1
|
Vandeweerd JM, Hontoir F, De Knoop A, De Swert K, Nicaise C. Retrograde Neuroanatomical Tracing of Phrenic Motor Neurons in Mice. J Vis Exp 2018. [PMID: 29553523 DOI: 10.3791/56758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phrenic motor neurons are cervical motor neurons originating from C3 to C6 levels in most mammalian species. Axonal projections converge into phrenic nerves innervating the respiratory diaphragm. In spinal cord slices, phrenic motor neurons cannot be identified from other motor neurons on morphological or biochemical criteria. We provide the description of procedures for visualizing phrenic motor neuron cell bodies in mice, following intrapleural injections of cholera toxin subunit beta (CTB) conjugated to a fluorophore. This fluorescent neuroanatomical tracer has the ability to be caught up at the diaphragm neuromuscular junction, be carried retrogradely along the phrenic axons and reach the phrenic cell bodies. Two methodological approaches of intrapleural CTB delivery are compared: transdiaphragmatic versus transthoracic injections. Both approaches are successful and result in similar number of CTB-labeled phrenic motor neurons. In conclusion, these techniques can be applied to visualize or quantify the phrenic motor neurons in various experimental studies such as those focused on the diaphragm-phrenic circuitry.
Collapse
|
2
|
Conditional cell reprogramming involves non-canonical β-catenin activation and mTOR-mediated inactivation of Akt. PLoS One 2017; 12:e0180897. [PMID: 28700668 PMCID: PMC5507294 DOI: 10.1371/journal.pone.0180897] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/22/2017] [Indexed: 11/19/2022] Open
Abstract
The combination of irradiated fibroblast feeder cells and Rho kinase inhibitor, Y-267362, converts primary epithelial cells growing in vitro into an undifferentiated adult stem cell-like state that is characterized by long-term proliferation. This cell culture method also maintains the proliferation of adult epithelial stem cells from various tissues. Both primary and adult stem cells retain their tissue-specific differentiation potential upon removal of the culture conditions. Due to the ability to modulate the proliferation and differentiation of the cells, this method is referred to as conditional reprogramming and it is increasingly being used in studies of tumor heterogeneity, personalized medicine and regenerative medicine. However, little is known about the biology of these conditionally reprogrammed (CR) cells. Previously we showed that β-catenin activation, a hallmark of stem cells in vivo, occurs in CR human ectocervical cells (HECs). Here we show that β-catenin-dependent transcription is necessary for the induction of epithelial stem cell markers, and that β-catenin is activated via a non-canonical pathway that is independent of Wnt and Akt/GSK-3. Active Akt actually decreases due to increased mTOR signaling, with a consequent increase in dephosphorylated, active GSK-3. Despite the increase in active GSK-3, β-catenin associates with protein phosphatase 2A (PP2A) and is activated. Inhibition of PP2A catalytic activity reduces both the level of active β-catenin and the acute induction of stem cell markers, suggesting an important role for PP2A in the activation of β-catenin. Moreover, we demonstrate similar results using human prostate and breast cells, indicating that these changes are not restricted to ectocervical epithelial cells and may represent a more fundamental property of conditional reprogramming.
Collapse
|
3
|
El Hage T, Merlen C, Fabrega S, Authier F. Role of receptor-mediated endocytosis, endosomal acidification and cathepsin D in cholera toxin cytotoxicity. FEBS J 2007; 274:2614-29. [PMID: 17451437 DOI: 10.1111/j.1742-4658.2007.05797.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the in situ liver model system, we have recently shown that, after cholera toxin binding to hepatic cells, cholera toxin accumulates in a low-density endosomal compartment, and then undergoes endosomal proteolysis by the aspartic acid protease cathepsin-D [Merlen C, Fayol-Messaoudi D, Fabrega S, El Hage T, Servin A, Authier F (2005) FEBS J272, 4385-4397]. Here, we have used a subcellular fractionation approach to address the in vivo compartmentalization and cytotoxic action of cholera toxin in rat liver parenchyma. Following administration of a saturating dose of cholera toxin to rats, rapid endocytosis of both cholera toxin subunits was observed, coincident with massive internalization of both the 45 kDa and 47 kDa Gsalpha proteins. These events coincided with the endosomal recruitment of ADP-ribosylation factor proteins, especially ADP-ribosylation factor-6, with a time course identical to that of toxin and the A subunit of the stimulatory G protein (Gsalpha) translocation. After an initial lag phase of 30 min, these constituents were linked to NAD-dependent ADP-ribosylation of endogenous Gsalpha, with maximum accumulation observed at 30-60 min postinjection. Assessment of the subsequent postendosomal fate of internalized Gsalpha revealed sustained endolysosomal transfer of the two Gsalpha isoforms. Concomitantly, cholera toxin increased in vivo endosome acidification rates driven by the ATP-dependent H(+)-ATPase pump and in vitro vacuolar acidification in hepatoma HepG2 cells. The vacuolar H(+)-ATPase inhibitor bafilomycin and the cathepsin D inhibitor pepstatin A partially inhibited, both in vivo and in vitro, the cAMP response to cholera toxin. This cathepsin D-dependent action of cholera toxin under the control of endosomal acidity was confirmed using cellular systems in which modification of the expression levels of cathepsin D, either by transfection of the cathepsin D gene or small interfering RNA, was followed by parallel changes in the cytotoxic response to cholera toxin. Thus, in hepatic cells, a unique endocytic pathway was revealed following cholera toxin administration, with regulation specificity most probably occurring at the locus of the endosome and implicating endosomal proteases, such as cathepsin D, as well as organelle acidification.
Collapse
Affiliation(s)
- Tatiana El Hage
- INSERM, U756; and Université Paris-Sud, Faculté de Pharmacie, Châtenay, Malabry, France
| | | | | | | |
Collapse
|
4
|
Merlen C, Fayol-Messaoudi D, Fabrega S, El Hage T, Servin A, Authier F. Proteolytic activation of internalized cholera toxin within hepatic endosomes by cathepsin D. FEBS J 2005; 272:4385-97. [PMID: 16128808 DOI: 10.1111/j.1742-4658.2005.04851.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have defined the in vivo and in vitro metabolic fate of internalized cholera toxin (CT) in the endosomal apparatus of rat liver. In vivo, CT was internalized and accumulated in endosomes where it underwent degradation in a pH-dependent manner. In vitro proteolysis of CT using an endosomal lysate required an acidic pH and was sensitive to pepstatin A, an inhibitor of aspartic acid proteases. By nondenaturating immunoprecipitation, the acidic CT-degrading activity was attributed to the luminal form of endosomal cathepsin D. The rate of toxin hydrolysis using an endosomal lysate or pure cathepsin D was found to be high for native CT and free CT-B subunit, and low for free CT-A subunit. On the basis of IC(50) values, competition studies revealed that CT-A and CT-B subunits share a common binding site on the cathepsin D enzyme, with native CT and free CT-B subunit displaying the highest affinity for the protease. By immunofluorescence, partial colocalization of internalized CT with cathepsin D was confirmed at early times of endocytosis in both hepatoma HepG2 and intestinal Caco-2 cells. Hydrolysates of CT generated at low pH by bovine cathepsin D displayed ADP-ribosyltransferase activity towards exogenous Gsalpha protein suggesting that CT cytotoxicity, at least in part, may be related to proteolytic events within endocytic vesicles. Together, these data identify the endocytic apparatus as a critical subcellular site for the accumulation and proteolytic degradation of endocytosed CT, and define endosomal cathepsin D an enzyme potentially responsible for CT cytotoxic activation.
Collapse
Affiliation(s)
- Clémence Merlen
- Institut National de la Santé et de la Recherche Médicale U510, Faculté de Pharmacie Paris XI, Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
We isolated and characterized a subcellular fraction derived from the blood-sinusoidal plasma membrane of hepatocytes enriched in caveolin and containing several of the molecular components described to be present in caveolae isolated from other cell types. A morphological study by electron microscopy revealed that it was composed of caveolae-attached membrane profiles. Immunoelectron microscopy of isolated fraction showed the specific labeling of internal caveolae membranes with anti-caveolin antibody. Finally, one- and two-dimensional electrophoresis and Western blotting were used for the biochemical analysis of this new rat liver plasma membrane fraction. From the biochemical and the morphological characterization, we conclude that the caveolae-enriched plasma membrane fraction is a plasma membrane fraction, which originates from specialized regions of the sinusoidal plasma membrane, enriched in caveolae.
Collapse
Affiliation(s)
- M Calvo
- Departament de Biologia Cel.lular, IDIBAPS, Facultat de Medicina, Universitat de Barcelona, Spain
| | | |
Collapse
|
6
|
Pol A, Calvo M, Lu A, Enrich C. The "early-sorting" endocytic compartment of rat hepatocytes is involved in the intracellular pathway of caveolin-1 (VIP-21). Hepatology 1999; 29:1848-57. [PMID: 10347129 DOI: 10.1002/hep.510290602] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The sinusoidal plasma membrane of the hepatocyte is organized into functional and structural microdomains whose origin, maintenance, and functioning are closely related with the endocytic compartment. Three different subcellular fractions, from rat liver, containing caveolin-1, the structural protein of caveolae, were morphologically and biochemically characterized. A caveolae-enriched plasma membrane fraction (CEF), contains large membrane structures surrounding attached internal plasmalemmal vesicles; the receptor-recycling compartment (RRC), contains tubules and vesicles with similar morphology to the internal vesicles observed by electron microscopy in CEF; and finally, caveolin-1 was also detected in early-sorting endosomes (CURL, compartment of uncoupling receptors and ligands). In this study, we show that following an intravenous administration of retinol-binding protein (RBP), there was a redistribution of caveolin-1 from the plasma membrane (CEF) to intracellular endocytic compartments (RRC and early-sorting endosomes). Thus, these results indicate that, in the hepatocyte, caveolae are dynamic structures actively interacting with the endocytic compartment.
Collapse
Affiliation(s)
- A Pol
- Departament de Biologia Cellular, Institut de Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
7
|
Weigel PH, Oka JA. The dual coated pit pathway hypothesis: vertebrate cells have both ancient and modern coated pit pathways for receptor mediated endocytosis. Biochem Biophys Res Commun 1998; 246:563-9. [PMID: 9618251 DOI: 10.1006/bbrc.1998.8491] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- P H Weigel
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA.
| | | |
Collapse
|
8
|
Bevan AP, Drake PG, Bergeron JJ, Posner BI. Intracellular signal transduction: The role of endosomes. Trends Endocrinol Metab 1996; 7:13-21. [PMID: 18406720 DOI: 10.1016/1043-2760(95)00179-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polypeptide hormones, growth factors, and other biologically significant molecules are specifically internalized by target cells. Exposure of cells to these ligands results in the formation of ligand-receptor complexes on the cell surface and subsequent internalization of these complexes into the endosomal apparatus (endosomes, or ENs). The study of ENs has identified several important functions for this unique cellular organelle. These include the dissociation of ligand from receptor and receptor recycling to the cell surface and the degradation of some internalized ligands, as well as the delivery of others to lysosomes. More recently, it has become apparent that ENs fulfill another critical role, that of signal transduction. In this article, we review the evidence substantiating this role for ENs and propose three models by which ENs participate in cell signaling.
Collapse
Affiliation(s)
- A P Bevan
- The Polypeptide Hormone Laboratory and the Department of Medicine McGill University, Montreal, Quebec, H3A 2B2, Canada
| | | | | | | |
Collapse
|
9
|
De Wolf MJ, Dams E, Dierick WS. Interaction of a cholera toxin derivative containing a reduced number of receptor binding sites with intact cells in culture. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1223:296-305. [PMID: 8086502 DOI: 10.1016/0167-4889(94)90240-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hybrid CTB (hCTB), having only one or two functional binding sites, has been constructed from two chemically inactivated derivatives of CTB. One inactive derivative consisted of CTB formylated in the lone Trp-88 of each beta-chain (fCTB), whereas the other inactive derivative consisted of CTB specifically succinylated in three amino groups located in or near the receptor binding site (sssCTB). hCTB, fCTB and sssCTB were able to reassociate with CTA and form the corresponding holotoxins hCT, fCT and sssCT as measured by gel filtration chromatography. In contrast to fCT and sssCT, hCT could increase the cAMP content of intact Vero cells in a time- and dose-dependent way: concentrations as low as a few nanograms of hCT per milliliter caused a significant increase in the intracellular cAMP level. The maximal cAMP level induced by hCT (1 microgram/ml) was, however, more than 2-fold lower than that elicited by its native counterpart. At saturating ligand concentrations and at 37 degrees C, the lag periods and rates of CT and hCT induced cAMP accumulation were essentially the same. Treatment of Vero and HeLa cells with GM1 did not affect their difference in response to CT and hCT. When Vero cells treated with hCT were incubated for longer periods of time, a further slow accumulation of cAMP occurred until after about 20 h cAMP levels of cells exposed to CT or hCT were essentially the same. In contrast to Vero and HeLa cells, human skin fibroblasts exhibited an almost identical response to CT as well as to hCT. Acidotropic agents such as chloroquine and monensin affected the CT and hCT induced increase in cAMP content of Vero cells, fibroblasts and GM1 treated Hela cells in a similar way. The results are consistent with the view that CT receptor recognition domains are shared between adjacent beta-chains, that pentavalent binding appears not to be essential for cytotoxicity and that in the cell types studied intracellular processing of CT, hCT is involved.
Collapse
Affiliation(s)
- M J De Wolf
- RUCA-Laboratory for Human Biochemistry, University of Antwerp, Belgium
| | | | | |
Collapse
|
10
|
Dubowchik GM, Padilla L, Edinger K, Firestone RA. Reversal of doxorubicin resistance and catalytic neutralization of lysosomes by a lipophilic imidazole. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1191:103-8. [PMID: 8155664 DOI: 10.1016/0005-2736(94)90237-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of lipophilic nitrogenous bases, designed to act as membrane-active, catalytic proton transfer agents, were tested for their ability to neutralize the acidity of lysosomes, a model for other acidic intracellular vesicles involved in drug sorting. The most successful of these, an imidazole 1, caused a 1.7 unit rise in lysosomal pH of RAW cells at 100 microM, compared to a 0.2 and 1.4 unit rise for ammonium chloride at 100 microM and 10 mM, respectively. Compound 1 also exhibited potent reversal of doxorubicin (DOX) resistance in the HCT116-VM46 cell line by a factor of 14 over the sensitive strain, and superior to that of widely used verapamil (VRP) by a factor of 1.75 at 20 microM. It also has antiviral properties, and potential applications in other lysosome-related areas such as immunotoxin potentiation and the control of bacterial toxins, immune response, prion replication, malaria and intralysosomal microorganisms.
Collapse
Affiliation(s)
- G M Dubowchik
- Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492-7660
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- D R Nalin
- Merck Research Laboratories, West Point, PA 19486
| |
Collapse
|
12
|
Donta ST, Beristain S, Tomicic TK. Inhibition of heat-labile cholera and Escherichia coli enterotoxins by brefeldin A. Infect Immun 1993; 61:3282-6. [PMID: 8392970 PMCID: PMC281000 DOI: 10.1128/iai.61.8.3282-3286.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cholera enterotoxin and the related heat-labile enterotoxins of Escherichia coli enter their target cells through noncoated vesicles, but how the toxins are processed intracellularly and how they get to their targeted enzyme, adenylate cyclase, remain to be defined. Brefeldin A, an inhibitor of the trans-Golgi network, is shown herein to transiently block the morphologic and enzymatic effects of the toxin at a step distal to the initial binding process but prior to activation of adenylate cyclase by the toxin. It is likely, therefore, that these toxins are processed by the Golgi apparatus before trafficking to the membrane adenylate cyclase.
Collapse
Affiliation(s)
- S T Donta
- Department of Medicine, University of Connecticut Health Center, Farmington 06030
| | | | | |
Collapse
|
13
|
Khan MN, Lai WH, Burgess JW, Posner BI, Bergeron JJ. Potential role of endosomes in transmembrane signaling. Subcell Biochem 1993; 19:223-54. [PMID: 8385820 DOI: 10.1007/978-1-4615-3026-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- M N Khan
- Department of Anatomy, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
14
|
Fouad FM, Marshall WD, Farrell PG, FitzGerald S. Acute-phase plasma protein response to cholera intoxication in healthy and diabetic rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1993; 38:1-18. [PMID: 7678433 DOI: 10.1080/15287399309531696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of the present study is twofold: to establish the response of hepatic machinery of plasma protein biosynthesis to cholera intoxication, and to examine the same response of alloxan-diabetic hepatocytes with minimal capacity of synthesis of plasma proteins. Direct lesion of hepatic plasma membranes via ip administration of cholera toxin to male rats resulted in a typical acute-phase response (APR) of plasma proteins, which had regressed to levels similar to those of healthy controls approximately at 240 h postintoxication. The d 2 response to a single 0.16 mg/kg body weight dose was typified by a 23% reduction in the level of albumin, but a 6- and 24-fold increase in the levels of fibrinogen and alpha-1-acid glycoproteins, respectively. This response was similar (in direction but not in magnitude) to the acute-phase reaction to a simple subcutaneous administration of carrageenan. The intoxication was accompanied by a massive leakage, into the peritoneal cavity, of plasma fluid, which embraced the complete profile of acute-phase reactants. A three-step mechanism is proposed to account for the observations as follows: (1) There is a rapid formation of a stable complex between subunit B of the toxin and ganglioside GM1 of hepatic plasma membrane. An APR is induced in response to the alteration(s) of hepatic plasma membranes. (2) The release, from the choleragen-membrane complex, of polypeptide A1 and its subsequent penetration of the hepatic membrane result in both activation of adenylate cyclase and increased vascular permeability of hepatic membranes. This leads, in turn, to exudation of components of plasma fluid in the peritoneal cavity of intoxicated rats. An alternate rationale for this exudation is the slow leakage of plasma proteins out of the blood vascular system (possibly through microvesicles) into the peritoneal cavity of cholera intoxicated rats. The spectrum of acute-phase hepatic secretory components was mirrored in the corresponding peritoneal exudate. (3) The increased hepatic membrane flow provides the continued renewal of plasma membrane proteins required for its eventual repair by either endocytosis or sloughing off the toxin-bound membrane segments into the circulatory system, thus producing regression of APR. Livers of diabetic rats, an already established model in terms of APR, responded to ip administration of cholera toxin by increased biosynthesis of the identified plasma proteins and a marked reduction in total free-glucose in serum.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- F M Fouad
- Department of Food Science and Agricultural Chemistry, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | | | | | | |
Collapse
|
15
|
Lencer WI, Delp C, Neutra MR, Madara JL. Mechanism of cholera toxin action on a polarized human intestinal epithelial cell line: role of vesicular traffic. J Cell Biol 1992; 117:1197-1209. [PMID: 1318883 PMCID: PMC2289494 DOI: 10.1083/jcb.117.6.1197] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The massive secretion of salt and water in cholera-induced diarrhea involves binding of cholera toxin (CT) to ganglioside GM1 in the apical membrane of intestinal epithelial cells, translocation of the enzymatically active A1-peptide across the membrane, and subsequent activation of adenylate cyclase located on the cytoplasmic surface of the basolateral membrane. Studies on nonpolarized cells show that CT is internalized by receptor-mediated endocytosis, and that the A1-subunit may remain membrane associated. To test the hypothesis that toxin action in polarized cells may involve intracellular movement of toxin-containing membranes, monolayers of the polarized intestinal epithelial cell line T84 were mounted in modified Ussing chambers and the response to CT was examined. Apical CT at 37 degrees C elicited a short circuit current (Isc: 48 +/- 2.1 microA/cm2; half-maximal effective dose, ED50 integral of 0.5 nM) after a lag of 33 +/- 2 min which bidirectional 22Na+ and 36Cl- flux studies showed to be due to electrogenic Cl- secretion. The time course of the CT-induced Isc response paralleled the time course of cAMP generation. The dose response to basolateral toxin at 37 degrees C was identical to that of apical CT but lag times (24 +/- 2 min) and initial rates were significantly less. At 20 degrees C, the Isc response to apical CT was more strongly inhibited (30-50%) than the response to basolateral CT, even though translocation occurred in both cases as evidenced by the formation of A1-peptide. A functional rhodamine-labeled CT-analogue applied apically or basolaterally at 20 degrees C was visualized only within endocytic vesicles close to apical or basolateral membranes, whereas movement into deeper apical structures was detected at 37 degrees C. At 15 degrees C, in contrast, reduction to the A1-peptide was completely inhibited and both apical and basolateral CT failed to stimulate Isc although Isc responses to 1 nM vasoactive intestinal peptide, 10 microM forskolin, and 3 mM 8Br-cAMP were intact. Re-warming above 32 degrees C restored CT-induced Isc. Preincubating monolayers for 30 min at 37 degrees C before cooling to 15 degrees C overcame the temperature block of basolateral CT but the response to apical toxin remained completely inhibited. These results identify a temperature-sensitive step essential to apical toxin action on polarized epithelial cells. We suggest that this event involves vesicular transport of toxin-containing membranes beyond the apical endosomal compartment.
Collapse
Affiliation(s)
- W I Lencer
- Combined Program in Pediatric Gastroenterology and Nutrition, Children's Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
16
|
Pacuszka T, Fishman PH. Intoxication of cultured cells by cholera toxin: evidence for different pathways when bound to ganglioside GM1 or neoganglioproteins. Biochemistry 1992; 31:4773-8. [PMID: 1317209 DOI: 10.1021/bi00135a005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We previously reported that when the oligosaccharide of ganglioside GM1 is covalently attached to cell surface proteins of GM1-deficient rat glioma C6 cells, the cells bind large amounts of cholera toxin (CT) but their cAMP response to CT is not enhanced [Pacuszka, T., & Fishman, P. H. (1990) J. Biol. Chem. 265, 7673-7668]. We now report that when such cells were exposed to CT in the presence of chloroquine, an acidotropic agent, they accumulated cAMP. This raised the possibility that CT bound to cell surface "neoganglioproteins" may be entering the cells through a different pathway from that of CT-bound GM1. To further explore this phenomenon, we covalently attached GM1 oligosaccharide to human transferrin (Tf). The modified protein (GM1OS-Tf) bound with high affinity to Tf receptors on HeLa cells and increased the binding of CT to the cells. The bound CT, however, was unable to activate adenylyl cyclase as measured by cyclic AMP accumulation. By contrast, treatment of HeLa cells with GM1 increased both CT binding and stimulation of cyclic AMP accumulation. Control cells and cells treated with either GM1 or GM1OS-Tf were exposed to CT in the presence of chloroquine. Whereas chloroquine had little or no effect on the response of control or GM1-treated cells to CT, it made the cells treated with GM1OS-Tf responsive to the toxin. Our results indicate that CT bound to its natural receptor GM1 enters the cells through a pathway different from that of toxin bound to neoganglioproteins.
Collapse
Affiliation(s)
- T Pacuszka
- Membrane Biochemistry Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892
| | | |
Collapse
|
17
|
Krasilnikov OV, Muratkhodjaev JN, Voronov SE, Yezepchuk YV. The ionic channels formed by cholera toxin in planar bilayer lipid membranes are entirely attributable to its B-subunit. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1067:166-70. [PMID: 1715187 DOI: 10.1016/0005-2736(91)90039-b] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The interaction of cholera toxin with planar bilayer lipid membranes (BLM) at low pH results in the formation of ionic channels, the conductance of which can be directly measured in voltage-clamp experiments. It is found that the B-subunit of cholera toxin (CT-B) also is able to induce ionic channels in BLM whereas the A-subunit is not able to do it. The increase of pH inhibited the channel-forming activity of CT-B. The investigation of pH-dependences of both the conductance and the cation-anion selectivity of the CT-B channel allowed us to suggest that the water pore of this channel is confined to the B-subunit of cholera toxin. The effective diameter of the CT-B channels water pores was directly measured in BLM and is equal to 2.1 +/- 0.2 nm. The channels formed by whole toxin and its B-subunit exhibit voltage-dependent activity. We believe these channels are relevant to the mode of action of cholera toxin and especially to the endosomal pathway of the A-subunit into cells.
Collapse
Affiliation(s)
- O V Krasilnikov
- Institute of Physiology, Uzbek Academy of Sciences, Tashkent, U.S.S.R
| | | | | | | |
Collapse
|
18
|
Janicot M, Fouque F, Desbuquois B. Activation of rat liver adenylate cyclase by cholera toxin requires toxin internalization and processing in endosomes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98773-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Kaestner KH, Flores-Riveros JR, McLenithan JC, Janicot M, Lane MD. Transcriptional repression of the mouse insulin-responsive glucose transporter (GLUT4) gene by cAMP. Proc Natl Acad Sci U S A 1991; 88:1933-7. [PMID: 1705711 PMCID: PMC51140 DOI: 10.1073/pnas.88.5.1933] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glucose uptake by adipose tissue is mediated by two glucose transporters: GLUT4, which is most abundant, and GLUT1. While GLUT1 is expressed in many tissues, GLUT4 is unique to tissues that exhibit insulin-stimulated glucose uptake (heart and skeletal muscle and adipose tissue). In the diabetic state and during starvation, insulin-stimulated glucose uptake and GLUT4 expression are decreased in tissue adipocytes. Using 3T3-L1 adipocytes in culture, we investigated the possibility that these effects are mediated by elevated cellular cAMP. When 3T3-L1 adipocytes were treated for 16 hr with forskolin or 8-Br-cAMP, GLUT4 mRNA and protein were decreased by approximately 70%, while expression of GLUT1 mRNA and protein was increased 3-fold. These changes were accompanied by an increased basal rate of 2-deoxyglucose uptake and a loss of acute responsiveness of hexose uptake to insulin. The magnitude of GLUT4 mRNA depletion/GLUT1 mRNA accumulation was dependent upon the concentration of 8-Br-cAMP. The decrease of GLUT4 mRNA caused by 8-Br-cAMP was the result of a decreased transcription rate, while the half-life of the message was unaffected. The increase in GLUT1 mRNA caused by 8-Br-cAMP was the result of both transient transcriptional activation and mRNA stabilization. We suggest that down-regulation of GLUT4 mRNA in adipose tissue in the diabetic state and during starvation is the result of repression of transcription of the GLUT4 gene caused by cAMP.
Collapse
Affiliation(s)
- K H Kaestner
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | |
Collapse
|
20
|
Mitsui H, Iwamori M, Hashimoto N, Yamada H, Ikeda Y, Toda G, Kurokawa K, Nagai Y. The B subunit of cholera toxin enhances DNA synthesis in rat hepatocytes induced by insulin and epidermal growth factor. Biochem Biophys Res Commun 1991; 174:372-8. [PMID: 1846542 DOI: 10.1016/0006-291x(91)90530-k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The B subunit of cholera toxin, which binds to ganglioside GM1, enhanced DNA synthesis in rat hepatocytes in primary culture induced by insulin and/or epidermal growth factor. The effect was dose-dependent, and whole cholera toxin, activating adenylate cyclase, showed a higher effect than the B subunit alone. The B subunit acted additively with other agents that also increase cyclic AMP levels. A competitive antagonist of cyclic AMP could not suppress the effect of the B subunit completely. These data suggest that the effect is independent of the cyclic AMP signal pathway, and that GM1 plays a role in hepatocyte proliferation.
Collapse
Affiliation(s)
- H Mitsui
- First Department of Internal Medicine, Faculty of Medicine, University of Tokyo
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pittner RA, Fain JN. Effects of insulin on inositol phosphate production in cultured rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1043:218-24. [PMID: 2180488 DOI: 10.1016/0005-2760(90)90299-d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Addition of vasopressin (100 nM) to rat hepatocytes prelabelled with [3H]inositol stimulated the production of inositol phosphates in the presence of 20 mM Li+. Preincubation of hepatocytes with insulin (50 nM) or glucagon (10 nM) had no significant effect alone but enhanced the effects of vasopressin after a lag period of at least 1 min. The effects of insulin and glucagon appeared additive in this respect. Insulin also enhanced the norepinephrine-mediated stimulation of inositol phosphate accumulation. The enhancement by insulin of the effects of vasopressin required at least 0.5-5 nM insulin and did not involve changes in [3H]inositol lipid labelling or IP3 phosphatase activity. The effect of insulin appeared insensitive to prior treatment of hepatocytes with pertussis toxin (200 ng/ml for 18-24 h) or cholera toxin (100 ng/ml for 3-4 h). The glucagon enhancement of the effects of vasopressin was not affected by pertussis toxin but was mimicked by cholera toxin. The response of hepatocytes to vasopressin in the absence of Li+ was smaller and more transient. Under these conditions a 5 min prior incubation with insulin inhibited the stimulation by vasopressin of inositol phosphate accumulation. A similar inhibitory effect of prior insulin exposure on the transient activation by vasopressin of exogenous phosphatidylinositol 4,5-bisphosphate breakdown by hepatocyte homogenates was also seen. These data indicate that insulin, although having no effect on basal inositol phosphate accumulation, can either enhance or antagonise the effects of vasopressin in primary rat liver hepatocyte cultures depending on the experimental conditions.
Collapse
Affiliation(s)
- R A Pittner
- Department of Biochemistry, University of Tennessee, Memphis 38163
| | | |
Collapse
|
22
|
Damien C, Robberecht P, Hooghe R, De Neef P, Christophe J. Decreased adenylate cyclase activation by helodermin and PGE1 in the lectin-resistant variant Wa4 of the mouse melanoma cell line B16. Peptides 1989; 10:1075-9. [PMID: 2558362 DOI: 10.1016/0196-9781(89)90192-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We examined the cultured mouse melanoma cell line B16 (clone F1) and its wheat germ agglutinin-resistant variant Wa4 that suffers from abnormal protein glycosylation (a high fucose:sialic acid ratio in glycoproteins). In both cell lines the adenylate cyclase system was endowed with a functional guanine nucleotide binding protein Gs and was efficiently coupled to alpha-MSH receptors. In the B16 cell line F1 studied we also observed an efficient stimulation of adenylate cyclase activity by helodermin, VIP and the VIP analogue [acetyl-His1]VIP, and also by PGE1. In membranes from the lectin-resistant variant Wa4, the stimulations by VIP-like peptides and by PGE1 were reduced by 60% and 50%, respectively, while the stimulation by alpha-MSH remained normal. As other components of the adenylate cyclase system (Gs site, catalytical unit) appeared unchanged in the Wa4 variant, we conclude that impaired glycosylation essentially affected the number of both VIP-like peptide receptors and PGE1 receptors.
Collapse
Affiliation(s)
- C Damien
- Department of Biochemistry and Nutrition, Medical School, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | |
Collapse
|