1
|
Cámara CI, Crosio MA, Juarez AV, Wilke N. Dexamethasone and Dexamethasone Phosphate: Effect on DMPC Membrane Models. Pharmaceutics 2023; 15:pharmaceutics15030844. [PMID: 36986705 PMCID: PMC10053563 DOI: 10.3390/pharmaceutics15030844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Dexamethasone (Dex) and Dexamethasone phosphate (Dex-P) are synthetic glucocorticoids with high anti-inflammatory and immunosuppressive actions that gained visibility because they reduce the mortality in critical patients with COVID-19 connected to assisted breathing. They have been widely used for the treatment of several diseases and in patients under chronic treatments, thus, it is important to understand their interaction with membranes, the first barrier when these drugs get into the body. Here, the effect of Dex and Dex-P on dimyiristoylphophatidylcholine (DMPC) membranes were studied using Langmuir films and vesicles. Our results indicate that the presence of Dex in DMPC monolayers makes them more compressible and less reflective, induces the appearance of aggregates, and suppresses the Liquid Expanded/Liquid Condensed (LE/LC) phase transition. The phosphorylated drug, Dex-P, also induces the formation of aggregates in DMPC/Dex-P films, but without disturbing the LE/LC phase transition and reflectivity. Insertion experiments demonstrate that Dex induces larger changes in surface pressure than Dex-P, due to its higher hydrophobic character. Both drugs can penetrate membranes at high lipid packings. Vesicle shape fluctuation analysis shows that Dex-P adsorption on GUVs of DMPC decreases membrane deformability. In conclusion, both drugs can penetrate and alter the mechanical properties of DMPC membranes.
Collapse
Affiliation(s)
- Candelaria Ines Cámara
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
- Correspondence: ; Tel.: +54-9-351-5353570
| | - Matías Ariel Crosio
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| | - Ana Valeria Juarez
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| | - Natalia Wilke
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| |
Collapse
|
2
|
In vivo effects of dexamethasone on blood gene expression in ataxia telangiectasia. Mol Cell Biochem 2017; 438:153-166. [DOI: 10.1007/s11010-017-3122-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/15/2017] [Indexed: 12/21/2022]
|
3
|
Freishtat RJ, Nagaraju K, Jusko W, Hoffman EP. Glucocorticoid efficacy in asthma: is improved tissue remodeling upstream of anti-inflammation. J Investig Med 2010; 58:19-22. [PMID: 19730133 DOI: 10.2310/jim.0b013e3181b91654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Synthetic glucocorticoids (GCs), such as prednisone, are among the most widely prescribed drugs worldwide and are used to treat many acute and chronic inflammatory conditions. The current paradigm of GC efficacy is that they are potent anti-inflammatory agents. Decreased inflammation in many disorders is thought to lead to decreased pathological tissue remodeling. However, this model has never been validated. In particular, improvements in inflammation have not been shown to improve the rate of lung function decline in asthma. Herein, we present an alternative paradigm, where GC efficacy is mediated through more successful tissue remodeling, with reduction in inflammation secondary to successful regeneration.
Collapse
|
4
|
Freishtat RJ, Nagaraju K, Jusko W, Hoffman EP. Glucocorticoid efficacy in asthma: is improved tissue remodeling upstream of anti-inflammation. J Investig Med 2010. [PMID: 19730133 PMCID: PMC3324850 DOI: 10.231/jim.0b013e3181b91654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Synthetic glucocorticoids (GCs), such as prednisone, are among the most widely prescribed drugs worldwide and are used to treat many acute and chronic inflammatory conditions. The current paradigm of GC efficacy is that they are potent anti-inflammatory agents. Decreased inflammation in many disorders is thought to lead to decreased pathological tissue remodeling. However, this model has never been validated. In particular, improvements in inflammation have not been shown to improve the rate of lung function decline in asthma. Herein, we present an alternative paradigm, where GC efficacy is mediated through more successful tissue remodeling, with reduction in inflammation secondary to successful regeneration.
Collapse
Affiliation(s)
- Robert J. Freishtat
- Division of Emergency Medicine, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, United States,Research Center for Genetic Medicine Children's National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, United States,School of Medicine and Health Sciences, The George Washington University, 2300 I Street, NW, Washington, DC 20037, United States,Corresponding Author (RJF); ; Phone: (202) 476-2971; Fax: (202) 476-6014
| | - Kanneboyina Nagaraju
- Research Center for Genetic Medicine Children's National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, United States,School of Medicine and Health Sciences, The George Washington University, 2300 I Street, NW, Washington, DC 20037, United States
| | - William Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14260
| | - Eric P. Hoffman
- Research Center for Genetic Medicine Children's National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, United States,School of Medicine and Health Sciences, The George Washington University, 2300 I Street, NW, Washington, DC 20037, United States
| |
Collapse
|
5
|
Reeves EKM, Gordish-Dressman H, Hoffman EP, Hathout Y. Proteomic profiling of glucocorticoid-exposed myogenic cells: Time series assessment of protein translocation and transcription of inactive mRNAs. Proteome Sci 2009; 7:26. [PMID: 19642986 PMCID: PMC2725035 DOI: 10.1186/1477-5956-7-26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/30/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Prednisone, one of the most highly prescribed drugs, has well characterized effects on gene transcription mediated by the glucocorticoid receptor. These effects are typically occurring on the scale of hours. Prednisone also has a number of non-transcriptional effects (occurring on minutes scale) on protein signaling, yet these are less well studied. We sought to expand the understanding of acute effects of prednisone action on cell signaling using a combination of SILAC strategy and subcellular fractionations from C2C12 myotubes. RESULTS De novo translation of proteins was inhibited in both SILAC labeled and unlabeled C2C12 myotubes. Unlabeled cells were exposed to prednisone while SILAC labeled cells remained untreated. After 0, 5, 15, and 30 minutes of prednisone exposure, labeled and unlabeled cells were mixed at 1:1 ratios and fractionated into cytosolic and nuclear fractions. A total of 534 proteins in the cytosol and 626 proteins in the nucleus were identified and quantitated, using 3 or more peptides per protein with peptide based probability < or = 0.001. We identified significant increases (1.7- to 3.1- fold) in cytoplasmic abundance of 11 ribosomal proteins within 5 minutes of exposure, all of which returned to baseline by 30 min. We hypothesized that these drug-induced acute changes in the subcellular localization of the cell's protein translational machinery could lead to altered translation of quiescent RNAs. To test this, de novo protein synthesis was assayed after 15 minutes of drug exposure. Quantitative fluorography identified 16 2D gel spots showing rapid changes in translation; five of these were identified by MS/MS (pyruvate kinase, annexin A6 isoform A and isoform B, nasopharyngeal epithelium specific protein 1, and isoform 2 of Replication factor C subunit 1), and all showed the 5' terminal oligopyrimidine motifs associated with mRNA sequestration to and from inactive mRNA pools. CONCLUSION We describe novel approaches of subcellular proteomic profiling and assessment of acute changes on a minute-based time scale. These data expand the current knowledge of acute, non-transcriptional activities of glucocorticoids, including changes in protein subcellular localization, altered translation of quiescent RNA pools, and PKC-mediated cytoskeleton remodeling.
Collapse
Affiliation(s)
- Erica K M Reeves
- Research Center for Genetic Medicine, Children's National Medical Center, NW, Washington, DC 20010, USA.
| | | | | | | |
Collapse
|
6
|
Yun I, Cho ES, Jang HO, Kim UK, Choi CH, Chung IK, Kim IS, Wood WG. Amphiphilic effects of local anesthetics on rotational mobility in neuronal and model membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1564:123-32. [PMID: 12101004 DOI: 10.1016/s0005-2736(02)00409-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To provide a basis for studying the molecular mechanism of pharmacological action of local anesthetics, we carried out a study of the membrane actions of tetracaine, bupivacaine, lidocaine, prilocaine and procaine. Fluorescence polarization of 12-(9-anthroyloxy)stearic acid (12-AS) and 2-(9-anthroyloxy)stearic acid (2-AS) were used to examine the effects of local anesthetics on differential rotational mobility between polar region and hydrocarbon interior of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. The two membrane components differed with respect to 2 and 12 anthroyloxy stearate (2-AS, 12-AS) probes, indicating that a difference in the membrane fluidity may be present. In a dose-dependent manner, tetracaine, bupivacaine, lidocaine, prilocaine and procaine decreased anisotropy of 12-AS in the hydrocarbon interior of the SPMV, SPMVTL and SPMVPL, but tetracaine, bupivacaine, lidocaine and prilocaine increased anisotropy of 2-AS in the membrane interface. These results indicate that local anesthetics have significant disordering effects on hydrocarbon interior of the SPMV, SPMVTL and SPMVPL, but have significant ordering effects on the membrane interface, and thus they could affect the transport of Na(+) and K(+) in nerve membranes, leading to anesthetic action.
Collapse
Affiliation(s)
- Il Yun
- Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Béliveau R, Wilson P, Rogers T, Levi M. Glycosphingolipids modulate renal phosphate transport in potassium deficiency. Kidney Int 2001; 60:694-704. [PMID: 11473652 DOI: 10.1046/j.1523-1755.2001.060002694.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Potassium (K) deficiency (KD) and/or hypokalemia have been associated with disturbances of phosphate metabolism. The purpose of the present study was to determine the cellular mechanisms that mediate the impairment of renal proximal tubular Na/Pi cotransport in a model of K deficiency in the rat. METHODS K deficiency in the rat was achieved by feeding rats a K-deficient diet for seven days, which resulted in a marked decrease in serum and tissue K content. RESULTS K deficiency resulted in a marked increase in urinary Pi excretion and a decrease in the V(max) of brush-border membrane (BBM) Na/Pi cotransport activity (1943 +/- 95 in control vs. 1184 +/- 99 pmol/5 sec/mg BBM protein in K deficiency, P < 0.02). Surprisingly, the decrease in Na/Pi cotransport activity was associated with increases in the abundance of type I (NaPi-1), and type II (NaPi-2) and type III (Glvr-1) Na/Pi protein. The decrease in Na/Pi transport was associated with significant alterations in BBM lipid composition, including increases in sphingomyelin, glucosylceramide, and ganglioside GM3 content and a decrease in BBM lipid fluidity. Inhibition of glucosylceramide synthesis resulted in increases in BBM Na/Pi cotransport activity in control and K-deficient rats. The resultant Na/Pi cotransport activity in K-deficient rats was the same as in control rats (1148 +/- 52 in control + PDMP vs. 1152 +/- 61 pmol/5 sec/mg BBM protein in K deficiency + PDMP). These changes in transport activity occurred independent of further changes in BBM NaPi-2 protein or renal cortical NaPi-2 mRNA abundance. CONCLUSION K deficiency in the rat causes inhibition of renal Na/Pi cotransport activity by post-translational mechanisms that are mediated in part through alterations in glucosylceramide content and membrane lipid dynamics.
Collapse
Affiliation(s)
- H K Zajicek
- Department of Internal Medicine, The University of Texas Southwestern Medical Center and VA Medical Center, Dallas, Texas 75216, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Levi M, Shayman JA, Abe A, Gross SK, McCluer RH, Biber J, Murer H, Lötscher M, Cronin RE. Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition. J Clin Invest 1995; 96:207-16. [PMID: 7615789 PMCID: PMC185190 DOI: 10.1172/jci118022] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glucocorticoids are important regulators of renal phosphate transport. This study investigates the role of alterations in renal brush border membrane (BBM) sodium gradient-dependent phosphate transport (Na-Pi cotransporter) mRNA and protein abundance in the dexamethasone induced inhibition of Na-Pi cotransport in the rat. Dexamethasone administration for 4 d caused a 1.5-fold increase in the Vmax of Na-Pi cotransport (1785 +/- 119 vs. 2759 +/- 375 pmol/5 s per mg BBM protein in control, P < 0.01), which was paralleled by a 2.5-fold decrease in the abundance of Na-Pi mRNA and Na-Pi protein. There was also a 1.7-fold increase in BBM glucosylceramide content (528 +/- 63 vs. 312 +/- 41 ng/mg BBM protein in control, P < 0.02). To determine whether the alteration in glucosylceramide content per se played a functional role in the decrease in Na-Pi cotransport, control rats were treated with the glucosylceramide synthase inhibitor, D-threo-1-phenyl-2-decanoyl-amino-3-morpholino-1-propanol (PDMP). The resultant 1.5-fold decrease in BBM glucosylceramide content (199 +/- 19 vs. 312 +/- 41 ng/mg BBM protein in control, P < 0.02) was associated with a 1.4-fold increase in Na-Pi cotransport activity (1422 +/- 73 vs. 1048 +/- 85 pmol/5 s per mg BBM protein in control, P < 0.01), and a 1.5-fold increase in BBM Na-Pi protein abundance. Thus, dexamethasone-induced inhibition of Na-Pi cotransport is associated with a decrease in BBM Na-Pi cotransporter abundance, and an increase in glucosylceramide. Since primary alteration in BBM glucosylceramide content per se directly and selectively modulates BBM Na-Pi cotransport activity and Na-Pi protein abundance, we propose that the increase in BBM glucosylceramide content plays an important role in mediating the inhibitory effect of dexamethasone on Na-Pi cotransport activity.
Collapse
Affiliation(s)
- M Levi
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kadowaki H, Grant MA, Seyfried TN. Effect of Golgi membrane phospholipid composition on the molecular species of GM3 gangliosides synthesized by rat liver sialyltransferase. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)39942-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Abstract
The genomic mode of action is believed to represent the predominant effect of a steroid hormone. Recently, however, rapidly manifesting, non-genomic effects have also been observed. These are mediated mostly by allosteric interaction of a steroid with heterologous target structures such as membrane receptors, a prototype example being the GABAA. Here we describe our studies considering two interdependent questions: (1) do steroids also interact with opioid receptors in brain? Twenty different steroids, i.e. estrogens, androgens, glucocorticoids, mineralocorticoids, gestagens and a cardiac glycoside were tested with respect to their ability to compete for in vitro binding to rat brain membranes of 3H-ligands specific for delta, mu and kappa opioid receptors, respectively. Among all classes of steroids, only the estrogens were effective, all others were 20 to 100 times less effective or ineffective. The rank order among the estrogens was diethylstilbestrol > 17 alpha-estradiol > 17 alpha-ethinyl-estradiol > estriol > estrone > 17 beta-estradiol. Next potent to estrogens (although far less) were--on average as a group--glucocorticoids, followed by mineralocorticoids, androgens, gestagens and digoxin. This global as well as within-group rank order, was, with rare exceptions, qualitatively equal irrespective of which radioligand was used, yet displayed the various radioligands different sensitivities with respect of being inhibited by steroids (irrespective of kind), i.e. in the order [3H]naloxone > or = [3H]DAGO > or = [3H]DADL > [3H]DPDP >> [3H]etorphine. The IC50 of diethylstilbestrol for displacing [3H]DAGO was approximately 30 microM and that of 17 beta-estradiol was approximately 200 microM. (2) What are the concentrations of the major steroid hormones in the brain's extracellular fluid? We have analyzed in 56 matched (i.e. simultaneously withdrawn) peripheral serum and cerebrospinal fluid (CSF) samples (from endocrinologically grossly normal patients) the concentrations of the unconjugated steroid hormones testosterone, androstenedione, dehydroepiandrosterone (DHEA), progesterone and cortisol (all being more or less lipophilic) as well as those of their hydrophilic counterparts, i.e. DHEA-sulfate, or their hydrophilic binding proteins, i.e. sex hormone binding globulin, corticosterone binding globulin, and albumin. Total (i.e. free plus protein-bound) CSF levels of all these steroids were found to be in the 0.02-2 nM range except for cortisol (approximately 20-50 nM), thus 3 to 4 orders of magnitude lower than the IC50 of estrogens for [3H]DAGO (see above). These total CSF values were quite similar to the reported and calculated free serum levels of these steroids and no difference existed between those of patients with intact or with disturbed (abnormally leaky) blood-brain barrier function.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S Schwarz
- Institute of General & Experimental Pathology, University of Innsbruck, Austria
| | | |
Collapse
|
11
|
Abstract
Ricin is a highly toxic protein produced by the castor bean (Ricinus communis). It is one of various protein toxins that consist of two subunits joined by a disulfide bridge. One chain facilitates entry of the toxin into the cell while the other chain exhibits RNA N-glycosidase activity, which attacks a specific site on 28S rRNA, preventing polypeptide elongation and leading to cell death. Although ricin and other protein toxins are potential health hazards, no antidote against these toxins exists. Thus, a number of selected compounds were screened for their ability to alter ricin lethality in mice, based on percentage survival and time to death following a ricin LD100 of 25 micrograms kg-1 i.p. While no compound tested prevented lethality, dexamethasone and difluoromethylornithine (DFMO) significantly extended survival time. The effects of DFMO on ricin toxicity were markedly influenced by altering various pharmacokinetic parameters. The antioxidants butylated hydroxyanisole and vitamin E succinate also extended survival time in response to a lethal dose of ricin, but to a lesser extent than did dexamethasone and DFMO. The Golgi apparatus inhibitors monensin, swainsonine and tunicamycin enhanced ricin toxicity, as evidenced by shortened survival times. In addition, various nucleoside analogs, including acyclovir and trifluridine as well as adenosine, guanosine and dibutyryl cyclic AMP, also potentiated the toxicity of ricin. The results demonstrate that the toxicity of ricin is modulated by a wide variety of structurally distinct chemicals and may involve different mechanisms. Furthermore, the extent and direction of the modulation of ricin toxicity is highly dependent upon pharmacokinetic variables, including dose and dosing interval.
Collapse
Affiliation(s)
- D F Muldoon
- Department of Pharmacology, Creighton University Health Sciences Center, Omaha, NE 68178
| | | |
Collapse
|
12
|
Abstract
Sphingolipids have the potential to regulate cell behavior at essentially all levels of signal transduction. They serve as cell surface receptors for cytoskeletal proteins, immunoglobulins, and some bacteria; as modifiers of the properties of cell receptors for growth factors (and perhaps other agents); and as activators and inhibitors of protein kinases, ion transporters, and other proteins. Furthermore, the biological activity of these compounds resides not only in the more complex species (e.g., sphingomyelin, cerebrosides, gangliosides, and sulfatides), but also in their turnover products, such as the sphingosine backbone which inhibits protein kinase C and activates the EGF-receptor kinase, inter alia. Since sphingolipids change with cell growth, differentiation, and neoplastic transformation, they could be vital participants in the regulation of these processes.
Collapse
Affiliation(s)
- A H Merrill
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
13
|
Farman N, Oblin ME, Lombes M, Delahaye F, Westphal HM, Bonvalet JP, Gasc JM. Immunolocalization of gluco- and mineralocorticoid receptors in rabbit kidney. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 260:C226-33. [PMID: 1847584 DOI: 10.1152/ajpcell.1991.260.2.c226] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The localization of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) was determined in the rabbit kidney by immunohistochemistry with the use of a monoclonal, anti-GR antibody and a monoclonal, anti-idiotypic, anti-MR antibody. Immunostaining was performed on serial histological sections from normal and adrenalectomized rabbits. The specificity of immunostaining was assessed for MR by in situ competition studies with steroids and for GR by presaturation of the antibody with GR preparation. Immunostaining by both the anti-MR and the anti-GR antibodies was present in all parts of the distal nephron (beyond proximal tubule) and absent in the glomerulus and proximal tubule. The absence of staining by the anti-GR antibody in the proximal tubule suggests that the effects of glucocorticoids in this structure involve either a GR different from that of distal structures or a non-receptor mediated mechanism of action. MR immunostaining predominates in the distal and all along the collecting tubule in its cortical, medullary, and papillary portions. GR immunostaining was most abundant in the medullary ascending limb and distal tubule. Immunostaining by both antibodies was present in papillary interstitial cells and cells of the epithelium lining the papilla. Fifteen to twenty percent of the cells of the cortical collecting tubule, presumably intercalated cells, were devoid of MR and GR immunostaining. Immunostaining was present in both nuclear and cytoplasmic cell compartments. No clear difference was observed between normal and adrenalectomized rabbits. This study is the first report on renal immunolocalization of GR compared with MR. In addition, we show evidence for new targets for corticosteroid hormones such as papillary interstitial cells and papillary epithelium.
Collapse
Affiliation(s)
- N Farman
- Institut National de la Santé et de la Recherche Médicale (INSERM) U. 246, Département de Biologie, CEN Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
This chapter reviews the glycosylation reactions in the intestinal epithelium. The intestinal epithelium represents a good model system in which the glycosylation process can be studied. The intestinal epithelium is composed of two basic epithelial cell types: the absorptive enterocyte and the mucus-producing goblet cell. Gastrointestinal epithelial renewal ensues through the processes of cell proliferation, migration, and differentiation. This renewal occurs in discrete proliferative zones along the gastrointestinal tract. In the small intestine, this proliferative zone is restricted to the base of the crypts, whereas in the large intestine it is less restrictive, occurring in the basal two thirds of the crypt. A longitudinal section along the crypt-to-surface axis, cells in various degrees of differentiation is observed, providing a unique in vivo system in which to investigate differentiation-related glycosylation events. The glycoconjugate repertoire displayed by a given cell reflects its endogenous expression of glycosyltransferases. The role played by terminal oligosaccharide structures in cell–cell recognition phenomena and the expression of glycosyltransferases occupy a key position in the post-translational processing of glycoconjugates and thus influence cellular function.
Collapse
Affiliation(s)
- D J Taatjes
- Interdepartmental Electron Microscopy, Biocenter, University of Basel, Switzerland
| | | |
Collapse
|
15
|
Schüz-Henninger R, Ullmer E, Prinz C, Decker K. The activity of GD3 synthase modulates the ganglioside pattern in rat liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 185:327-30. [PMID: 2583186 DOI: 10.1111/j.1432-1033.1989.tb15119.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Variations of the ganglioside composition in the livers of Wistar rats correlated with the activity of GD3 synthase in the corresponding liver homogenates. With increasing enzyme activity, higher proportions of b-series gangliosides (GD3, GD1b, GT1b) were detected. No significant changes in the activity of GM2 synthase or GM1 synthase were observed, indicating a regulatory function for GD3 synthase in this tissue. Young animals showed an average GD3 synthase activity of 0.5-0.6 nmol.h-1.mg protein-1 without sex-dependent variations. Among the older animals, however, males expressed an activity five-fold higher than females, suggesting that this enzyme might be affected by hormones.
Collapse
Affiliation(s)
- R Schüz-Henninger
- Biochemisches Institut der Albert-Ludwigs-Universität, Freiburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
16
|
Merrill AH, Stevens VL. Modulation of protein kinase C and diverse cell functions by sphingosine--a pharmacologically interesting compound linking sphingolipids and signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1010:131-9. [PMID: 2643437 DOI: 10.1016/0167-4889(89)90152-3] [Citation(s) in RCA: 247] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sphingosine, the backbone moiety of sphingomyelin, gangliosides and other complex sphingolipids, is a potent inhibitor of protein kinase C in vitro and of cellular events dependent on this enzyme. The systems that have been found, thus far, to be affected by sphingosine encompass various components of host defense system, including the activation of platelets, neutrophils and natural killer cells; the cytolytic activity of pathogens and expression of viral genes; cell growth and differentiation in several cell types, including leukemic and neuronal cells; insulin stimulated hexose transport and metabolism in adipocytes; ion-transport systems in various models; the response of neuronal cells to excitatory compounds; and receptor desensitization. While sphingosine has appeared to be a relatively potent and specific inhibitor of protein kinase C in the systems studied, recent findings with the epidermal growth factor receptor indicate that it may serve as a pleotrophic modulator of cell functions. New strategies for the design of pharmacologically active agents should arise from further studies of the action of long-chain (sphingoid) bases. Furthermore, since free sphingosine is a natural constituent of cells and the levels can be modulated by phorbol esters and other factors, a cycle of complex sphingolipid hydrolysis and resynthesis to regulate the amount of free sphingosine may constitute one mechanism of action of these compounds.
Collapse
Affiliation(s)
- A H Merrill
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | | |
Collapse
|
17
|
Fluorescence behaviour of an alkyl lysophospholipid in the presence of 1,6-dipheylhexatriene. Anal Chim Acta 1989. [DOI: 10.1016/s0003-2670(00)82672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|