1
|
Aleksandrov A, Zvereva E, Field M. The mechanism of citryl-coenzyme A formation catalyzed by citrate synthase. J Phys Chem B 2014; 118:4505-13. [PMID: 24720842 DOI: 10.1021/jp412346g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enzyme citrate synthase is used by all living cells to catalyze the first step of the citric acid cycle. In this work, we have investigated the enolization and condensation steps catalyzed by citrate synthase, using ab initio (B3LYP/def2-TZVP and MP2/aug-cc-pVDZ) quantum chemical/molecular mechanical hybrid potentials in conjunction with reaction-path-location algorithms and molecular dynamics free energy simulations. The results of the latter indicate that the catalytic His238 residue is in its neutral form, and also argue strongly for the presence of a water molecule in the enzyme's catalytic center. Such a water is observed in some, but not all, of the experimentally resolved structures of the protein. The mechanism itself starts with an enolization that proceeds via an enolate intermediate rather than the enol form, which is much more unstable. This is in agreement with the results of other workers. For the condensation step, we investigated two mechanisms in which there is a direct nucleophilic attack of the enolate intermediate on the oxaloacetate carbonyl carbon, and found the one in which there is no proton transfer from the neighboring arginine to be preferred. Although this residue, Arg329, is not implicated directly in the reaction, it helps to stabilize the negative citryl-CoA formed during the condensation step.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique , 91128 Palaiseau, France
| | | | | |
Collapse
|
2
|
Chittori S, Savithri HS, Murthy MRN. Crystal structure of Salmonella typhimurium 2-methylcitrate synthase: Insights on domain movement and substrate specificity. J Struct Biol 2010; 174:58-68. [PMID: 20970504 DOI: 10.1016/j.jsb.2010.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 10/02/2010] [Accepted: 10/18/2010] [Indexed: 11/17/2022]
Abstract
2-Methylcitric acid (2-MCA) cycle is one of the well studied pathways for the utilization of propionate as a source of carbon and energy in bacteria such as Salmonella typhimurium and Escherichia coli. 2-Methylcitrate synthase (2-MCS) catalyzes the conversion of oxaloacetate and propionyl-CoA to 2-methylcitrate and CoA in the second step of 2-MCA cycle. Here, we report the X-ray crystal structure of S. typhimurium 2-MCS (StPrpC) at 2.4Å resolution and its functional characterization. StPrpC was found to utilize propionyl-CoA more efficiently than acetyl-CoA or butyryl-CoA. The polypeptide fold and the catalytic residues of StPrpC are conserved in citrate synthases (CSs) suggesting similarities in their functional mechanisms. In the triclinic P1 cell, StPrpC molecules were organized as decamers composed of five identical dimer units. In solution, StPrpC was in a dimeric form at low concentrations and was converted to larger oligomers at higher concentrations. CSs are usually dimeric proteins. In Gram-negative bacteria, a hexameric form, believed to be important for regulation of activity by NADH, is also observed. Structural comparisons with hexameric E. coli CS suggested that the key residues involved in NADH binding are not conserved in StPrpC. Structural comparison with the ligand free and bound states of CSs showed that StPrpC is in a nearly closed conformation despite the absence of bound ligands. It was found that the Tyr197 and Leu324 of StPrpC are structurally equivalent to the ligand binding residues His and Val, respectively, of CSs. These substitutions might determine the specificities for acyl-CoAs of these enzymes.
Collapse
Affiliation(s)
- Sagar Chittori
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | | |
Collapse
|
3
|
Houk RJT, Monzingo A, Anslyn EV. Electrophilic coordination catalysis: a summary of previous thought and a new angle of analysis. Acc Chem Res 2008; 41:401-10. [PMID: 18229891 DOI: 10.1021/ar700127n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most common, and yet least well understood, enzymatic transformations is proton abstraction from activated carbon acids such as carbonyls. Understanding the mechanism for these proton abstractions is basic to a good understanding of enzyme function. Significant controversy has arisen over the means by which a given enzyme might facilitate these deprotonations. Creating small molecule mimics of enzymes and physical organic studies that model enzymes are good approaches to probing mechanistic enzymology. This Account details a number of molecular recognition and physical organic studies, both from our laboratory and others, dealing with the elucidation of this quandary. Our analysis launches from an examination of the active sites and proposed mechanism of several enzyme-catalyzed deprotonations of carbon acids. This analysis highlights the geometries of the hydrogen bonds found at the enzyme active sites. We find evidence to support pi-oriented hydrogen bonding, rather than lone pair oriented hydrogen bonding. Our observations prompted us to study the stereochemistry of hydrogen bonding that activates carbonyl alpha-carbons to deprotonation. The results from our own thermodynamic, kinetics, and computational studies, all of which are reviewed herein, suggest that an unanticipated level of intermediate stabilization occurs via an electrophilic interaction through the pi-molecular orbital as opposed to traditional lone pair directed coordination. We do not postulate that hydrogen bonding to pi-systems is intrinsically stronger than to lone pairs, but rather that there is a greater change in bond strength during deprotonation when the hydrogen bonds are oriented at the pi-system. Through these studies, we conclude that many enzymes preferentially activate their carbon acid substrates through an electrophilic coordination directed towards the pi-bond of the carbonyl rather than the conventional lone pair directed model.
Collapse
Affiliation(s)
- Ronald J. T. Houk
- Sandia National Laboratories, 7011 East Avenue, Mail Stop 9291, Livermore, California 94550-0969
| | - Arthur Monzingo
- Department of Chemistry and Biochemistry, The University of Texas, 1 University Station A5300, Austin, Texas 78712
| | - Eric V. Anslyn
- Department of Chemistry and Biochemistry, The University of Texas, 1 University Station A5300, Austin, Texas 78712
| |
Collapse
|
4
|
Vogel KW, Drueckhammer DG. A Reversed Thioester Analogue of Acetyl-Coenzyme A: An Inhibitor of Thiolase and a Synthon for Other Acyl-CoA Analogues. J Am Chem Soc 1998. [DOI: 10.1021/ja971758u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Kurz LC, Roble JH, Nakra T, Drysdale GR, Buzan JM, Schwartz B, Drueckhammer DG. Ability of single-site mutants of citrate synthase to catalyze proton transfer from the methyl group of dethiaacetyl-coenzyme A, a non-thioester substrate analog. Biochemistry 1997; 36:3981-90. [PMID: 9092828 DOI: 10.1021/bi963058s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The catalytic strategies of enzymes (such as citrate synthase) whose reactions require the abstraction of the alpha-proton of a carbon acid remain elusive. Citrate synthase readily catalyzes solvent proton exchange of the methyl protons of dethiaacetyl-coenzyme A, a sulfur-less, ketone analog of acetyl-coenzyme A, in its ternary complex with oxaloacetate. Because no further reaction occurs with this analog, it provides a uniquely simple probe of the roles of active site interactions on carbon acid proton transfer catalysis. In view of the high reactivity of the analog for proton transfer to the active site base, its failure to further condense with oxaloacetate to form a sulfur-less analog of citryl-coenzyme A was unexpected, although we offer several possible explanations. We have measured the rate constants for exchange, k(exch), at saturating concentrations of the analog for six citrate synthase mutants with single changes in active site residues. Comparisons between the values of k(exch) are straightforward in two limits. If the rate of exchange of the transferred proton with solvent protons is rapid, then k(exch) equals the forward rate constant for proton transfer, and k(exch) values for different mutants compare directly the rate constants for proton transfer. If the exchange of the transferred proton with protons in the bulk solution is the slow step and the equilibrium constant for proton transfer is unfavorable (as is likely), then k(exch) equals the product of the equilibrium constant for proton transfer and the rate constant for exchange of the transferred proton with bulk solvent. If that exchange rate with bulk solution remains constant for a series of mutant enzymes, then k(exch) values compare the equilibrium constants for proton transfer. The importance of the acetyl-CoA site residues, H274 and D375, is confirmed with D375 again implicated as the active site base. The results with the series of oxaloacetate site mutants, H320X, strongly suggest that activation of the first substrate, oxaloacetate, through carbonyl bond polarization, not just oxaloacetate binding in the active site, is required for the enzyme to efficiently catalyze proton transfer from the methyl group of the second substrate.
Collapse
Affiliation(s)
- L C Kurz
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Man WJ, Li Y, O'Connor CD, Wilton DC. The binding of propionyl-CoA and carboxymethyl-CoA to Escherichia coli citrate synthase. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1250:69-75. [PMID: 7612655 DOI: 10.1016/0167-4838(95)00044-u] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The interaction of propionyl-CoA and acetyl-CoA with E. coli citrate synthase has been studied in order to gain insight into the structural requirements for substrate binding by this enzyme. In contrast to the enzyme from pig heart, the E. coli enzyme was unable to catalyse significant exchange of the methylene protons of propionyl-CoA while overall activity was very low with this enzyme. Carboxymethyl-CoA is a presumptive transition state analogue of acetyl-CoA using pig heart citrate synthase. The effect of carboxymethyl-CoA on both the native enzyme from E. coli and a catalytically active aspartate mutant (D362E) was investigated. Whereas the native enzyme was inhibited by carboxymethyl-CoA, the mutant enzyme (D362E) shows either no inhibition or minimal inhibition depending on the assay conditions. The binding of acetyl-CoA is not inhibited as a result of the mutation. The results with propionyl-CoA and carboxymethyl-CoA suggest that the active site of the E. coli enzyme is more restricted as compared with the enzyme from pig heart and, in the case of propionyl-CoA, this restriction prevents the formation of a catalytically productive enzyme-substrate complex.
Collapse
Affiliation(s)
- W J Man
- Department of Biochemistry, University of Southampton, Bassett Crescent East, UK
| | | | | | | |
Collapse
|
8
|
The carboxylate type siderophore rhizoferrin and its analogs produced by directed fermentation. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf01569891] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Man WJ, Li Y, O'Connor CD, Wilton DC. The effect of replacing the conserved active-site residues His-264, Asp-312 and Arg-314 on the binding and catalytic properties of Escherichia coli citrate synthase. Biochem J 1994; 300 ( Pt 3):765-70. [PMID: 8010958 PMCID: PMC1138232 DOI: 10.1042/bj3000765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The first step in the overall catalytic mechanism of citrate synthase is the binding and polarization of oxaloacetate. Active-site residues Arg-314, Asp-312 and His-264 in Escherichia coli citrate synthase, which are involved in oxaloacetate binding, were converted by site-directed mutagenesis to Gln-314, Asn-312 and Asn-264 respectively. The R314Q and D312N mutants expressed negligible overall catalytic activity at pH 8.0, the normal assay pH, but substantial activities for the partial reactions that reflect the cleavage and hydrolysis of the substrate intermediate citryl-CoA. However, when the pH was lowered to 7.0, the overall reaction of the mutants became significant, in contrast to the wild-type enzyme, whereas the two mutants exhibited reduced activities for the partial reactions. This result is consistent with the existence of a rate-limiting step between the two partial reactions for these mutants that is pH-dependent. The Km for oxaloacetate for the two mutants was increased 10-fold and was paralleled by an increase in the Km for citryl-CoA, whereas the Km for acetyl-CoA was increased only 2-fold. Overall, there was a striking parallel between the results obtained for these two mutants, which suggests that they are functionally linked in the E. coli enzyme. The equivalent of these two residues form a salt bridge in the pig heart citrate synthase crystal structure. The H264N mutant, in which the amide nitrogen of asparagine should mimic the delta-nitrogen of histidine, showed negligible activity in terms of both overall and partial catalysis, which may result from a hindrance of conformational change upon oxaloacetate binding. The affinity of this mutant for oxaloacetate appeared to be greatly reduced when investigated using indirect fluorescence and chemical modification techniques.
Collapse
Affiliation(s)
- W J Man
- Department of Biochemistry, University of Southampton, U.K
| | | | | | | |
Collapse
|
10
|
Active site mutants of Escherichia coli citrate synthase. Effects of mutations on catalytic and allosteric properties. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42366-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
12
|
Patton AJ, Hough DW, Towner P, Danson MJ. Does Escherichia coli possess a second citrate synthase gene? EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:75-81. [PMID: 8508809 DOI: 10.1111/j.1432-1033.1993.tb17898.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Escherichia coli possesses a hexameric citrate synthase that exhibits allosteric kinetics and regulatory sensitivity, and for which the gene (gltA) has previously been cloned and sequenced. A citrate-synthase-deficient strain of E. coli (K114) has been mutated to generate a revertant (K114r4) that produces a dimeric citrate synthase with altered kinetic and regulatory properties. On cloning and sequencing the gltA gene from both K114 and K114r4, a single mutation was found that caused the replacement of Asp362 with Asn. Asp362 has been previously shown to be a catalytically essential residue in E. coli citrate synthase, and we demonstrate that the hexameric enzyme produced on expression of the gltA gene from K114 and K114r4 is inactive. The dimeric citrate synthase from K114r4 has been purified and shown to be immunologically distinct from the wild-type hexameric enzyme. Determination of its N-terminal amino acid sequence demonstrates that the mutant citrate synthase is encoded by a gene distinct from the E. coli gltA gene. The N-terminal sequence is compared with those of other eukaryotic, eubacterial and archaebacterial citrate synthases.
Collapse
Affiliation(s)
- A J Patton
- Department of Biochemistry, University of Bath, England
| | | | | | | |
Collapse
|
13
|
James Remington S. Mechanisms of citrate synthase and related enzymes (triose phosphate isomerase and mandelate racemase). Curr Opin Struct Biol 1992. [DOI: 10.1016/0959-440x(92)90208-o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Lill U, Lefrank S, Henschen A, Eggerer H. Conversion, by limited proteolysis, of an archaebacterial citrate synthase into essentially a citryl-CoA hydrolase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 208:459-66. [PMID: 1521537 DOI: 10.1111/j.1432-1033.1992.tb17208.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Limited proteolysis of citrate synthase from Sulfolobus solfataricus by trypsin reduced the rate of the overall reaction (acetyl-CoA + oxaloacetate + H2O----citrate + CoASH) to 4% but did not affect the hydrolysis of citryl-CoA. Experimental results indicate that a connecting link between the enzyme's ligase and hydrolase activity becomes impaired specifically on treatment with trypsin. Other proteolytic enzymes like chymotrypsin and subtilisin inactivated catalytic functions of citrate synthase, ligase and hydrolase, equally well. 2. Tryptic hydrolysis occurs at the N-terminal region of citrate synthase, but a study by SDS/PAGE revealed no difference in molecular mass between native and proteolytically nicked citrate synthase. The peptide removed from the enzyme by trypsin, therefore, contains less than about 15 amino acid residues. 3. The Km values of the substrates for both native and nicked enzyme were identical, as was the state of aggregation (dimeric) of the two enzyme species. These could be separated by affinity chromatography on Blue-Sepharose and differentiated by their isoelectric points (pI = 6.68 +/- 0.08 and pI = 6.37 +/- 0.03 for native citrate synthase and the large tryptic peptide, respectively) as well as by the N-terminus which is blocked in the native enzyme only. 4. Edman degradation of the large tryptic fragment yielded the N-terminal sequence GLEDVYIKSTSLTYIDGVNGVLRY, which is 71% identical to the N-terminal region (positions 9-32) of citrate synthase from Thermoplasma acidophilum. 5. The conversion of citrate synthase into essentially a citryl-CoA hydrolase is considered the consequence of a conformational change thought to occur on tryptic removal of the N-terminal small peptide.
Collapse
Affiliation(s)
- U Lill
- Institut für Physiologische Chemie, Technischen Universität München, Federal Republic of Germany
| | | | | | | |
Collapse
|
15
|
Abstract
In the past year, site-directed mutagenesis and other forms of protein engineering have been used to reverse the substrate specificity of several pairs of enzymes, including disulphide oxidoreductases, proteases, sugar-processing enzymes, and nucleases, as well as the specificity of hormones and their receptors. Mutations have been found that affect rate-determining steps, allowing normally transient intermediates to accumulate. Other mutations endow enzymes with totally new chemical reactions, and even novel biological functions. A combination of molecular genetics and chemical modification has been used for protein engineering.
Collapse
Affiliation(s)
- K T Douglas
- Department of Pharmacy, University of Manchester, UK
| |
Collapse
|