Shi XL, Dalal NS. Flavoenzymes reduce vanadium(V) and molecular oxygen and generate hydroxyl radical.
Arch Biochem Biophys 1991;
289:355-61. [PMID:
1654858 DOI:
10.1016/0003-9861(91)90423-g]
[Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ESR spectroscopic evidence is presented for the formation of vanadium(IV) in the reduction of vanadium(V) by three typical, NADPH-dependent, flavoenzymes: glutathione reductase, lipoyl dehydrogenase, and ferredoxin-NADP+ oxidoreductase. The vanadium(V)-reduction mechanism appears to be an enzymatic one-electron reduction process. Addition of superoxide dismutase (SOD) showed that the generation of vanadium(IV) does not involve the superoxide (O2-) radical significantly. Measurements under anaerobic atmosphere showed, however, that the enzymes-vanadium-NADPH mixture can cause the reduction of molecular oxygen to generate H2O2. The H2O2 and vanadium(IV) thus formed react to generate hydroxyl (.OH) radical. The .OH formation is inhibited strongly by catalase and to a lesser degree by SOD, but it is enhanced by exogenous H2O2, suggesting the occurrence of a Fenton-like reaction. The inhibition of vanadium(IV) formation by N-ethylmaleimide indicates that the SH group on the flavoenzyme's cystine residue plays an important role in the enzyme's vanadium(V) reductase function. These results thus reveal a new property of the above-mentioned, NADPH-dependent flavoenzymes--their function as vanadium(V) reductases, as well as that as generators of .OH radical in the vanadium(V) reduction mechanism.
Collapse