1
|
Anhê GF, Bordin S. The adaptation of maternal energy metabolism to lactation and its underlying mechanisms. Mol Cell Endocrinol 2022; 553:111697. [PMID: 35690287 DOI: 10.1016/j.mce.2022.111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Maternal energy metabolism undergoes a singular adaptation during lactation that allows for the caloric enrichment of milk. Changes in the mammary gland, changes in the white adipose tissue, brown adipose tissue, liver, skeletal muscles and endocrine pancreas are pivotal for this adaptation. The present review details the landmark studies describing the enzymatic modulation and the endocrine signals behind these metabolic changes. We will also update this perspective with data from recent studies showing transcriptional and post-transcriptional mechanisms that mediate the adaptation of the maternal metabolism to lactation. The present text will also bring experimental and observational data that describe the long-term consequences that short periods of lactation impose to maternal metabolism.
Collapse
Affiliation(s)
- Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil.
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Bu D, Bionaz M, Wang M, Nan X, Ma L, Wang J. Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows. PLoS One 2017; 12:e0173082. [PMID: 28291785 PMCID: PMC5349457 DOI: 10.1371/journal.pone.0173082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative capacity in mammary tissue compared with the liver. Relatively novel is the indication by the data that the transcriptome of the liver is highly regulated by dietary and bacteria-related compounds while the mammary transcriptome is more under control of hormones, growth factors, and miRNA. A large crosstalk between the two tissues with a reciprocal control of metabolism and innate immune-adaptation was indicated by the network analysis that allowed uncovering previously unknown crosstalk between liver and mammary tissue for several signaling molecules.
Collapse
Affiliation(s)
- Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- CAAS-ICRAF Joint Laboratory on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing, China
- Synergetic Innovation Center of Food Safety and Nutrition, Harbin, China
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, United States of America
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, P.R. China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
3
|
Abstract
UNLABELLED Mammary gland (MG) de novo lipogenesis contributes significantly to milk fat in animals but little is known in humans. OBJECTIVE To test the hypothesis that the incorporation of (13)C carbons from [U-(13)C]glucose into fatty acids (FA) and glycerol in triglycerides (TG) will be greater: 1) in milk than plasma TG, 2) during a high-carbohydrate (H-CHO) diet than high-fat (H-FAT) diet, and 3) during feeding than fasting. Seven healthy, lactating women were studied on two isocaloric, isonitrogenous diets. On one occasion, subjects received diets containing H-FAT or H-CHO diet for 1 wk. Incorporation of (13)C from infused [U-(13)C]glucose into FA and glycerol was measured using GC-MS and gene expression in RNA isolated from milk fat globule using microarrays. Incorporation of (13)C2 into milk FA increased with increased FA chain length from C2:0 to C12:0 but progressively declined in C14:0 and C16:0 and was not detected in FA>C16. During feeding, regardless of diets, enrichment of (13)C2 in milk FA and (13)C3 in milk glycerol were ∼ 3- and ∼ 7-fold higher compared with plasma FA and glycerol, respectively. Following an overnight fast during H-CHO and H-FAT diets, 25 and 6%, respectively, of medium-chain FA (MCFA, C6-C12) in milk were derived from glucose but increased to 75 and 25% with feeding. Expression of genes involved in FA or glycerol synthesis was unchanged regardless of diet or fast/fed conditions. The human MG is capable of de novo lipogenesis of primarily MCFA and glycerol, which is influenced by the macronutrient composition of the maternal diet.
Collapse
Affiliation(s)
- Mahmoud A Mohammad
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
4
|
Neville MC, Webb P, Ramanathan P, Mannino MP, Pecorini C, Monks J, Anderson SM, MacLean P. The insulin receptor plays an important role in secretory differentiation in the mammary gland. Am J Physiol Endocrinol Metab 2013; 305:E1103-14. [PMID: 23982156 PMCID: PMC3840206 DOI: 10.1152/ajpendo.00337.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin is known to be an important regulator of milk secretion in the lactating mammary gland. Here we examine the role of insulin signaling in mammary development in pregnancy using a mouse with a floxed insulin receptor (IR) crossed with a mouse expressing Cre specifically in the mammary gland. In the mammary glands of these IR(fl/fl) Cre(+) mice, expression of IR is significantly diminished throughout development. Glands from these mice had 50% fewer alveoli at midpregnancy; casein and lipid droplets were diminished by 60 and 75%, respectively, indicating a role for IR both in alveolar development and differentiation. In an acinar preparation from mammary epithelial cells (MEC) isolated from pregnant mice, insulin stimulated lumen formation, mammary cell size, acinar size, acinar casein content, and the formation of lipid droplets with a Km of ∼1.7 nM. IGF-I and IGF-II had no effect at concentrations below 50 nM, and a function blocking antibody to the IGF type 1 receptor did not alter the response to insulin. We conclude that insulin interacting with IR is essential for mammary differentiation during murine pregnancy. Using array analysis, we then examined the expression of genes up- or downregulated >1.5-fold in the IR(fl/fl) Cre(+) MECs, finding significant downregulation of differentiation specific genes and upregulation of cell cycle and extracellular matrix genes. We conclude that insulin fosters differentiation and may inhibit cell proliferation in the mammary gland of the midpregnant mouse.
Collapse
Affiliation(s)
- Margaret C Neville
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Rudolph MC, Monks J, Burns V, Phistry M, Marians R, Foote MR, Bauman DE, Anderson SM, Neville MC. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium. Am J Physiol Endocrinol Metab 2010; 299:E918-27. [PMID: 20739508 PMCID: PMC3006251 DOI: 10.1152/ajpendo.00376.2010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The lactating mammary gland synthesizes large amounts of triglyceride from fatty acids derived from the blood and from de novo lipogenesis. The latter is significantly increased at parturition and decreased when additional dietary fatty acids become available. To begin to understand the molecular regulation of de novo lipogenesis, we tested the hypothesis that the transcription factor sterol regulatory element binding factor (SREBF)-1c is a primary regulator of this system. Expression of Srebf1c mRNA and six of its known target genes increased ≥2.5-fold at parturition. However, Srebf1c-null mice showed only minor deficiencies in lipid synthesis during lactation, possibly due to compensation by Srebf1a expression. To abrogate the function of both isoforms of Srebf1, we bred mice to obtain a mammary epithelial cell-specific deletion of SREBF cleavage-activating protein (SCAP), the SREBF escort protein. These dams showed a significant lactation deficiency, and expression of mRNA for fatty acid synthase (Fasn), insulin-induced gene 1 (Insig1), mitochondrial citrate transporter (Slc25a1), and stearoyl-CoA desaturase 2 (Scd2) was reduced threefold or more; however, the mRNA levels of acetyl-CoA carboxylase-1α (Acaca) and ATP citrate lyase (Acly) were unchanged. Furthermore, a 46% fat diet significantly decreased de novo fatty acid synthesis and reduced the protein levels of ACACA, ACLY, and FASN significantly, with no change in their mRNA levels. These data lead us to conclude that two modes of regulation exist to control fatty acid synthesis in the mammary gland of the lactating mouse: the well-known SREBF1 system and a novel mechanism that acts at the posttranscriptional level in the presence of SCAP deletion and high-fat feeding to alter enzyme protein.
Collapse
Affiliation(s)
- Michael C Rudolph
- 1Department of Physiology and Biophysics, University of Colorado Denver, Aurora, CO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Neville MC, Mather IH. Introduction: secretory activation: from the past to the future. J Mammary Gland Biol Neoplasia 2007; 12:205-10. [PMID: 18004649 DOI: 10.1007/s10911-007-9060-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 10/30/2007] [Indexed: 12/31/2022] Open
Abstract
This issue of the Journal of Mammary Gland Biology brings a synthesis of the historical data leading to our understanding of the physiology of lactation up to about 1980 with the new technologies and understanding resulting from the molecular revolution in the late 20th century. We focus specifically on the activation of secretion at parturition, and show that the field is ripe for new investigation.
Collapse
Affiliation(s)
- Margaret C Neville
- Department of Physiology and Biophysics, University of Colorado, Denver, CO, USA.
| | | |
Collapse
|
7
|
Abstract
To study the effects of maternal nutritional status on lactational performance, the diets of laboratory rats were manipulated with food restriction or increases in fat concentration. Compared with rats fed control diets ad libitum, conception rate, milk production and litter growth decreased and milk fat concentration increased in both chronically food restricted and obese animals. Chronically food restricted rats mobilized body fat and reduced their energy expenditure for maintenance and activity. Differences in suckling pattern between control and food-restricted rats affected hormone concentrations important for successful lactation. Obese rats experienced greater difficulty than controls in delivering their pups and more of their pups died in the first days of life. Milk production among obese rats may be constrained by poor appetite and the high heat production that characterizes lactation in litter-bearing species. There are many parallels as well as important differences between results obtained from these models and findings in nursing women. Nevertheless, these models provide useful information about the possible mechanisms by which maternal nutritional status affects lactational performance.
Collapse
Affiliation(s)
- K M Rasmussen
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Barber MC, Clegg RA, Travers MT, Vernon RG. Lipid metabolism in the lactating mammary gland. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1347:101-26. [PMID: 9295156 DOI: 10.1016/s0005-2760(97)00079-9] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Abstract
Triacylglycerols make up 98% of the lipid content of milk, ranging in different species from 0 to 50% of the total milk volume. The fatty aid composition of the triacylglycerols depends on the species, the dietary fatty acid composition, and the carbohydrate-to-lipid ratio of the diet. The rate of lipid synthesis in the lactating mammary gland depends on the stage of mammary development and is decreased by fasting and starvation in ruminants and rodents but not in species that fast during lactation, such as seals and hibernating bears. Regulatory agents include insulin, prolactin, and non-esterified fatty acids. Dietary trans fatty acids may depress milk lipid synthesis under certain conditions. Evidence is presented that fatty acids may play a major regulatory role in acute changes in de novo mammary fatty acid synthesis, acting primarily on the activity of acetyl coenzyme A carboxylase.
Collapse
Affiliation(s)
- M C Neville
- Department of Physiology, University of Colorado Health Science Center, Denver 80262, USA.
| | | |
Collapse
|
10
|
Williamson DH, Lund P, Evans RD. Substrate selection and oxygen uptake by the lactating mammary gland. Proc Nutr Soc 1995; 54:165-75. [PMID: 7568251 DOI: 10.1079/pns19950046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- D H Williamson
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford
| | | | | |
Collapse
|
11
|
Nielsen SU, Rump R, Højrup P, Roepstorff P, Spener F. Differentiational regulation and phosphorylation of the fatty acid-binding protein from rat mammary epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1211:189-97. [PMID: 8117746 DOI: 10.1016/0005-2760(94)90268-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
From the soluble protein fraction of lactating rat mammary epithelial cells, fatty acid-binding protein (FABP) was isolated by immunoaffinity chromatography. After digestion with trypsin, peptides were characterized with time-of-flight mass spectrometry and revealed identity with corresponding peptides derived from the heart-type FABP isolated from rat heart. In addition, by electrospray mass spectrometry the molecular mass has been determined to 14683.9 +/- 3 Da, further corroborating the identity. The content of FABP in mammary glands from virgin, pregnant and lactating rats was evaluated using two-dimensional gel electrophoresis and a FABP-specific immunosorbent assay. In the two-dimensional gels FABP was the apparently most abundant cytosolic protein in mammary epithelial cells from rats in late pregnancy as well as from lactating rats. The content of FABP was 59 +/- 19 microgram/mg (n = 11) of soluble proteins from the fully differentiated lactating mammary gland as determined by ELISA. This value represented an 80-fold increase compared with the FABP content of mammary gland from virgin rats, and is comparable with the level found in rat heart. Upon stimulation with insulin a small fraction of FABP was phosphorylated in lactating mammary epithelial cells. In conclusion, these findings indicate that the FABPs from rat mammary gland and heart are identical and further suggest that in mammary gland this FABP may play a role in signal transduction downstream from the insulin receptor.
Collapse
Affiliation(s)
- S U Nielsen
- Department of Biochemistry, University of Münster, Germany
| | | | | | | | | |
Collapse
|
12
|
Argilés JM, Zegrí A, Arbós J, García C, López-Soriano FJ. The role of insulin in the intestinal absorption of glucose in the rat. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:631-6. [PMID: 1387623 DOI: 10.1016/0020-711x(92)90339-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Acute pre-treatment with either mannoheptulose or streptozotocin--both compounds acting as powerful suppressors of insulin secretion--caused a significant decrease on the in vivo rate of intestinal glucose absorption following an intragastric [U-14C]glucose administration. 2. Mannoheptulose treatment also lowered the rate of whole-body oxidation of the administered tracer. 3. Insulin had no effect on the metabolic fate of [U-14C]glucose by isolated enterocytes. 4. However, the rate of glucose uptake, measured by the oxidation of [1-14C]glucose to 14CO2 in the presence of phenazine methosulphate, was decreased by insulin at concentrations of 50-200 munits/ml. 5. In addition, the rate of transport of [U-14C]glucose by brush-border membrane vesicles was also inhibited by insulin at high concentrations (100-1000 munits/ml). 6. This indicated that insulin acts by inhibiting glucose transport in isolated in vitro preparations. 7. Acute pre-treatment with either mannoheptulose or streptozotocin caused a significant decrease in the rate of gastric emptying, measured as the distribution of [3H]insulin along the gastrointestinal tract, following an intragastric glucose load. 8. It is concluded that insulin secretion modulates intestinal glucose absorption in vivo by enhancing gastric emptying in spite of the inhibitory effects of glucose transport observed with in vitro preparations.
Collapse
Affiliation(s)
- J M Argilés
- Departament de Bioquímica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
13
|
Heesom KJ, Souza PF, Ilic V, Williamson DH. Chain-length dependency of interactions of medium-chain fatty acids with glucose metabolism in acini isolated from lactating rat mammary glands. A putative feed-back to control milk lipid synthesis from glucose. Biochem J 1992; 281 ( Pt 1):273-8. [PMID: 1731763 PMCID: PMC1130673 DOI: 10.1042/bj2810273] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of a series of medium-chain fatty acids (C6-C12) on glucose metabolism in isolated acini from lactating rat mammary glands have been studied. Hexanoate (C6) octanoate (C8) and decanoate (C10), but not laurate (C12), decreased [1-14C]glucose conversion into [14C]lipid and the production of 14CO2 (an index of the pentose phosphate pathway). With hexanoate and octanoate, glucose utilization was decreased, whereas decanoate had a slight stimulatory effect on glucose utilization, but there was a large accumulation of lactate. Addition of dichloroacetate (an inhibitor of pyruvate dehydrogenase kinase) decreased this accumulation of lactate and stimulated the conversion of [1-14C]glucose into [14C]lipid and 14CO2. Insulin had no effect on the rate of glucose utilization in the presence of hexanoate. It stimulated the rate in the presence of octanoate and laurate and increased the conversion of [1-14C]glucose into [14C]lipid in the presence of octanoate, decanoate or laurate. The major fate of 1-14C-labelled medium-chain fatty acids (C6, C8 and C12) was conversion into [14C]lipid. The proportion converted into 14CO2 decreased with increasing chain length, whereas the rate of [14C]lipid formation increased. It is concluded that the interactions between medium-chain fatty acids and glucose metabolism represent a feed-back mechanism to control milk lipid synthesis, and this may be important when milk accumulates in the gland.
Collapse
Affiliation(s)
- K J Heesom
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | | | | | |
Collapse
|
14
|
Carbó N, López-Soriano FJ, Argilés JM. Glucose handling by hepatocytes from obese Zucker rats. Biosci Rep 1991; 11:285-92. [PMID: 1790318 DOI: 10.1007/bf01127504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hepatocytes isolated from obese Zucker rats showed a significantly higher rate of both [U-14C]glucose and [U-14C]lactate incorporation into [14C]lipid than those from their lean counterparts. This was associated with a marked increase in the lipogenic rate measured by the incorporation of 3H2O into the cell esterified fatty acids. Although there were no changes in the incorporation of the tracer into either [14C]glycogen or 14CO2, the [14C] total uptake was significantly higher in the obese animals. The high rate of [14C]lipid synthesis from glucose was observed both at 15 and 30 mM substrate concentrations and was linked to an enhanced uptake of the tracer into the cell as measured using the decarboxilation of [1-14C]glucose in the presence of phenazine methosulphate. The presence of insulin in the incubation medium had no effect on the uptake of glucose by the liver cells. However, the large uptake of glucose by the hepatocytes from the obese animals was not related to an enhanced rate of transport as measured using 3-O-methyl[U-14C]glucose. The activity of glucose-6-phosphate dehydrogenase together with a higher [1-14C]glucose/[U-14C]glucose descarboxylation ratio indicate a predominant very active pentose phosphate pathway which may be responsible for the enhanced glucose uptake observed in the hepatocytes from the obese animals.
Collapse
Affiliation(s)
- N Carbó
- Departament de Bioquímica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
15
|
Masor ML, Grundleger ML, Jansen GR. Effect of dietary protein quality and quantity on glucose utilization in rat mammary glands during lactation. Nutr Res 1991. [DOI: 10.1016/s0271-5317(05)80355-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Abstract
The expression of different glucose transporter isoforms was measured during the development and differentiation of the rat mammary gland. Before conception, when the mammary gland is mainly composed of adipocytes, Glut 4 and Glut 1 mRNAs and proteins were present. During pregnancy, the expression of Glut 4 decreased progressively, whereas that of Glut 1 increased. In the lactating mammary gland only Glut 1 was present, and was expressed at a high level. The absence of Glut 4 suggests that glucose transport is not regulated by insulin in the lactating rat mammary gland.
Collapse
|
17
|
Clegg RA, Ottey KA. Cyclic AMP-dependent protein kinase in mammary tissue of the lactating rat. Activity ratio and responsiveness of the target enzymes acetyl-CoA carboxylase and glycogen phosphorylase to beta-adrenergic stimulation. Biochem J 1990; 265:769-75. [PMID: 1968334 PMCID: PMC1133700 DOI: 10.1042/bj2650769] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The role of cyclic AMP in acute regulation of the metabolism of mammary tissue in the lactating rat was examined by measuring the activity ratio of cyclic AMP-dependent protein kinase (A-kinase) and by examining the properties of this enzyme in its two major isoenzymic forms. Isoenzyme II is the major form in soluble extracts of rat mammary tissue. A-kinase activity ratio in such extracts is unaffected by starvation of the lactating rat. Treatment of the intact rat with isoprenaline, or addition of isoprenaline to incubations in vitro of mammary acini, resulted in a major increase in the activity ratio of A-kinase. These treatments equally affected isoenzymes I and II. The treatment in vitro lead to a rapid depletion of A-kinase as subsequently measured in extracts of acini. The degree of activation of the enzymes acetyl-CoA carboxylase and glycogen phosphorylase in extracts of mammary tissue and of acini was assessed as a function of these treatments. The increased activation of A-kinase induced by isoprenaline was unaccompanied by significant changes in the activity of acetyl-CoA carboxylase in acini, although we previously showed that this agent activates acetyl-CoA carboxylase in intact mammary tissue. Contrastingly, isoprenaline-induced enhancement of A-kinase activity was accompanied by an increase in the activity ratio of phosphorylase in acini. These results indicate that: (a) a normal response of expressed A-kinase activity to cyclic AMP operates in mammary acini and mammary tissue from lactating rats; (b) rapid modulation of the total amount of soluble A-kinase is mediated in mammary epithelial cells by cyclic AMP; (c) phosphorylase, an ultimate target of the protein phosphorylation cascade initiated by A-kinase, is activated in acini under conditions where A-kinase activity is enhanced; and (d) mechanisms other than that of the A-kinase phosphorylation/inhibition model for acetyl-CoA carboxylase regulation must operate in mammary tissue preparations and in vivo to account for the response of this enzyme to enhanced A-kinase activity.
Collapse
Affiliation(s)
- R A Clegg
- Hannah Research Institute, Scotland, U.K
| | | |
Collapse
|
18
|
Affiliation(s)
- D G Hardie
- Biochemistry Department, University, Dundee, Scotland, U.K
| |
Collapse
|
19
|
Mercer SW, Williamson DH. Rapid inhibition by intragastric triolein of the re-activation of glucose utilization and lipogenesis in the mammary gland during the starved-refed transition in lactating rats. Evidence for a direct effect of oral lipid on mammary tissue. Biochem J 1988; 250:269-76. [PMID: 3281661 PMCID: PMC1148843 DOI: 10.1042/bj2500269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
1. Oral administration of triacylglycerol (triolein) to starved/chow-refed lactating rats suppressed the lipogenic switch-on in the mammary gland in vivo. 2. A time-course study revealed that triolein, administered at 30 min after the onset of refeeding, had no influence on lipogenic rate in the mammary gland between 30 and 60 min, but markedly decreased it between 60 and 90 min. Glucose uptake by the mammary gland (arteriovenous difference) increased by 30 min of refeeding, as did lactate production. Between 30 and 90 min glucose uptake remained high in the control animals, but glucose uptake and net C3-unit uptake were decreased in the triolein-loaded animals by 90 min. 3. Triolein increased [glucose 6-phosphate] in the gland and simultaneously decreased [fructose 1,6-bisphosphate], indicative of a decrease in phosphofructokinase activity. This cross-over occurred at 60 min, i.e. immediately before the inhibition of lipogenesis, and by 90 min had reached 'starved' values. 4. Triolein had no effect on plasma [insulin] nor on whole-blood [glucose], [lactate] or [3-hydroxybutyrate]; a small increase in [acetoacetate] was observed. 5. Infusion of the lipoprotein lipase inhibitor, Triton WR1339, abolished the suppression of mammary-gland lipogenesis by triolein and the increase in the [glucose 6-phosphate]/[fructose 1,6-bisphosphate] ratio, suggesting a direct influence of dietary lipid on mammary-gland glucose utilization and phosphofructokinase activity.
Collapse
Affiliation(s)
- S W Mercer
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | |
Collapse
|
20
|
Clegg RA, Calvert DT. An 'in situ' perfusion system suitable for investigating mammary-tissue metabolism in the lactating rat. Hormonal regulation of acetyl-CoA carboxylase. Biochem J 1988; 249:771-7. [PMID: 2895636 PMCID: PMC1148773 DOI: 10.1042/bj2490771] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A technique is described for the non-recirculating perfusion of inguinal/abdominal mammary tissue in situ in anaesthetized lactating rats. Tissue viability was maintained, without resort to infusion of vasoactive chemicals which may also be effectors of cellular metabolism, for at least 90 min. Total tissue adenine nucleotides (per mg of DNA) were somewhat decreased in perfused relative to non-perfused mammary tissue. DNA content (per g wet wt. of tissue) was diminished after 90 min of perfusion to approx. 65% of its value in control tissue. Adenylate energy-charge ratios were lower in perfused tissue in the absence of hormones than in control tissue. They were increased to control values by the presence of either insulin or isoprenaline in the perfusate. No changes occurred in flow rate of the perfusate that might account for these increases. In mammary tissue perfused without addition of hormones, acetyl-CoA carboxylase activities were similar to those measured in control tissue samples, although activity-ratio measurements implied some increase in the phosphorylation of this enzyme. Insulin or isoprenaline increased the activity of acetyl-CoA carboxylase, especially when this was measured at low concentrations of citrate. Confirming conclusions from previous experiments with mammary acini and explant preparations, insulin activated acetyl-CoA carboxylase in mammary tissue, but inhibition of its activity was not mediated by cyclic AMP.
Collapse
Affiliation(s)
- R A Clegg
- Hannah Research Institute, Ayr, Scotland, U.K
| | | |
Collapse
|