1
|
George GN, Pickering IJ, Pushie MJ, Nienaber K, Hackett MJ, Ascone I, Hedman B, Hodgson KO, Aitken JB, Levina A, Glover C, Lay PA. X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:875-86. [PMID: 23093745 PMCID: PMC3480274 DOI: 10.1107/s090904951203943x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 09/16/2012] [Indexed: 05/03/2023]
Abstract
As synchrotron light sources and optics deliver greater photon flux on samples, X-ray-induced photo-chemistry is increasingly encountered in X-ray absorption spectroscopy (XAS) experiments. The resulting problems are particularly pronounced for biological XAS experiments. This is because biological samples are very often quite dilute and therefore require signal averaging to achieve adequate signal-to-noise ratios, with correspondingly greater exposures to the X-ray beam. This paper reviews the origins of photo-reduction and photo-oxidation, the impact that they can have on active site structure, and the methods that can be used to provide relief from X-ray-induced photo-chemical artifacts.
Collapse
Affiliation(s)
- Graham N. George
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Ingrid J. Pickering
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - M. Jake Pushie
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Kurt Nienaber
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Mark J. Hackett
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Isabella Ascone
- ENSCP Chimie ParisTech, LCF, CNRS, UMR 7223, 75005 Paris, France
| | - Britt Hedman
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jade B. Aitken
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Synchrotron, Clayton, VIC 3168, Australia
- Institute of Materials Structure Science, KEK, Tsukuba, Ibaraki 305-0801, Japan
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
X-Ray absorption spectroscopic studies on iron in soybean lipoxygenase: A model for mammalian lipoxygenases. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19901090302] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Ghosh S, Mukherjee A, Sadler PJ, Verma S. Periodic iron nanomineralization in human serum transferrin fibrils. Angew Chem Int Ed Engl 2008; 47:2217-21. [PMID: 18256996 DOI: 10.1002/anie.200705723] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Surajit Ghosh
- Department of Chemistry, Indian Institute of Technology, Kanpur, UP, India
| | | | | | | |
Collapse
|
4
|
Ghosh S, Mukherjee A, Sadler P, Verma S. Periodic Iron Nanomineralization in Human Serum Transferrin Fibrils. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Parsons JG, Dokken K, Peralta-Videa JR, Romero-Gonzalez J, Gardea-Torresdey JL. X-ray absorption near edge structure and extended X-ray absorption fine structure analysis of standards and biological samples containing mixed oxidation states of chromium(III) and chromium(VI). APPLIED SPECTROSCOPY 2007; 61:338-45. [PMID: 17389076 DOI: 10.1366/000370207780220912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately +/-10% of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 A for the Cr(VI) and Cr(III) in the sample, respectively.
Collapse
Affiliation(s)
- J G Parsons
- Department of Chemistry, The University of Texas at El Paso, Texas 79968-0513, USA
| | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- H Sun
- Department of Chemistry, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, U.K., and Department of Chemistry, the University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | | | |
Collapse
|
7
|
Sun H, Cox MC, Li H, Sadler PJ. Rationalisation of metal binding to transferrin: Prediction of metal-protein stability constants. METAL SITES IN PROTEINS AND MODELS 1997. [DOI: 10.1007/3-540-62870-3_3] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Benini S, Ciurli S, Nolting HF, Mangani S. X-ray absorption spectroscopy study of native and phenylphosphorodiamidate-inhibited Bacillus pasteurii urease. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:61-6. [PMID: 8706719 DOI: 10.1111/j.1432-1033.1996.0061u.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
X-ray absorption spectroscopy (XAS) has been applied to urease from Bacillus pasteurii, a highly ureolytic soil bacterium, with the aim of elucidating the structural details of the nickel-containing active site. The results indicate the presence of octahedrally coordinated Ni2+, in a sphere of six N/O donors at an average distance of 0.203 nm. An average of two histidine residues are bound to nickel. The experimental evidence suggests direct binding of the urease inhibitor phenylphosphorodiamidate to Ni2+. These spectroscopic results are in agreement with previous findings on both plant and microbial ureases, but differ in some respect from the results obtained by X-ray crystallography analysis of Klebsiella aerogenes urease.
Collapse
Affiliation(s)
- S Benini
- Istituto di Chimica Agraria, Università di Bologna, Italy
| | | | | | | |
Collapse
|
9
|
|
10
|
Abstract
Structure-function relationships for transferrins are discussed in the light of recent X-ray crystal structure determinations. A common folding pattern into two lobes, each comprising two domains is adopted; this allows the tight, but reversible binding of iron. Uptake and release of iron involve substantial domain movements which open and close the binding clefts. The iron binding sites are similar and the key role of the CO3(2-) anion bound with each Fe3+ can now be understood; structural differences near the iron binding sites suggest reasons for the different binding properties of serum transferrin and lactoferrin. The glycan moieties do not appear to affect the protein structure or metal binding properties; they are not clearly seen in the X-ray analyses but have been modelled. The accommodation of different metals and anions is illustrated by the crystal structures of Cu2+ and oxalate-substituted lactoferrins; Al3+ binding is of particular interest. New results on transferrin-receptor interactions with transferrin, and melanotransferrin and an invertebrate transferrin (both of which have defective C-terminal binding sites), emphasize possible functional differences between the two lobes. The availability of site-specific mutants of both transferrin and lactoferrin now offers the opportunity to probe the structural determinants of iron binding, iron release, and receptor binding.
Collapse
Affiliation(s)
- E N Baker
- Department of Chemistry and Biochemistry, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
11
|
Garratt RC, Evans RW, Hasnain SS, Lindley PF, Sarra R. X.a.f.s. studies of chicken dicupric ovotransferrin. Biochem J 1991; 280 ( Pt 1):151-5. [PMID: 1660264 PMCID: PMC1130613 DOI: 10.1042/bj2800151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A comparison of Cu K-edge x.a.f.s. spectra with that of the equivalent Fe K-edge for chicken ovotransferrin (COT) indicates that the metal ions occupy essentially the same binding sites in the protein. However, in the case of the Cu2+ complex the metal appears to have reduced co-ordination. Changes are observed in the x.a.f.s. of 90%-saturated COT (Cu1.8COT) on freeze-drying. The three-dimensional X-ray structures of rabbit serum transferrin and human lactoferrin have shown that the ferric cations are co-ordinated by four protein ligands and a bidentate carbonate anion in a distorted octahedral arrangement [Anderson, Baker, Dodson, Norris, Rumball, Waters & Baker (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1768-1774; Anderson, Baker, Norris, Rice and Baker (1989) J. Mol. Biol. 209, 711-734; Bailey, Evans, Garratt, Gorinsky, Hasnain, Horsburgh, Jhoti, Lindley, Mydin, Sarra & Watson (1988) Biochemistry 27, 5804-5812]. This structural information, together with the differences in e.x.a.f.s. spectra for solution and freeze-dried samples of diferric COT [Hasnain, Evans, Garratt & Lindley (1987) Biochem. J. 247, 369-375] suggests that the synergistic carbonate anion may be capable of behaving as a unidentate linkage to the Cu2+ in the dicupric complex. Data for Cu1.8COT are consistent with only three protein ligands bound to Cu2+, monodentate binding of the synergistic anion in one lobe and its bidentate binding in the other lobe. Such flexibility in the anion co-ordination may be a requirement for the uptake and release of metals by the transferrins.
Collapse
Affiliation(s)
- R C Garratt
- Molecular Biophysics Group, Daresbury Laboratory, Warrington, Cheshire, U.K
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- R R Crichton
- Unité de Biochimie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Anderson BF, Baker HM, Norris GE, Rice DW, Baker EN. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol 1989; 209:711-34. [PMID: 2585506 DOI: 10.1016/0022-2836(89)90602-5] [Citation(s) in RCA: 402] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The structure of human lactoferrin has been refined crystallographically at 2.8 A (1 A = 0.1 nm) resolution using restrained least squares methods. The starting model was derived from a 3.2 A map phased by multiple isomorphous replacement with solvent flattening. Rebuilding during refinement made extensive use of these experimental phases, in combination with phases calculated from the partial model. The present model, which includes 681 of the 691 amino acid residues, two Fe3+, and two CO3(2-), gives an R factor of 0.206 for 17,266 observed reflections between 10 and 2.8 A resolution, with a root-mean-square deviation from standard bond lengths of 0.03 A. As a result of the refinement, two single-residue insertions and one 13-residue deletion have been made in the amino acid sequence, and details of the secondary structure and tertiary interactions have been clarified. The two lobes of the molecule, representing the N-terminal and C-terminal halves, have very similar folding, with a root-mean-square deviation, after superposition, of 1.32 A for 285 out of 330 C alpha atoms; the only major differences being in surface loops. Each lobe is subdivided into two dissimilar alpha/beta domains, one based on a six-stranded mixed beta-sheet, the other on a five-stranded mixed beta-sheet, with the iron site in the interdomain cleft. The two iron sites appear identical at the present resolution. Each iron atom is coordinated to four protein ligands, 2 Tyr, 1 Asp, 1 His, and the specific Co3(2-), which appears to bind to iron in a bidentate mode. The anion occupies a pocket between the iron and two positively charged groups on the protein, an arginine side-chain and the N terminus of helix 5, and may serve to neutralize this positive charge prior to iron binding. A large internal cavity, beyond the Arg side-chain, may account for the binding of larger anions as substitutes for CO3(2-). Residues on the other side of the iron site, near the interdomain crossover strands could provide secondary anion binding sites, and may explain the greater acid-stability of iron binding by lactoferrin, compared with serum transferrin. Interdomain and interlobe interactions, the roles of charged side-chains, heavy-atom binding sites, and the construction of the metal site in relation to the binding of different metals are also discussed.
Collapse
Affiliation(s)
- B F Anderson
- Department of Chemistry and Biochemistry, Massey University, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
14
|
Bailey S, Evans RW, Garratt RC, Gorinsky B, Hasnain S, Horsburgh C, Jhoti H, Lindley PF, Mydin A, Sarra R. Molecular structure of serum transferrin at 3.3-A resolution. Biochemistry 1988; 27:5804-12. [PMID: 3179277 DOI: 10.1021/bi00415a061] [Citation(s) in RCA: 295] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Serum transferrin is a metal-binding glycoprotein, molecular weight ca. 80,000, whose primary function is the transport of iron in the plasma of vertebrates. The X-ray crystallographic structure of diferric rabbit serum transferrin has been determined to a resolution of 3.3 A. The molecule has a beta alpha structure of similar topology to human lactoferrin and is composed of two homologous lobes that each bind a single ferric ion. Each lobe is further divided into two dissimilar domains, and the iron-binding site is located within the interdomain cleft. The iron is bound by two tyrosines, a histidine, and an aspartic acid residue. The location of the 19 disulfide bridges is described, and their possible structural roles are discussed in relation to the transferrin family of proteins. Mapping of the intron/exon splice junctions onto the molecule provides some topological evidence in support of the putative secondary role for transferrin in stimulating cell proliferation.
Collapse
Affiliation(s)
- S Bailey
- Department of Crystallography, Birkbeck College, University of London, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jhoti H, Gorinsky B, Garratt RC, Lindley PF, Walton AR, Evans RW. Crystallization and preliminary analysis of an 18,000 Mr fragment of duck ovotransferrin. J Mol Biol 1988; 200:423-5. [PMID: 3373537 DOI: 10.1016/0022-2836(88)90253-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Crystals of an 18,000 Mr iron-binding fragment of duck ovotransferrin, corresponding to domain II of the N-terminal lobe, have been obtained. The crystals belong to the trigonal system, P31 (or enantiomer) with a = b = 41.3(1) A, c = 81.2(2) A (1 A = 0.1 nm) and one molecule per asymmetric unit assuming a solvent content of 40% by volume. The crystals are stable at +4 degrees C and diffract to at least 2.3 A resolution.
Collapse
Affiliation(s)
- H Jhoti
- Department of Crystallography, Birkbeck College, University of London, U.K
| | | | | | | | | | | |
Collapse
|