Saydjari R, Lawrence JP, Trudel JL, Rubin NH, Townsend CM, Thompson JC. Persistence of the circadian variation and altered response to hepatectomy of hepatic ornithine decarboxylase activity with malignant tumor burden. Cancer Invest 1993; 11:400-7. [PMID: 8324645 DOI: 10.3109/07357909309018872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
Abstract
We measured the effect of MC-26 mouse colon cancers (of different sizes) on the circadian rhythm of hepatic ornithine decarboxylase (ODC) activity and hepatic ODC activity during the 24 hr after 60% hepatectomy. Tumor-free control mice showed a normal circadian rhythm of ODC activity with the highest levels at 1100 hr and the lowest levels at 2300 hr. The amplitude of the rhythm was diminished significantly in mice with a large tumor burden (3% of their body weight), and hepatic ODC activity was significantly less than in the tumor-free mice at every point during the 24 hr of the study. In mice with "early" tumors (0.3% of body weight), basal activity of ODC was normal and there was no reactive increase in activity following hepatectomy. In contrast, mice with "late" (3% of body weight) tumors had significantly lower basal ODC activities and the increase in ODC activity following hepatectomy was prolonged and exaggerated. We concluded that tumor burden is associated with abnormal ODC activity and that these differences are exaggerated after hepatectomy. Furthermore, although average ODC concentrations in tumor-bearing mice fell precipitously, the circadian rhythm in hepatic ODC persisted. This finding indicates early recognition by the host of tumor presence, which has a profound negative regulatory effect on hepatic ODC. Apparently, this effect does not impinge on circadian control mechanisms, indicating that these signals act independently.
Collapse
Affiliation(s)
- G J Poston
- Department of Surgery, University of Texas Medical Branch, Galveston 77550
| | | | | | | | | | | | | |
Collapse
|
14
|
Baby TG, Hayashi S. Presence of ornithine decarboxylase antizyme in primary cultured hepatocytes of the frog Xenopus laevis. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1092:161-4. [PMID: 2018782 DOI: 10.1016/0167-4889(91)90150-v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
Ornithine decarboxylase (ODC; EC 4.1.1.17) could be induced in primary cultured hepatocytes of the frog, Xenopus laevis, by a hypotonic treatment. Addition of 10 mM putrescine caused a rapid decay of preinduced ODC after a lag period of 30 min. The putrescine-induced ODC decay was faster than the ODC decay in the presence of cycloheximide. Simultaneous addition of cycloheximide blocked the putrescine-induced acceleration of ODC decay, indicating an involvement of protein synthesis. Addition of putrescine to normal medium caused complete loss of ODC activity in 2 h and then ODC-inhibitory activity appeared and progressively increased. The inhibitory factor was non-dialysable and temperature-sensitive and showed a time-independent and stoichiometric pattern of ODC inhibition. On the basis of these observations the inhibitory factor was identified as ODC antizyme. These results indicated that in frog hepatocytes, like in mammalian cells and tissues, ODC is under negative feedback regulation mediated by antizyme.
Collapse
Affiliation(s)
- T G Baby
- Department of Nutrition, Jikei University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
15
|
Baby TG, Hayashi S. Hepatic ornithine decarboxylase from the frog, Rana negromaculata: dietary induction, purification and some properties. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1991; 99:151-6. [PMID: 1959325 DOI: 10.1016/0305-0491(91)90021-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
1. In the liver of the frog, Rana negromaculata, the activity of ornithine decarboxylase (ODC) was induced by dietary stimuli and was rapidly lost upon intraperitoneal injection of cycloheximide or putrescine. 2. Frog liver ODC, purified by DEAE-Cellulofine and immunoaffinity column chromatographies, was used in a comparative study with mouse kidney ODC, also purified by the same method. 3. The purified frog ODC showed three bands on SDS-polyacrylamide gel electrophoretic analysis, as confirmed by [3H]alpha-difluoromethylornithine binding. 4. Frog ODC was found to be similar to mouse enzyme in some properties, for example molecular weight, immunoreactivity and inhibition by rat antizyme, except for a slightly higher Km value for ornithine.
Collapse
Affiliation(s)
- T G Baby
- Department of Nutrition, Jikei University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
16
|
Ghoda L, Phillips MA, Bass KE, Wang CC, Coffino P. Trypanosome ornithine decarboxylase is stable because it lacks sequences found in the carboxyl terminus of the mouse enzyme which target the latter for intracellular degradation. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38472-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022] Open
|
17
|
López-Ballester JA, Gómez-Skarmeta JL, Cremades A, Peñafiel R. Different turnover of rat fetal and placental ornithine decarboxylases. Life Sci 1990; 47:1195-202. [PMID: 2243535 DOI: 10.1016/0024-3205(90)90211-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
The half-lives of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) have been studied in fetuses and placentas from 18-day-pregnant rats. While the turnover of fetal and placental SAMDC were slightly different (t1/2 = 38 and 75 min, respectively) the half-lives of fetal and placental ODC differed markedly. T1/2 of fetal ODC was 15 min, similar to other mammalian ODCs, but placental ODC showed a relatively high half-life, about 160 min. According to that, placental ODC was more resistant than the fetal enzyme to in vivo hyperthermic treatment (40 degrees C, 1 h). Our results suggest that the degradative mechanisms for ODC in rat placenta could be regulated differently to those in other mammalian tissues.
Collapse
Affiliation(s)
- J A López-Ballester
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Murcia, Spain
| | | | | | | |
Collapse
|
18
|
Harari PM, Tome ME, Fuller DJ, Carper SW, Gerner EW. Effects of diethyldithiocarbamate and endogenous polyamine content on cellular responses to hydrogen peroxide cytotoxicity. Biochem J 1989; 260:487-90. [PMID: 2548479 PMCID: PMC1138694 DOI: 10.1042/bj2600487] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
In exponential-phase Chinese-hamster cells, 0.1 mM-diethyldithiocarbamate (DDC) afforded greater than 1 log survival protection to cultures treated before and during exposure to 1 mM-H2O2. Both DDC and H2O2 treatment stimulated the activity of ornithine decarboxylase (ODC), the first enzyme in polyamine synthesis, within 4 h of exposure. DDC, and to a lesser degree H2O2, also stimulated the activity of spermidine N1-acetyltransferase (SAT), the rate-limiting enzyme in polyamine catabolism. The increase in SAT activity, after exposure to DDC or another stress (heat shock), was inhibited in cells depleted of putrescine and spermidine by alpha-difluoromethylornithine (DFMO), the enzyme-activated suicide inhibitor of ODC. Pretreatment with DFMO or heat shock also induced resistance to H2O2 cytotoxicity. Since SAT activity is low in resting cells, yet stimulation of enzyme activity depends on endogenous spermidine pools, these results suggest that the expression of SAT activity occurs by a mechanism involving a stress-dependent displacement of spermidine into a new intracellular compartment. The stimulation of ODC and SAT activities does not appear to be a necessary component of the mechanism by which DDC protects cells from H2O2 cytotoxicity, although spermidine displacement may be a common facet of the cellular response to stress.
Collapse
Affiliation(s)
- P M Harari
- University of Arizona Health Sciences Center, Department of Radiation, Arizona Cancer Center, Tucson 85724
| | | | | | | | | |
Collapse
|
19
|
Murakami Y, Nishiyama M, Hayashi S. Involvement of antizyme in stabilization of ornithine decarboxylase caused by inhibitors of polyamine synthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 180:181-4. [PMID: 2495941 DOI: 10.1111/j.1432-1033.1989.tb14630.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
Contrary to previous findings, ornithine decarboxylase (ODC) was stabilized by treatment of cells with DL-alpha-difluoromethylornithine, an enzyme-activated irreversible inhibitor of ODC. Both this inhibitor and cyclohexylamine, a spermidine synthase inhibitor known to stabilize ODC, caused decreases in the antizyme/ODC ratio by increasing ODC content and conversely decreasing antizyme content. The relationship between cellular polyamine levels and antizyme content indicated that spermidine is the most important polyamine for antizyme induction. These results suggest that antizyme is involved in the mechanism underlying the stabilization of ODC by inhibitors of polyamine synthesis and support the hypothesis that cellular polyamines regulate ODC degradation via antizyme.
Collapse
Affiliation(s)
- Y Murakami
- Department of Nutrition, Jikei University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
20
|
Garewal HS, Sampliner R, Alberts D, Steinbronn K. Increase in ornithine decarboxylase activity associated with development of dysplasia in Barrett's esophagus. Dig Dis Sci 1989; 34:312-4. [PMID: 2914551 DOI: 10.1007/bf01536068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
A case of Barrett's esophagus of the specialized columnar type is described in which mucosal ornithine decarboxylase levels were measured in endoscopic biopsies at two intervals over which severe dysplasia had developed. The Barrett's mucosa extended 5 cm above the gastroesophageal junction, was free of dysplasia, and had no detectable ornithine decarboxylase activity at initial evaluation. On follow-up endoscopy one year later, the Barrett's mucosa had become dysplastic with a markedly elevated ornithine decarboxylase activity of 1.56 units/mg protein. The patient underwent an esophagectomy because of persistent severe dysplasia and continues to do well postoperatively. Elevated ornithine decarboxylase activity has been described in other premalignant conditions, especially when dysplasia has been present. Further studies in Barrett's esophagus are warranted, since ODC activity might prove to be a useful biochemical marker for dysplasia and increased cancer risk.
Collapse
Affiliation(s)
- H S Garewal
- Section of Hematology, Veterans Administration Medical Center, Tucson, Arizona
| | | | | | | |
Collapse
|
21
|
Pegg AE, Madhubala R, Kameji T, Bergeron RJ. Control of ornithine decarboxylase activity in alpha-difluoromethylornithine-resistant L1210 cells by polyamines and synthetic analogues. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)38070-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022] Open
|
22
|
Barnett GR, Seyfzadeh M, Davis RH. Putrescine and spermidine control degradation and synthesis of ornithine decarboxylase in Neurospora crassa. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81617-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022] Open
|
23
|
Garewal HS, Sampliner R, Gerner E, Steinbronn K, Alberts D, Kendall D. Ornithine decarboxylase activity in Barrett's esophagus: a potential marker for dysplasia. Gastroenterology 1988; 94:819-21. [PMID: 3338650 DOI: 10.1016/0016-5085(88)90259-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
Ornithine decarboxylase activity is known to be increased in certain premalignant conditions. We determined the activity of this enzyme in mucosal biopsy specimens from 15 patients with Barrett's esophagus. Ornithine decarboxylase was greater in Barrett's mucosa than in squamous esophageal or gastric mucosa. In Barrett's mucosa from 4 patients with dysplasia, the enzyme activity was greater than in 11 patients without dysplasia (1.6 +/- 0.35 vs. 0.19 +/- 0.08 U/mg protein; p less than 0.005). Increased ornithine decarboxylase activity in biopsy specimens of Barrett's mucosa may represent a marker for dysplasia.
Collapse
Affiliation(s)
- H S Garewal
- Department of Internal Medicine, Tucson Veterans Administration Medical Center, Arizona
| | | | | | | | | | | |
Collapse
|
24
|
Hayashi S, Murakami Y, Matsufuji S, Nishiyama M, Kanamoto R, Kameji T. Studies on ornithine decarboxylase antizyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 250:25-35. [PMID: 3076323 DOI: 10.1007/978-1-4684-5637-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Affiliation(s)
- S Hayashi
- Department of Nutrition, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Porter CW, Bergeron RJ. Enzyme regulation as an approach to interference with polyamine biosynthesis--an alternative to enzyme inhibition. ADVANCES IN ENZYME REGULATION 1988; 27:57-79. [PMID: 3250233 DOI: 10.1016/0065-2571(88)90009-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
The progress reviewed here would seem to validate the regulatory approach to interference with polyamine biosynthesis as an antiproliferative strategy. To our knowledge, this is the first example, among anticancer drugs, of pharmacological intervention of a biochemical pathway based strictly on regulatory control. Several features of polyamine biology naturally favor this approach and may account for its relative success. These include (a) the nature of the regulatory mechanisms themselves, (b) the exquisite sensitivity of the pathway to regulatory control, (c) the rapid turnover of ODC and AdoMetDC, (d) the different structural specificity of ODC and AdoMetDC regulation versus growth-dependent functions, and (e) the direct dependence of growth on sustained polyamine biosynthesis. As such, the regulatory approach to interference with polyamine biosynthesis offers several advantages over the use of specific enzyme inhibitors (Table 10). Of these, perhaps, the more significant are the facts that more than one enzyme can be simultaneously and specifically suppressed and that compensatory mechanisms, which otherwise counter the effects of enzyme inhibitors (11), are not invoked. We are encouraged by the concurrence of in vitro mechanistic findings with the predictions of the hypothesis for the regulatory approach and by the in vitro and in vivo growth inhibitory effects of the analogs against murine leukemia. One disadvantage of the regulatory analogs, such as BESm, has been that, as with specific polyamine inhibitors such as DFMO, analog-induced polyamine depletion results in cytostatic growth inhibition. While this response may help to minimize host toxicities, it clearly compromises antitumor activity. An intriguing exception to this generality has recently been found among human lung carcinoma cell lines. Previously, Luk et al. (93, 94) and others (95) reported that, among a spectrum of human lung carcinoma lines, small cell carcinoma was exquisitely sensitive to the ODC inhibitor, DFMO. Not only did these cells display a cessation of growth but also an inability to survive during DFMO-induced polyamine depletion. Studies extending these findings to long term maintenance therapy in human small cell lung carcinoma implants in athymic mice revealed sustained growth inhibition of the tumor for longer than one year (96). Casero et al. (97) now find that human large cell carcinoma, which is otherwise refractory to chemotherapeutic intervention, displays a cytotoxic response in vitro to polyamine depletion induced by BES or BESm but not by DFMO.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C W Porter
- Grace Cancer Drug Center, Roswell Park Memorial Institute, Buffalo, New York 14263
| | | |
Collapse
|
26
|
Abstract
Microgram quantities of ornithine decarboxylase (ODC, EC 4.1.1.17)-specific mRNA were synthesized by transcription techniques in vitro, by using a plasmid containing mouse cDNA coding for this enzyme. The homogeneous RNA preparation was then used for cell-free synthesis of ODC protein, in rabbit reticulocyte lysates. Analysis of products translated in vitro by polyacrylamide-gel electrophoresis revealed predominantly one protein produced, with Mr approx. 54,000, which was immunoprecipitable by anti-ODC serum. Two-dimensional gel-electrophoretic analysis showed that the protein ODC synthesized in vitro had a pI of approx. 5.4, similar to the native enzyme isolated from mouse tissues. In addition, quantification of activity and protein amount showed that the enzyme synthesized in vitro had a specific activity of approx. 63,000 units (nmol/min)/mg, consistent with the purified mouse kidney enzyme's specific activity of approx. 47,000 units/mg. An average of nearly 200 pg of ODC protein was produced in vitro from various RNA preparations. These data demonstrate that ODC-specific mRNA and active ODC protein can be produced by 'in vitro' technology, which should prove useful in studying functional and structural characteristics of these molecules.
Collapse
Affiliation(s)
- J R Glass
- Department of Radiation Oncology, University of Arizona Health Sciences Center, Tucson 85724
| | | | | | | |
Collapse
|
27
|
Glass JR, Gerner EW. Spermidine mediates degradation of ornithine decarboxylase by a non-lysosomal, ubiquitin-independent mechanism. J Cell Physiol 1987; 130:133-41. [PMID: 3027106 DOI: 10.1002/jcp.1041300119] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
The mechanism of spermidine-induced ornithine decarboxylase (ODC, E.C. 4.1.1.17) inactivation was investigated using Chinese hamster ovary (CHO) cells, maintained in serum-free medium, which display a stabilization of ODC owing to the lack of accumulation of putrescine and spermidine (Glass and Gerner: Biochem. J., 236:351-357, 1986; Sertich et al.: J. Cell Physiol., 127:114-120, 1986). Treatment of cells with 10 microM exogenous spermidine leads to rapid decay of ODC activity accompanied by a parallel decrease in enzyme protein. Analysis of the decay of [35S]methionine-labeled ODC and separation by two-dimensional electrophoresis revealed no detectable modification in ODC structure during enhanced degradation. Spermidine-mediated inactivation of ODC occurred in a temperature-dependent manner exhibiting pseudo-first-order kinetics over a temperature range of 22-37 degrees C. In cultures treated continuously, an initial lag was observed after treatment with spermidine, followed by a rapid decline in activity as an apparent critical concentration of intracellular spermidine was achieved. Treating cells at 22 degrees C for 3 hours with 10 microM spermidine, followed by removal of exogenous polyamine, and then shifting to varying temperatures, resulted in rates of ODC inactivation identical with that determined with a continuous treatment. Arrhenius analysis showed that polyamine mediated inactivation of ODC occurred with an activation energy of approximately 16 kcal/mol. Treatment of cells with lysosomotrophic agents (NH4Cl, chloroquine, antipain, leupeptin, chymostatin) had no effect on ODC degradation. ODC turnover was not dependent on ubiquitin-dependent proteolysis. Shift of ts85 cells, a temperature-sensitive mutant for ubiquitin conjugation, to 39 degrees C (nonpermissive for ubiquitin-dependent proteolysis) followed by addition of spermidine led to a rapid decline in ODC activity, with a rate similar to that seen at 32 degrees C (the permissive temperature). In contrast, spermidine-mediated ODC degradation was substantially decreased by inhibitors of protein synthesis (cycloheximide, emetine, and puromycin). These data support the hypothesis that spermidine regulates ODC degradation via a mechanism requiring new protein synthesis, and that this occurs via a non-lysosomal, ubiquitin-independent pathway.
Collapse
|