1
|
Vicente JM, Lescano CH, Bordin S, Mónica FZ, Gobbi G, Anhê GF. Agomelatine inhibits platelet aggregation through melatonin receptor-dependent and independent mechanisms. Life Sci 2023:121906. [PMID: 37394096 DOI: 10.1016/j.lfs.2023.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
AIMS Melatonin is known to inhibit platelet aggregation induced by arachidonic acid (AA). In the present study we investigated whether agomelatine (Ago), an antidepressant with agonist activity at melatonin receptor 1 (MT1) and MT2 could reduce platelets aggregation and adhesion. MAIN METHODS Human platelets from healthy donors were used to test the in vitro effects of Ago in the presence of different platelet activators. We performed aggregation and adhesion assays, thromboxane B2 (TxB2), cAMP and cGMP measurements, intra-platelet calcium registration and flow cytometry assays. KEY FINDINGS Our data revealed that different concentrations of Ago reduced AA- and collagen-induced human platelet aggregation in vitro. Ago also reduced AA-induced increase in thromboxane B2 (TxB2) production, intracellular calcium levels and P-selectin expression at plasma membrane. The effects of Ago in AA-activated platelets were likely dependent on MT1 as they were blocked by luzindole (a MT1/MT2 antagonist) and mimicked by the MT1 agonist UCM871 in a luzindole-sensitive manner. The MT2 agonist UCM924 was also able to inhibit platelet aggregation, but this response was not affected by luzindole. On the other hand, although UCM871 and UCM924 reduced collagen-induced platelet aggregation and adhesion, inhibition of collagen-induced platelet aggregation by Ago was not mediated by melatonin receptors because it was not affected by luzindole. SIGNIFICANCE The present data show that Ago suppresses human platelet aggregation and suggest that this antidepressant may have the potential to prevent atherothrombotic ischemic events by reducing thrombus formation and vessel occlusion.
Collapse
Affiliation(s)
- Julia Modesto Vicente
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Caroline Honaiser Lescano
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabiola Zakia Mónica
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil.
| |
Collapse
|
2
|
AMPK-ACC signaling modulates platelet phospholipids and potentiates thrombus formation. Blood 2018; 132:1180-1192. [PMID: 30018077 DOI: 10.1182/blood-2018-02-831503] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 07/08/2018] [Indexed: 02/06/2023] Open
Abstract
AMP-activated protein kinase (AMPK) α1 is activated in platelets on thrombin or collagen stimulation, and as a consequence, phosphorylates and inhibits acetyl-CoA carboxylase (ACC). Because ACC is crucial for the synthesis of fatty acids, which are essential for platelet activation, we hypothesized that this enzyme plays a central regulatory role in platelet function. To investigate this, we used a double knock-in (DKI) mouse model in which the AMPK phosphorylation sites Ser79 on ACC1 and Ser212 on ACC2 were mutated to prevent AMPK signaling to ACC. Suppression of ACC phosphorylation promoted injury-induced arterial thrombosis in vivo and enhanced thrombus growth ex vivo on collagen-coated surfaces under flow. After collagen stimulation, loss of AMPK-ACC signaling was associated with amplified thromboxane generation and dense granule secretion. ACC DKI platelets had increased arachidonic acid-containing phosphatidylethanolamine plasmalogen lipids. In conclusion, AMPK-ACC signaling is coupled to the control of thrombosis by specifically modulating thromboxane and granule release in response to collagen. It appears to achieve this by increasing platelet phospholipid content required for the generation of arachidonic acid, a key mediator of platelet activation.
Collapse
|
3
|
Jung SH, Han JH, Park HS, Lee JJ, Yang SY, Kim YH, Heo KS, Myung CS. Inhibition of Collagen-Induced Platelet Aggregation by the Secobutanolide Secolincomolide A from Lindera obtusiloba Blume. Front Pharmacol 2017; 8:560. [PMID: 28878675 PMCID: PMC5572288 DOI: 10.3389/fphar.2017.00560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
Atherothrombosis is one of the main underlying cause of cardiovascular diseases. In addition to treating atherothrombosis with antithrombotic agents, there is growing interest in the role of natural food products and biologically active ingredients for the prevention and treatment of cardiovascular diseases. This study aimed to investigate the effect of secolincomolide A (3) isolated from Lindera obtusiloba Blume on platelet activity and identify possible signaling pathways. In our study, the antiplatelet activities of 3 were measured by collagen-induced platelet aggregation and serotonin secretion in freshly isolated rabbit platelets. Interestingly, 3 effectively inhibited the collagen-induced platelet aggregation and serotonin secretion via decreased production of diacylglycerol, arachidonic acid, and cyclooxygenase-mediated metabolites such as thromboxane B2 (TXB2), and prostaglandin D2 (PGD2). In accordance with the antiplatelet activities, 3 prolonged bleeding time and attenuated FeCl3-induced thrombus formation in arterial thrombosis model. Notably, 3 abolished the phosphorylation of phospholipase Cγ2 (PLCγ2), spleen tyrosine kinase (Syk), p47, extracellular signal-regulated kinase 1/2 (ERK1/2), protein kinase B (Akt) by inhibiting the activation of the collagen receptor, glycoprotein VI (GPVI). Taken together, our results indicate the therapeutic potential of 3 in antiplatelet action through inhibition of the GPVI-mediated signaling pathway and the COX-1-mediated AA metabolic pathways.
Collapse
Affiliation(s)
- Sang-Hyuk Jung
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Joo-Hui Han
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Hyun-Soo Park
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Jung-Jin Lee
- Korean Medicine Application Center, Korea Institute of Oriental MedicineDaegu, South Korea
| | - Seo Young Yang
- Department of Natural Product Chemistry, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Young Ho Kim
- Department of Natural Product Chemistry, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea.,Institute of Drug Research and Development, Chungnam National UniversityDaejeon, South Korea
| | - Kyung-Sun Heo
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Chang-Seon Myung
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea.,Institute of Drug Research and Development, Chungnam National UniversityDaejeon, South Korea
| |
Collapse
|
4
|
|
5
|
Malle E, Sattler W. Platelets and the Lipoproteins: Native, Modified and Platelet Modified Lipoproteins. Platelets 2009; 5:70-83. [DOI: 10.3109/09537109409005516] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Beckett CS, Kell PJ, Creer MH, McHowat J. Phospholipase A2-catalyzed hydrolysis of plasmalogen phospholipids in thrombin-stimulated human platelets. Thromb Res 2006; 120:259-68. [PMID: 17055038 PMCID: PMC2204082 DOI: 10.1016/j.thromres.2006.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 07/31/2006] [Accepted: 09/12/2006] [Indexed: 11/25/2022]
Abstract
In the present study, phospholipase A(2) (PLA(2))-catalyzed hydrolysis of platelet membrane phospholipids was investigated by measuring PLA(2) activity, phospholipid hydrolysis, arachidonic acid release and choline lysophospholipid production in thrombin-stimulated human platelets. Thrombin-stimulated platelets demonstrated selective hydrolysis of arachidonylated plasmenylcholine and plasmenylethanolamine, with little change in diacyl phospholipids. Accelerated plasmalogen hydrolysis was accompanied by increased arachidonic acid and thromboxane B(2) release and increased lysoplasmenylcholine production. Thrombin stimulation caused an increase in PLA(2) activity measured in the cytosolic fraction with plasmenylcholine only; no increase in activity was measured with phosphatidylcholine. No change in membrane-associated PLA(2) activity was observed with either substrate tested. Pretreatment with the Ca(2+)-independent PLA(2)-selective inhibitor, bromoenol lactone, inhibited completely any thrombin-stimulated phospholipid hydrolysis. Thus, thrombin stimulation of human platelets activates a cytosolic PLA(2) that selectively hydrolyzes arachidonylated plasmalogen phospholipids.
Collapse
Affiliation(s)
- Caroline S Beckett
- Saint Louis University School of Medicine, Department of Pathology, 1402 S. Grand Blvd. St. Louis, MO 63104, United States
| | | | | | | |
Collapse
|
7
|
Al-Madaney MM, Kramer JKG, Deng Z, Vanderhoek JY. Effects of lipid-esterified conjugated linoleic acid isomers on platelet function: evidence for stimulation of platelet phospholipase activity. Biochim Biophys Acta Mol Cell Biol Lipids 2003; 1635:75-82. [PMID: 14729070 DOI: 10.1016/j.bbalip.2003.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effects of four conjugated linoleic acid (CLA) isomers on in vitro collagen-induced human platelet aggregation and thromboxane (TXB(2), the inactive metabolite of the proaggregatory TXA(2)) production were examined. As the free fatty acid (FFA), 9t, 11t-CLA was the most effective inhibitor of these two processes (I(50)s of 2.2 and 4 microM, respectively) and the 9c, 11c-CLA was the least effective (I(50)s of 8.3 and 37 microM) of the isomers tested. When platelets were preesterified with either 25 microM 9t, 11t-CLA or 9c, 11c-CLA, CLA incorporation in total platelet lipids increased from 0.24% to 0.31% and 0.38%, and most of this increase was found to be in the phosphatidyl choline and phosphatidyl ethanolamine subclasses. The decrease in arachidonic acid (AA) content in total fatty acids or phospholipids was an order of magnitude greater. Furthermore, no significant differences between platelets prelabeled with either 9t, 11t- or 9c, 11c-CLA in the inhibition of collagen-induced aggregation and TXB(2) formation were observed. However, platelets prelabeled with 9c, 11c-CLA stimulated basal TXB(2) production (4-fold) which was not observed with platelets pretreated with either 9t, 11t-CLA, linoleic acid or stearic acid. This enhancement was associated with a 2.4-5-fold increase in the release of endogenous AA. Our results suggest that the presence of a conjugated cis, cis double bond appears to change the lipid environment sufficiently to stimulate the basal platelet phospholipase activity, which in turn increases the formation of TXB(2).
Collapse
Affiliation(s)
- May M Al-Madaney
- Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
8
|
Mondoro TH, Alayash AI, Ryan BA, Terle DA, Vostal JG. Hemoglobin A0 and alpha-crosslinked hemoglobin (alpha-DBBF) potentiate agonist-induced platelet aggregation through the platelet thromboxane receptor. ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 1998; 26:1-16. [PMID: 9507752 DOI: 10.3109/10731199809118942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemically modified hemoglobins are potential oxygen-carrying blood substitutes, but their in vivo administration has been associated with a variety of unexpected side events, including increased platelet reactivity. We studied the effects of hemoglobin A0 (HbA0) and alpha-crosslinked hemoglobin (alpha-DBBF) on platelets in vitro. Neither hemoglobin A0 nor alpha-DBBF activated platelets when added alone, but both proteins potentiated submaximal agonist-induced platelet aggregation without increasing other markers of platelet activation such as serotonin secretion. Only agonists that are known to cause release of platelet arachidonic acid (AA) were potentiated while aggregation induced by ADP, which does not release AA, was not potentiated. Blockade of the thromboxane receptor with SQ-29,548 prevented the HbA0-induced and the alpha-DBBF-induced potentiation suggesting that the AA/thromboxane signaling pathway mediates the interaction of platelets with hemoglobin.
Collapse
Affiliation(s)
- T H Mondoro
- Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
9
|
Farooqui AA, Yang HC, Horrocks LA. Plasmalogens, phospholipases A2 and signal transduction. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 21:152-61. [PMID: 8866672 DOI: 10.1016/0165-0173(95)00008-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several lines of evidence indicate that the breakdown of plasmalogens in neural membranes during neurodegenerative diseases is a receptor-mediated process catalyzed by a plasmalogen-selective phospholipase A2. This enzyme has recently been purified from bovine brain. It does not require Ca2+ and is localized in cytosol. It has a molecular mass of 39 kDa and is strongly inhibited by glycosaminoglycans, with the pattern of inhibition being heparan sulfate > hyaluronic acid > chondroitin sulfate > heparin. This plasmalogen-selective phospholipase A2 is also inhibited by gangliosides and sialoglycoproteins. Substrate specificity and the effects of metal ions, detergents and inhibitors suggest that this phospholipase A2 is different from the well-known 85 kDa Ca(2+)-dependent cytosolic phospholipase A2 that has recently been cloned and is not plasmalogen-selective. The plasmalogen-selective phospholipase A2 may be regulated by glycosaminoglycans and sialoglycoconjugates and may be involved in the regulation of K+ channels. This enzyme, which plays a major role in the release of fatty acids during ischemic injury and reperfusion, shows promise as a major target for drug therapy.
Collapse
Affiliation(s)
- A A Farooqui
- Neurovation Inc. and Department of Medical Biochemistry, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
10
|
Turini ME, Holub BJ. The cleavage of plasmenylethanolamine by phospholipase A2 appears to be mediated by the low affinity binding site of the TxA2/PGH2 receptor in U46619-stimulated human platelets. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1213:21-6. [PMID: 8011675 DOI: 10.1016/0005-2760(94)90217-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two TxA2/PGH2 receptor binding sites linked to different effector systems have recently been identified. Since plasmenylethanolamine represents the major phospholipid reservoir of arachidonic acid (AA) in resting human platelets, we assessed the differential role of these binding sites on plasmenylethanolamine hydrolysis by phospholipase A2 activity upon platelet activation by determining the generation of the corresponding [3H]lysoplasmenylethanolamine. Ethanolamine-containing phospholipids in platelets were pre-labelled with [3H]ethanolamine prior to platelet stimulation with U46619 (1 microM), a TxA2 mimetic, in the presence or absence of S-145, an antagonist of the low affinity TxA2/PGH2 receptor. Labelled platelets were also treated with the TxA2/PGH2 receptor antagonist, GR32191B, prior to washing (which blocks the low affinity site of the receptor) and subsequent stimulation. The above conditions provided for blockage of platelet aggregation but not shape change with U46619. The rise in [3H]lysoplasmenylethanolamine accumulation (170% of unstimulated controls) with U46619 as the agonist was inhibited in platelets pre-treated with S-145 and in platelets washed from GR32191B. Similar findings were also obtained for [3H]lysophosphatidylethanolamine accumulation. The present results indicate that the TxA2-dependent activation of plasmenylethanolamine cleavage by phospholipase A2 in intact human platelets is predominantly linked to the low affinity site of the TxA2/PGH2 receptor and may be important for platelet aggregation but not shape change.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid
- Binding Sites
- Biphenyl Compounds/pharmacology
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Bridged Bicyclo Compounds/pharmacology
- Fatty Acids, Monounsaturated/pharmacology
- Heptanoic Acids/pharmacology
- Humans
- Lysophospholipids/biosynthesis
- Phospholipases A/metabolism
- Phospholipases A2
- Plasmalogens/metabolism
- Platelet Aggregation
- Prostaglandin Endoperoxides, Synthetic/pharmacology
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/metabolism
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2
- Thromboxane A2/analogs & derivatives
- Thromboxane A2/pharmacology
Collapse
Affiliation(s)
- M E Turini
- Department of Nutritional Sciences, University of Guelph, Ontario, Canada
| | | |
Collapse
|