1
|
Abstract
Isolated mitochondria are useful to study fundamental processes including mitochondrial respiration, metabolic activity, protein import, membrane fusion, protein complex assembly, as well as interactions of mitochondria with the cytoskeleton, nuclear encoded mRNAs, and other organelles. In addition, studies of the mitochondrial proteome, phosphoproteome, and lipidome are dependent on preparation of highly purified mitochondria (Boldogh, Vojtov, Karmon, & Pon, 1998; Cui, Conte, Fox, Zara, & Winge, 2014; Marc et al., 2002; Meeusen, McCaffery, & Nunnari, 2004; Reinders et al., 2007; Schneiter et al., 1999; Stuart & Koehler, 2007). Most methods to isolate mitochondria rely on differential centrifugation, a two-step centrifugation carried out at low speed to remove intact cells, cell and tissue debris, and nuclei from whole cell extracts followed by high speed centrifugation to concentrate mitochondria and separate them from other organelles. However, methods to disrupt cells and tissue vary. Moreover, density gradient centrifugation or affinity purification of the organelle are used to further purify mitochondria or to separate different populations of the organelle. Here, we describe protocols to isolate mitochondria from different cells and tissues as well as approaches to assess the purity and integrity of isolated organelles.
Collapse
|
2
|
Analysis of a Functional Dimer Model of Ubiquinol Cytochrome c Oxidoreductase. Biophys J 2017; 113:1599-1612. [PMID: 28978450 PMCID: PMC5627346 DOI: 10.1016/j.bpj.2017.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 11/21/2022] Open
Abstract
Ubiquinol cytochrome c oxidoreductase (bc1 complex) serves as an important electron junction in many respiratory systems. It funnels electrons coming from NADH and ubiquinol to cytochrome c, but it is also capable of producing significant amounts of the free radical superoxide. In situ and in other experimental systems, the enzyme exists as a dimer. But until recently, it was believed to operate as a functional monomer. Here we show that a functional dimer model is capable of explaining both kinetic and superoxide production rate data. The model consists of six electronic states characterized by the number of electrons deposited on the complex. It is fully reversible and strictly adheres to the thermodynamics governing the reactions. A total of nine independent data sets were used to parameterize the model. To explain the data with a consistent set of parameters, it was necessary to incorporate intramonomer Coulombic effects between hemes bL and bH and intermonomer Coulombic effects between bL hemes. The fitted repulsion energies fall within the theoretical range of electrostatic calculations. In addition, model analysis demonstrates that the Q pool is mostly oxidized under normal physiological operation but can switch to a more reduced state when reverse electron transport conditions are in place.
Collapse
|
3
|
Balercia G, Mancini A, Tirabassi G, Pontecorvi A. Coenzyme Q10 in Male Infertility. ANTIOXIDANTS IN ANDROLOGY 2017. [DOI: 10.1007/978-3-319-41749-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Analysis of the kinetics and bistability of ubiquinol:cytochrome c oxidoreductase. Biophys J 2014; 105:343-55. [PMID: 23870256 DOI: 10.1016/j.bpj.2013.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/28/2013] [Accepted: 05/13/2013] [Indexed: 11/21/2022] Open
Abstract
Ubiquinol:cytochrome c oxidoreductase, bc1 complex, is the enzyme in the respiratory chain of mitochondria responsible for the transfer reducing potential from ubiquinol to cytochrome c coupled to the movement of charge against the electrostatic potential across the mitochondrial inner membrane. The complex is also implicated in the generation of reactive oxygen species under certain conditions and is thus a contributor to cellular oxidative stress. Here, a biophysically detailed, thermodynamically consistent model of the bc1 complex for mammalian mitochondria is developed. The model incorporates the major redox centers near the Qo- and Qi-site of the enzyme, includes the pH-dependent redox reactions, accounts for the effect of the proton-motive force of the reaction rate, and simulates superoxide production at the Qo-site. The model consists of six distinct states characterized by the mobile electron distribution in the enzyme. Within each state, substates that correspond to various electron localizations exist in a rapid equilibrium distribution. The steady-state equation for the six-state system is parameterized using five independent data sets and validated in comparison to additional experimental data. Model analysis suggests that the pH-dependence on turnover is primarily due to the pKa values of cytochrome bH and Rieske iron sulfur protein. A previously proposed kinetic scheme at the Qi-site where ubiquinone binds to only the reduced enzyme and ubiquinol binds to only the oxidized enzyme is shown to be thermodynamically infeasible. Moreover, the model is able to reproduce the bistability phenomenon where at a given overall flux through the enzyme, different rates of superoxide production are attained when the enzyme is differentially reduced.
Collapse
|
5
|
Ghelli A, Tropeano CV, Calvaruso MA, Marchesini A, Iommarini L, Porcelli AM, Zanna C, De Nardo V, Martinuzzi A, Wibrand F, Vissing J, Kurelac I, Gasparre G, Selamoglu N, Daldal F, Rugolo M. The cytochrome b p.278Y>C mutation causative of a multisystem disorder enhances superoxide production and alters supramolecular interactions of respiratory chain complexes. Hum Mol Genet 2013; 22:2141-51. [PMID: 23418307 DOI: 10.1093/hmg/ddt067] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cytochrome b is the only mtDNA-encoded subunit of the mitochondrial complex III (CIII), the functional bottleneck of the respiratory chain. Previously, the human cytochrome b missense mutation m.15579A>G, which substitutes the Tyr 278 with Cys (p.278Y>C), was identified in a patient with severe exercise intolerance and multisystem manifestations. In this study, we characterized the biochemical properties of cybrids carrying this mutation and report that the homoplasmic p.278Y>C mutation caused a dramatic reduction in the CIII activity and in CIII-driven mitochondrial ATP synthesis. However, the CI, CI + CIII and CII + CIII activities and the rate of ATP synthesis driven by the CI or CII substrate were only partially reduced or unaffected. Consistent with these findings, mutated cybrids maintained the mitochondrial membrane potential in the presence of oligomycin, indicating that it originated from the respiratory electron transport chain. The p.278Y>C mutation enhanced superoxide production, as indicated by direct measurements in mitochondria and by the imbalance of glutathione homeostasis in intact cybrids. Remarkably, although the assembly of CI or CIII was not affected, the examination of respiratory supercomplexes revealed that the amounts of CIII dimer and III2IV1 were reduced, whereas those of I1III2IVn slightly increased. We therefore suggest that the deleterious effects of p.278Y>C mutation on cytochrome b are palliated when CIII is assembled into the supercomplexes I1III2IVn, in contrast to when it is found alone. These findings underline the importance of supramolecular interactions between complexes for maintaining a basal respiratory chain activity and shed light to the molecular basis of disease manifestations associated with this mutation.
Collapse
Affiliation(s)
- Anna Ghelli
- Dipartimento di Farmacia e Biotecnologie, Universita` di Bologna, Via Irnerio 42, Bologna 40126, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K. Unraveling the heater: new insights into the structure of the alternative oxidase. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:637-63. [PMID: 23638828 DOI: 10.1146/annurev-arplant-042811-105432] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The alternative oxidase is a membrane-bound ubiquinol oxidase found in the majority of plants as well as many fungi and protists, including pathogenic organisms such as Trypanosoma brucei. It catalyzes a cyanide- and antimycin-A-resistant oxidation of ubiquinol and the reduction of oxygen to water, short-circuiting the mitochondrial electron-transport chain prior to proton translocation by complexes III and IV, thereby dramatically reducing ATP formation. In plants, it plays a key role in cellular metabolism, thermogenesis, and energy homeostasis and is generally considered to be a major stress-induced protein. We describe recent advances in our understanding of this protein's structure following the recent successful crystallization of the alternative oxidase from T. brucei. We focus on the nature of the active site and ubiquinol-binding channels and propose a mechanism for the reduction of oxygen to water based on these structural insights. We also consider the regulation of activity at the posttranslational and retrograde levels and highlight challenges for future research.
Collapse
Affiliation(s)
- Anthony L Moore
- Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| | | | | | | | | | | |
Collapse
|
7
|
Mancini A, Balercia G. Coenzyme Q(10) in male infertility: physiopathology and therapy. Biofactors 2011; 37:374-80. [PMID: 21989906 DOI: 10.1002/biof.164] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 12/19/2022]
Abstract
Both the bioenergetic and the antioxidant role of CoQ(10) suggest a possible involvement in sperm biochemistry and male infertility. CoQ(10) can be quantified in seminal fluid, where its concentration correlates with sperm count and motility. It was found that distribution of CoQ(10) between sperm cells and seminal plasma was altered in varicocele patients, who also presented a higher level of oxidative stress and lower total antioxidant capacity. The effect of vericocelectomy on partially reversing these biochemical abnormalities is discussed. The redox status of coenzyme Q(10) in seminal fluid was also determined: an inverse correlation was found between ubiquinol/ubiquinone ratio and hydroperoxide levels and between this ratio and the percentage of abnormal sperm forms. After the first in vitro observations CoQ(10) was administered to infertile patients affected by idiopathic asthenozoospermia, originally in an open label study and then in three randomized placebo-controlled trials; doses were around 200-300 mg/day and treatment lasted 6 months. A significant increase in the concentration of CoQ(10) was found, both in seminal plasma and sperm cells. Treatment also led to a certain improvement in sperm motility. In one of the studies there was also a decrease in plasma levels of follicle stimulating horhone (FSH) and luteinizine horhone (LH). Administration of CoQ(10) may play a positive role in the treatment of asthenozoospermia, possibly related to not only to its function in the mitochondrial respiratory chain but also to its antioxidant properties. Further studies are needed in order to determine whether there is also an effect on fertility rate.
Collapse
Affiliation(s)
- Antonio Mancini
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | | |
Collapse
|
8
|
Quinlan CL, Gerencser AA, Treberg JR, Brand MD. The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J Biol Chem 2011; 286:31361-72. [PMID: 21708945 DOI: 10.1074/jbc.m111.267898] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Superoxide production from antimycin-inhibited complex III in isolated mitochondria first increased to a maximum then decreased as substrate supply was modulated in three different ways. In each case, superoxide production had a similar bell-shaped relationship to the reduction state of cytochrome b(566), suggesting that superoxide production peaks at intermediate Q-reduction state because it comes from a semiquinone in the outer quinone-binding site in complex III (Q(o)). Imposition of a membrane potential changed the relationships between superoxide production and b(566) reduction and between b(562) and b(566) redox states, suggesting that b(562) reduction also affects semiquinone concentration and superoxide production. To assess whether this behavior was consistent with the Q-cycle mechanism of complex III, we generated a kinetic model of the antimycin-inhibited Q(o) site. Using published rate constants (determined without antimycin), with unknown rate constants allowed to vary, the model failed to fit the data. However, when we allowed the rate constant for quinol oxidation to decrease 1000-fold and the rate constant for semiquinone oxidation by b(566) to depend on the b(562) redox state, the model fit the energized and de-energized data well. In such fits, quinol oxidation was much slower than literature values and slowed further when b(566) was reduced, and reduction of b(562) stabilized the semiquinone when b(566) was oxidized. Thus, superoxide production at Q(o) depends on the reduction states of b(566) and b(562) and fits the Q-cycle only if particular rate constants are altered when b oxidation is prevented by antimycin. These mechanisms limit superoxide production and short circuiting of the Q-cycle when electron transfer slows.
Collapse
Affiliation(s)
- Casey L Quinlan
- Buck Institute for Research on Aging, Novato, California 94945, USA.
| | | | | | | |
Collapse
|
9
|
Kido Y, Sakamoto K, Nakamura K, Harada M, Suzuki T, Yabu Y, Saimoto H, Yamakura F, Ohmori D, Moore A, Harada S, Kita K. Purification and kinetic characterization of recombinant alternative oxidase from Trypanosoma brucei brucei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:443-50. [DOI: 10.1016/j.bbabio.2009.12.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/23/2009] [Accepted: 12/25/2009] [Indexed: 10/20/2022]
|
10
|
|
11
|
Balercia G, Mancini A, Paggi F, Tiano L, Pontecorvi A, Boscaro M, Lenzi A, Littarru GP. Coenzyme Q10 and male infertility. J Endocrinol Invest 2009; 32:626-32. [PMID: 19509475 DOI: 10.1007/bf03346521] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We had previously demonstrated that Coenzyme Q10 [(CoQ10) also commonly called ubiquinone] is present in well-measurable levels in human seminal fluid, where it probably exerts important metabolic and antioxidant functions; seminal CoQ10 concentrations show a direct correlation with seminal parameters (count and motility). Alterations of CoQ10 content were also shown in conditions associated with male infertility, such as asthenozoospermia and varicocele (VAR). The physiological role of this molecule was further clarified by inquiring into its variations in concentrations induced by different medical or surgical procedures used in male infertility treatment. We therefore evaluated CoQ10 concentration and distribution between seminal plasma and spermatozoa in VAR, before and after surgical treatment, and in infertile patients after recombinant human FSH therapy. The effect of CoQ10 on sperm motility and function had been addressed only through some in vitro experiments. In two distinct studies conducted by our group, 22 and 60 patients affected by idiopathic asthenozoospermia were enrolled, respectively. CoQ10 and its reduced form, ubiquinol, increased significantly both in seminal plasma and sperm cells after treatment, as well as spermatozoa motility. A weak linear dependence among the relative variations, at baseline and after treatment, of seminal plasma or intracellular CoQ10, ubiquinol levels and kinetic parameters was found in the treated group. Patients with lower baseline value of motility and CoQ10 levels had a statistically significant higher probability to be responders to the treatment. In conclusion, the exogenous administration of CoQ10 increases both ubiquinone and ubiquinol levels in semen and can be effective in improving sperm kinetic features in patients affected by idiopathic asthenozoospermia.
Collapse
Affiliation(s)
- G Balercia
- Endocrinology, Andrology Unit, Department of Clinical Medicine and Applied Biotechnologies, Polytechnic University of Marche, Umberto I Hospital, Ancona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lenaz G, Genova ML. Mobility and function of Coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:563-73. [DOI: 10.1016/j.bbabio.2009.02.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/23/2009] [Accepted: 02/23/2009] [Indexed: 11/29/2022]
|
13
|
Fato R, Bergamini C, Bortolus M, Maniero AL, Leoni S, Ohnishi T, Lenaz G. Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:384-92. [PMID: 19059197 DOI: 10.1016/j.bbabio.2008.11.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/29/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
We have investigated the production of reactive oxygen species (ROS) by Complex I in isolated open bovine heart submitochondrial membrane fragments during forward electron transfer in presence of NADH, by means of the probe 2',7'-Dichlorodihydrofluorescein diacetate. ROS production by Complex I is strictly related to its inhibited state. Our results indicate that different Complex I inhibitors can be grouped into two classes: Class A inhibitors (Rotenone, Piericidin A and Rolliniastatin 1 and 2) increase ROS production; Class B inhibitors (Stigmatellin, Mucidin, Capsaicin and Coenzyme Q(2)) prevent ROS production also in the presence of Class A inhibitors. Addition of the hydrophilic Coenzyme Q(1) as an electron acceptor potentiates the effect of Rotenone-like inhibitors in increasing ROS production, but has no effect in the presence of Stigmatellin-like inhibitors; the effect is not shared by more hydrophobic quinones such as decyl-ubiquinone. This behaviour relates the prooxidant CoQ(1) activity to a hydrophilic electron escape site. Moreover the two classes of Complex I inhibitors have an opposite effect on the increase of NADH-DCIP reduction induced by short chain quinones: only Class B inhibitors allow this increase, indicating the presence of a Rotenone-sensitive but Stigmatellin-insensitive semiquinone species in the active site of the enzyme. The presence of this semiquinone was also suggested by preliminary EPR data. The results suggest that electron transfer from the iron-sulphur clusters (N2) to Coenzyme Q occurs in two steps gated by two different conformations, the former being sensitive to Rotenone and the latter to Stigmatellin.
Collapse
Affiliation(s)
- Romana Fato
- Dipartimento di Biochimica G. Moruzzi, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Genova M, Baracca A, Biondi A, Casalena G, Faccioli M, Falasca A, Formiggini G, Sgarbi G, Solaini G, Lenaz G. Is supercomplex organization of the respiratory chain required for optimal electron transfer activity? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:740-6. [DOI: 10.1016/j.bbabio.2008.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 03/31/2008] [Accepted: 04/05/2008] [Indexed: 02/03/2023]
|
15
|
Balercia G, Buldreghini E, Vignini A, Tiano L, Paggi F, Amoroso S, Ricciardo-Lamonica G, Boscaro M, Lenzi A, Littarru G. Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: a placebo-controlled, double-blind randomized trial. Fertil Steril 2008; 91:1785-92. [PMID: 18395716 DOI: 10.1016/j.fertnstert.2008.02.119] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/04/2008] [Accepted: 02/12/2008] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of coenzyme Q(10) treatment in improving semen quality in men with idiopathic infertility. DESIGN Placebo-controlled, double-blind randomized trial. SETTING Andrology Unit, Department of Internal Medicine, Polytechnic University of Marche, Italy. PATIENT(S) Sixty infertile patients (27-39 years of age) with the following baseline sperm selection criteria: concentration >20 x 10(6)/mL, sperm forward motility <50%, and normal sperm morphology >30%; 55 patients completed the study. INTERVENTION(S) Patients underwent double-blind therapy with coenzyme Q(10), 200 mg/day, or placebo; the study design was 1 month of run-in, 6 months of therapy or placebo, and 3 months of follow-up. MAIN OUTCOME MEASURE(S) Variations in semen parameters used for patient selection and variations of coenzyme Q(10) and ubiquinol concentrations in seminal plasma and spermatozoa. RESULT(S) Coenzyme Q(10) and ubiquinol increased significantly in both seminal plasma and sperm cells after treatment, as well as spermatozoa motility. A weak linear dependence among the relative variations, baseline and after treatment, of seminal plasma or intracellular coenzyme Q(10) and ubiquinol levels and kinetic parameters was found in the treated group. Patients with a lower baseline value of motility and levels of coenzyme Q(10) had a statistically significant higher probability to be responders to the treatment. CONCLUSION(S) The exogenous administration of coenzyme Q(10) increases the level of the same and ubiquinol in semen and is effective in improving sperm kinetic features in patients affected by idiopathic asthenozoospermia.
Collapse
Affiliation(s)
- Giancarlo Balercia
- Department of Internal Medicine and Applied Biotechnologies, Andrology Unit, Endocrinology, Umberto I Hospital, School of Medicine, Polytechnic University of Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fato R, Bergamini C, Leoni S, Lenaz G. Mitochondrial production of reactive oxygen species: role of complex I and quinone analogues. Biofactors 2008; 32:31-9. [PMID: 19096098 DOI: 10.1002/biof.5520320105] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) are mainly produced by the respiratory chain enzymes. The sites for ROS production in mitochondrial respiratory chain are normally ascribed to the activity of Complex I and III. The presence of specific inhibitors modulates reactive oxygen species production in Complex I: inhibitors such as rotenone induce a strong ROS increase, while inhibitors such as stigmatellin prevent it. We have investigated the effect of hydrophilic quinones on Complex I ROS production in presence of different inhibitors. Some short chain quinones are Complex I inhibitors (CoQ2, idebenone and its derivatives), while CoQ1, decylubiquinone~ (DB) and duroquinone (DQ) are good electron acceptors from Complex I. Our results show that the ability of short chain quinones to induce an oxidative stress depends on the site of interaction with Complex I and on their physical-chemical characteristics. We can conclude that hydrophilic quinones may enhance oxidative stress by interaction with the electron escape sites on Complex I while more hydrophobic quinones can be reduced only at the physiological quinone reducing site without reacting with molecular oxygen.
Collapse
Affiliation(s)
- Romana Fato
- Dipartimento di Biochimica G. Moruzzi, University of Bologna, 40126 Bologna, Italy.
| | | | | | | |
Collapse
|
17
|
Lenaz G, Fato R, Formiggini G, Genova ML. The role of Coenzyme Q in mitochondrial electron transport. Mitochondrion 2007; 7 Suppl:S8-33. [PMID: 17485246 DOI: 10.1016/j.mito.2007.03.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 03/20/2007] [Accepted: 03/22/2007] [Indexed: 12/21/2022]
Abstract
In mitochondria, most Coenzyme Q is free in the lipid bilayer; the question as to whether tightly bound, non-exchangeable Coenzyme Q molecules exist in mitochondrial complexes is still an open question. We review the mechanism of inter-complex electron transfer mediated by ubiquinone and discuss the kinetic consequences of the supramolecular organization of the respiratory complexes (randomly dispersed vs. super-complexes) in terms of Coenzyme Q pool behavior vs. metabolic channeling, respectively, both in physiological and in some pathological conditions. As an example of intra-complex electron transfer, we discuss in particular Complex I, a topic that is still under active investigation.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica, Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | |
Collapse
|
18
|
Pallotti F, Lenaz G. Isolation and Subfractionation of Mitochondria from Animal Cells and Tissue Culture Lines. Methods Cell Biol 2007; 80:3-44. [PMID: 17445687 DOI: 10.1016/s0091-679x(06)80001-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Francesco Pallotti
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi dell'Insubria, 21100 Varese, Italy
| | | |
Collapse
|
19
|
Lenaz G, Genova ML. Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. Am J Physiol Cell Physiol 2006; 292:C1221-39. [PMID: 17035300 DOI: 10.1152/ajpcell.00263.2006] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence, mainly based on native electrophoresis, has suggested that the mitochondrial respiratory chain is organized in the form of supercomplexes, due to the aggregation of the main respiratory chain enzymatic complexes. This evidence strongly contrasts the previously accepted model, the Random Diffusion Model, largely based on kinetic studies, stating that the complexes are randomly distributed in the lipid bilayer of the inner membrane and functionally connected by lateral diffusion of small redox molecules, i.e., coenzyme Q and cytochrome c. This review critically examines the experimental evidence, both structural and functional, pertaining to the two models and attempts to provide an updated view of the organization of the respiratory chain and of its kinetic consequences. The conclusion that structural respiratory assemblies exist is overwhelming, whereas the expected functional consequence of substrate channeling between the assembled enzymes is controversial. Examination of the available evidence suggests that, although the supercomplexes are structurally stable, their kinetic competence in substrate channeling is more labile and may depend on the system under investigation and the assay conditions.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica "G. Moruzzi," Via Irnerio 48, 40126 Bologna, Italy.
| | | |
Collapse
|
20
|
D'Aurelio M, Gajewski CD, Lenaz G, Manfredi G. Respiratory chain supercomplexes set the threshold for respiration defects in human mtDNA mutant cybrids. Hum Mol Genet 2006; 15:2157-69. [PMID: 16740593 DOI: 10.1093/hmg/ddl141] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations cause heterogeneous disorders in humans. MtDNA exists in multiple copies per cell, and mutations need to accumulate beyond a critical threshold to cause disease, because coexisting wild-type mtDNA can complement the genetic defect. A better understanding of the molecular determinants of functional complementation among mtDNA molecules could help us shedding some light on the mechanisms modulating the phenotypic expression of mtDNA mutations in mitochondrial diseases. We studied mtDNA complementation in human cells by fusing two cell lines, one containing a homoplasmic mutation in a subunit of respiratory chain complex IV, COX I, and the other a distinct homoplasmic mutation in a subunit of complex III, cytochrome b. Upon cell fusion, respiration is recovered in hybrids cells, indicating that mitochondria fuse and exchange genetic and protein materials. Mitochondrial functional complementation occurs frequently, but with variable efficiency. We have investigated by native gel electrophoresis the molecular organization of the mitochondrial respiratory chain in complementing hybrid cells. We show that the recovery of mitochondrial respiration correlates with the presence of supramolecular structures (supercomplexes) containing complexes I, III and IV. We suggest that critical amounts of complexes III or IV are required in order for supercomplexes to form and provide mitochondrial functional complementation. From these findings, supercomplex assembly emerges as a necessary step for respiration, and its defect sets the threshold for respiratory impairment in mtDNA mutant cells.
Collapse
Affiliation(s)
- Marilena D'Aurelio
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
21
|
Gregor W, Staniek K, Nohl H, Gille L. Distribution of tocopheryl quinone in mitochondrial membranes and interference with ubiquinone-mediated electron transfer. Biochem Pharmacol 2006; 71:1589-601. [PMID: 16569397 DOI: 10.1016/j.bcp.2006.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/20/2006] [Accepted: 02/20/2006] [Indexed: 11/30/2022]
Abstract
Alpha-tocopherol (Toc) is an efficient lipophilic antioxidant present in all mammalian lipid membranes. This chromanol is metabolized by two different pathways: excessive dietary Toc is degraded in the liver by side chain oxidation, and Toc acting as antioxidant is partially degraded to alpha-tocopheryl quinone (TQ). The latter process and the similarity between TQ and ubiquinone (UQ) prompted us to study the distribution of TQ in rat liver mitochondrial membranes and the interference of TQ with the activity of mitochondrial and microsomal redox enzymes interacting with UQ. In view of the contradictory literature results regarding Toc, we determined the distribution of Toc, TQ, and UQ over inner and outer membranes of rat liver mitochondria. Irrespective of the preparation method, the TQ/Toc ratio tends to be higher in mitochondrial inner membranes than in outer membranes suggesting TQ formation by respiratory oxidative stress in vivo. The comparison of the catalytic activities using short-chain homologues of TQ and UQ showed decreasing selectivity in the order complex II (TQ activity not detected)>Q(o) site of complex III>Q(i) site of complex III>complex I approximately cytochrome b(5) reductase>cytochrome P-450 reductase (comparable reactivity of UQ and TQ). TQ binding to some enzymes is comparable to UQ despite low activities. These data show that TQ arising from excessive oxidative degradation of Toc can potentially interfere with mitochondrial electron transfer. On the other hand, both microsomal and mitochondrial enzymes contribute to the reduction of TQ to tocopheryl hydroquinone, which has been suggested to play an antioxidative role itself.
Collapse
Affiliation(s)
- Wolfgang Gregor
- Research Institute for Biochemical Pharmacology and Molecular Toxicology, University of Veterinary Medicine Vienna, Austria
| | | | | | | |
Collapse
|
22
|
Genova ML, Abd-Elsalam NM, Mahdy ESME, Bernacchia A, Lucarini M, Pedulli GF, Lenaz G. Redox cycling of adrenaline and adrenochrome catalysed by mitochondrial Complex I. Arch Biochem Biophys 2006; 447:167-73. [PMID: 16487923 DOI: 10.1016/j.abb.2006.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/13/2006] [Accepted: 01/14/2006] [Indexed: 11/16/2022]
Abstract
Complex I in bovine heart submitochondrial particles catalyses the NADH-supported generation of superoxide anion; adrenaline is oxidised by superoxide to adrenochrome that, on its hand, is reduced by Complex I, thus establishing a redox cycle that amplifies the superoxide production. The routes in Complex I for superoxide formation and for adrenochrome reduction appear to be different, since they have a different sensitivity to Complex I inhibitors. The results are discussed in terms of current assays for superoxide detection and of pathologies linked to catecholamine oxidation.
Collapse
Affiliation(s)
- Maria Luisa Genova
- Dipartimento di Biochimica "G. Moruzzi," Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Lenaz G, Baracca A, Fato R, Genova ML, Solaini G. New insights into structure and function of mitochondria and their role in aging and disease. Antioxid Redox Signal 2006; 8:417-37. [PMID: 16677088 DOI: 10.1089/ars.2006.8.417] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This review covers some novel findings on mitochondrial biochemistry and discusses diseases due to mitochondrial DNA mutations as a model of the changes occurring during physiological aging. The random collision model of organization of the mitochondrial respiratory chain has been recently challenged on the basis of findings of supramolecular organization of respiratory chain complexes. The source of superoxide in Complex I is discussed on the basis of laboratory experiments using a series of specific inhibitors and is presumably iron sulfur center N2. Maternally inherited diseases due to mutations of structural genes in mitochondrial DNA are surveyed as a model of alterations mimicking those occurring during normal aging. The molecular defects in senescence are surveyed on the basis of the "Mitochondrial Theory of Aging", establishing mitochondrial DNA somatic mutations, caused by accumulation of oxygen radical damage, to be at the basis of cellular senescence. Mitochondrial production of reactive oxygen species increases with aging and mitochondrial DNA mutations and deletions accumulate and may be responsible for oxidative phosphorylation defects. Evidence is presented favoring the mitochondrial theory, with primary mitochondrial alterations, although the problem is made more complex by changes in the cross-talk between nuclear and mitochondrial DNA.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
24
|
Andreani A, Granaiola M, Leoni A, Locatelli A, Morigi R, Rambaldi M, Recanatini M, Lenaz G, Fato R, Bergamini C. Effects of new ubiquinone-imidazo[2,1-b]thiazoles on mitochondrial complex I (NADH-ubiquinone reductase) and on mitochondrial permeability transition pore. Bioorg Med Chem 2005; 12:5525-32. [PMID: 15465329 DOI: 10.1016/j.bmc.2004.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
In this work we describe the synthesis of a series of imidazo[2,1-b]thiazoles and 2,3-dihydroimidazo[2,1-b]thiazoles connected by means of a methylene bridge to CoQ(0). These compounds were tested as specific inhibitors of the NADH:ubiquinone reductase activity in mitochondrial membranes. The imidazothiazole system when bound to the quinone ring in place of the isoprenoid lateral side chain, may increase the inhibitory effect (with an IC(50) for NADH-Q(1) activity ranging between 0.25 and 0.96 microM) whereas the benzoquinone moiety seems to lose the capability to accept electrons from complex I as indicated by very low maximal velocity elicited by the compounds tested. Moreover the low rotenone sensitivity for almost all of these compounds suggests that they are only partially able to interact with the physiological ubiquinone-reduction site. The compounds were investigated for the capability of increasing the permeability transition of the inner mitochondrial membrane in isolated mitochondria. Unlike CoQ(0), which is considered a mitochondrial membrane permeability transition inhibitor, the new compounds were inducers.
Collapse
Affiliation(s)
- Aldo Andreani
- Dipartimento di Scienze Farmaceutiche, Universitá di Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mancini A, De Marinis L, Littarru GP, Balercia G. An update of Coenzyme Q10 implications in male infertility: biochemical and therapeutic aspects. Biofactors 2005; 25:165-74. [PMID: 16873942 DOI: 10.1002/biof.5520250119] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This review is focused upon the role of coenzyme Q(10) in male infertility in the light of a broader issue of oxidative damage and antioxidant defence in sperm cells and seminal plasma. Reactive oxygen species play a key pathogenetic role in male infertility besides having a well-recognized physiological function. The deep involvement of coenzyme Q(10) in mitochondrial bioenergetics and its antioxidant properties are at the basis of its role in seminal fluid. Following the early studies addressing its presence in sperm cells and seminal plasma, the relative distribution of the quinone between these two compartments was studied in infertile men, with special attention to varicocele. The reduction state of CoQ(10) in seminal fluid was also investigated. After the first in vitro experiments CoQ(10) was administered to a group of idiopathic asthenozoospermic infertile patients. Seminal analysis showed a significant increase of CoQ(10) both in seminal plasma and in sperm cells, together with an improvement in sperm motility. The increased concentration of CoQ(10) in seminal plasma and sperm cells, the improvement of semen kinetic features after treatment, and the evidence of a direct correlation between CoQ(10) concentrations and sperm motility strongly support a cause/effect relationship. From a general point of view, a deeper knowledge of these molecular mechanisms could lead to a new insight into the so-called unexplained infertility.
Collapse
Affiliation(s)
- A Mancini
- Operative Unit of Endocrinology, Catholic University School of Medicine, Rome, Italy.
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Giorgio Lenaz
- Dipartimento Di Biochemica, Universita Di Bologna, Italy
| | | | | | | |
Collapse
|
27
|
Balercia G, Mosca F, Mantero F, Boscaro M, Mancini A, Ricciardo-Lamonica G, Littarru G. Coenzyme Q(10) supplementation in infertile men with idiopathic asthenozoospermia: an open, uncontrolled pilot study. Fertil Steril 2004; 81:93-8. [PMID: 14711549 DOI: 10.1016/j.fertnstert.2003.05.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To clarify a potential therapeutic role of coenzyme Q(10) (CoQ(10)) in infertile men with idiopathic asthenozoospermia. DESIGN Open, uncontrolled pilot study. PATIENT(S) Infertile men with idiopathic asthenozoospermia. INTERVENTION(S) CoQ(10) was administered orally; semen samples were collected at baseline and after 6 months of therapy. MAIN OUTCOME MEASURE (S): Semen kinetic parameters, including computer-assisted sperm data and CoQ(10) and phosphatidylcholine levels. RESULT(S) CoQ(10) levels increased significantly in seminal plasma and in sperm cells after treatment. Phosphatidylcholine levels also increased. A significant increase was also found in sperm cell motility as confirmed by computer-assisted analysis. A positive dependence (using the Cramer's index of association) was evident among the relative variations, baseline and after treatment, of seminal plasma or intracellular CoQ(10) content and computer-determined kinetic parameters. CONCLUSION(S) The exogenous administration of CoQ(10) may play a positive role in the treatment of asthenozoospermia. This is probably the result of its role in mitochondrial bioenergetics and its antioxidant properties.
Collapse
Affiliation(s)
- Giancarlo Balercia
- Department of Internal Medicine, Umberto I Hospital, School of Medicine, University of Ancona, Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
GENOVA MARIALUISA, PICH MILENAMERLO, BERNACCHIA ANDREA, BIANCHI CRISTINA, BIONDI ANNALISA, BOVINA CARLA, FALASCA ANNAIDA, FORMIGGINI GABRIELLA, CASTELLI GIOVANNAPARENTI, LENAZ GIORGIO. The Mitochondrial Production of Reactive Oxygen Species in Relation to Aging and Pathology. Ann N Y Acad Sci 2004. [DOI: 10.1196/annals.1293.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Genova ML, Pich MM, Bernacchia A, Bianchi C, Biondi A, Bovina C, Falasca AI, Formiggini G, Castelli GP, Lenaz G. The mitochondrial production of reactive oxygen species in relation to aging and pathology. Ann N Y Acad Sci 2004; 1011:86-100. [PMID: 15126287 DOI: 10.1007/978-3-662-41088-2_10] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are known to be strong producers of reactive oxygen species (ROS) and, at the same time, particularly susceptible to the oxidative damage produced by their action on lipids, proteins, and DNA. In particular, damage to mtDNA induces alterations to the polypeptides encoded by mtDNA in the respiratory complexes, with consequent decrease of electron transfer, leading to further production of ROS and thus establishing a vicious circle of oxidative stress and energetic decline. This deficiency in mitochondrial energetic capacity is considered the cause of aging and age-related degenerative diseases. Complex I would be the enzyme most affected by ROS, since it contains seven of the 13 subunits encoded by mtDNA. Accordingly, we found that complex I activity is significantly affected by aging in rat brain and liver mitochondria as well as in human platelets. Moreover, due to its rate control over aerobic respiration, such alterations are reflected on the entire oxidative phosphorylation system. We also investigated the role of mitochondrial complex I in superoxide production and found that the one-electron donor to oxygen is most probably the Fe-S cluster N2. Short chain coenzyme Q (CoQ) analogues enhance ROS formation, presumably by mediating electron transfer from N2 to oxygen, both in bovine heart SMP and in cultured HL60 cells. Nevertheless, we have accumulated much evidence of the antioxidant role of reduced CoQ(10) in several cellular systems and demonstrated the importance of DT-diaphorase and other internal cellular reductases to reduce exogenous CoQ(10) after incorporation.
Collapse
Affiliation(s)
- Maria Luisa Genova
- Dipartimento di Biochimica "G. Moruzzi," University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bianchi C, Fato R, Genova ML, Parenti Castelli G, Lenaz G. Structural and functional organization of Complex I in the mitochondrial respiratory chain. Biofactors 2003; 18:3-9. [PMID: 14695915 DOI: 10.1002/biof.5520180202] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metabolic flux control analysis of NADH oxidation in bovine heart submitochondrial particles revealed high flux control coefficients for both Complex I and Complex III, suggesting that the two enzymes are functionally associated as a single enzyme, with channelling of the common substrate, Coenzyme Q. This is in contrast with the more accepted view of a mobile diffusable Coenzyme Q pool between these enzymes. Dilution with phospholipids of a mitochondrial fraction enriched in Complexes I and III, with consequent increased theoretical distance between complexes, determines adherence to pool behavior for Coenzyme Q, but only at dilution higher than 1:5 (protein:phospholipids), whereas, at lower phospholipid content, the turnover of NADH cytochrome c reductase is higher than expected by the pool equation.
Collapse
|
31
|
Pallotti F, Lenaz G. Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol 2002; 65:1-35. [PMID: 11381588 DOI: 10.1016/s0091-679x(01)65002-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- F Pallotti
- Department of Neurology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
32
|
Abstract
The function of the coenzyme Q (CoQ) pool in the inner mitochondrial membrane is reviewed in view of recent findings suggesting a supramolecular organization of the mitochondrial respiratory complexes. In spite of the structural evidence for preferential aggregations of the inner membrane components, most kinetic evidence is in favor of a dispersed organization based on random collisions of the small connecting redox components, in particular CoQ, with the individual complexes. The shape of the CoQ molecule in the pool, suggested to be a folded one, is in agreement with its very rapid lateral diffusion mobility in the membrane midplane. Since the structural evidence in favor of specific supercomplexes is rather strong, it cannot be excluded that electron transfer may follow either pool behavior or preferential channeling depending on the physiological conditions. Another function ascribed to the CoQ pool is the antioxidant action of the reduced CoQ molecules; although it cannot be excluded that protein-bound ubisemiquinones may be a source of oxygen radicals, particularly at the level of complex III, the available evidence suggests that the mitochondrial pool only behaves as an antioxidant under physiological conditions.
Collapse
Affiliation(s)
- G Lenaz
- Dipartimento di Biochimica, Università di Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| |
Collapse
|
33
|
Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, Parenti Castelli G, Lenaz G. The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett 2001; 505:364-8. [PMID: 11576529 DOI: 10.1016/s0014-5793(01)02850-2] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mitochondrial respiratory chain is a powerful source of reactive oxygen species, considered as the pathogenic agent of many diseases and of aging. We have investigated the role of Complex I in superoxide radical production in bovine heart submitochondrial particles and found, by combined use of specific inhibitors of Complex I and by Coenzyme Q (CoQ) extraction from the particles, that the one-electron donor in the Complex to oxygen is a redox center located prior to the binding sites of three different types of CoQ antagonists, to be identified with a Fe-S cluster, most probably N2 on the basis of several known properties of this cluster. Short chain CoQ analogs enhance superoxide formation, presumably by mediating electron transfer from N2 to oxygen. The clinically used CoQ analog, idebenone, is particularly effective in promoting superoxide formation.
Collapse
Affiliation(s)
- M L Genova
- Dipartimento di Biochimica 'G. Moruzzi', Università di Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The cytochrome bc complexes represent a phylogenetically diverse group of complexes of electron-transferring membrane proteins, most familiarly represented by the mitochondrial and bacterial bc1 complexes and the chloroplast and cyanobacterial b6f complex. All these complexes couple electron transfer to proton translocation across a closed lipid bilayer membrane, conserving the free energy released by the oxidation-reduction process in the form of an electrochemical proton gradient across the membrane. Recent exciting developments include the application of site-directed mutagenesis to define the role of conserved residues, and the emergence over the past five years of X-ray structures for several mitochondrial complexes, and for two important domains of the b6f complex.
Collapse
Affiliation(s)
- E A Berry
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
35
|
Gomez B, Robinson NC. Phospholipase digestion of bound cardiolipin reversibly inactivates bovine cytochrome bc1. Biochemistry 1999; 38:9031-8. [PMID: 10413476 DOI: 10.1021/bi990603r] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phospholipids and tightly bound cardiolipin (CL) can be removed from Tween 20 solubilized bovine cytochrome bc(1) (EC 1.10.2.2) by digestion with Crotalus atrox phospholipase A(2). The resulting CL-free enzyme exhibits all the spectral properties of native cytochrome bc(1), but is completely inactive. Full electron transfer activity is restored by exogenous cardiolipin added in the presence of dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylethanolamine (DOPE), but not by cardiolipin alone or by mixtures of phospholipids lacking cardiolipin. Acidic, nonmitochondrial phospholipids, e.g., monolysocardiolipin or phosphatidylglycerol, partially reactivate CL-free cytochrome bc(1) if they are added together with DOPC and DOPE. Phospholipid removal from the Tween 20 solubilized enzyme, including the tightly bound cardiolipin, does not perturb the environment of either cytochrome b(562) or b(566), nor does it cause the autoreduction of cytochrome c(1). Cardiolipin-free cytochrome bc(1) also binds antimycin and myxothiazol normally with the expected red shifts in b(562) and b(566), respectively. However, the CL-free enzyme is much less stable than the lipid-rich preparation, i.e., (1) many chromatographic methods perturb both cytochrome b(566)() (manifested by a hypsochromic effect, i.e., blue shift of 1.5-1.7 nm) and cytochrome c(1) (evidenced by autoreduction in the absence of reducing agents); (2) affinity chromatographic purification of the enzyme causes pronounced loss of subunits VII and XI (65-80% decrease) and less significant loss of subunits I, IV, V, and X (20-30% decrease); and (3) high detergent-to-protein ratios result in disassembly of the complex. We conclude that the major role of the phospholipids surrounding cytochrome bc(1), especially cardiolipin, is to stabilize the quaternary structure. In addition, bound cardiolipin has an additional functional role in that it is essential for enzyme activity.
Collapse
Affiliation(s)
- B Gomez
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio 78284-7760, USA
| | | |
Collapse
|
36
|
Lenaz G, Fato R, Di Bernardo S, Jarreta D, Costa A, Genova ML, Parenti Castelli G. Localization and mobility of coenzyme Q in lipid bilayers and membranes. Biofactors 1999; 9:87-93. [PMID: 10416019 DOI: 10.1002/biof.5520090202] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have studied the mobility of coenzyme Q (CoQ) in lipid bilayers and mitochondrial membranes in relation to the control of electron transfer activities. A molecular dynamics computer simulation in the vacuum yielded a folded structure for CoQ10, with a length of only 21 A. Using this information we were able to calculate diffusion coefficients in the range of 10(-6) cm2/s in good agreement with those found experimentally by fluorescence quenching of pyrene derivatives. To investigate if CoQ diffusion may represent the rate-limiting step of electron transfer, we reconstituted complexes I and III and assayed the resulting NADH-cytochrome c reductase activity in presence of different CoQ10 levels and at different distances between complexes; the experimental turnovers were higher than the collision frequencies calculated using diffusion coefficients of 10(-9) cm2/s but compatible with values found by us by fluorescence quenching. Since the experimental turnovers are independent of the distance between complexes, we conclude that CoQ diffusion is not rate-limiting for electron transfer.
Collapse
Affiliation(s)
- G Lenaz
- Dipartimento di Biochimica G. Moruzzi, Università di Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Leprince, Hoekstra. The responses of cytochrome redox state and energy metabolism to dehydration support a role for cytoplasmic viscosity in desiccation tolerance. PLANT PHYSIOLOGY 1998; 118:1253-64. [PMID: 9847099 PMCID: PMC34741 DOI: 10.1104/pp.118.4.1253] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/1998] [Accepted: 08/20/1998] [Indexed: 05/21/2023]
Abstract
To characterize the depression of metabolism in anhydrobiotes, the redox state of cytochromes and energy metabolism were studied during dehydration of soaked cowpea (Vigna unguiculata) cotyledons and pollens of Typha latifolia and Impatiens glandulifera. Between water contents (WC) of 1.0 and 0.6 g H2O/g dry weight (g/g), viscosity as measured by electron spin resonance spectroscopy increased from 0.15 to 0.27 poise. This initial water loss was accompanied by a 50% decrease in respiration rates, whereas the adenylate energy charge remained constant at 0.8, and cytochrome c oxidase (COX) remained fully oxidized. From WC of 0.6 to 0.2 g/g, viscosity increased exponentially. The adenylate energy charge declined to 0.4 in seeds and 0.2 in pollen, whereas COX became progressively reduced. At WC of less than 0.2 g/g, COX remained fully reduced, whereas respiration ceased. When dried under N2, COX remained 63% reduced in cotyledons until WC was 0.7 g/g and was fully reduced at 0.2 g/g. During drying under pure O2, the pattern of COX reduction was similar to that of air-dried tissues, although the maximum reduction was 70% in dried tissues. Thus, at WC of less than 0.6 g/g, the reduction of COX probably originates from a decreased O2 availability as a result of the increased viscosity and impeded diffusion. We suggest that viscosity is a valuable parameter to characterize the relation between desiccation and decrease in metabolism. The implications for desiccation tolerance are discussed.
Collapse
Affiliation(s)
- Leprince
- Department of Biomolecular Sciences, Laboratory of Plant Physiology, Wageningen Agricultural University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | | |
Collapse
|
38
|
Abstract
This review considers the interaction of Complex I with different redox acceptors, mainly homologs and analogs of the physiological acceptor, hydrophobic Coenzyme Q. After examining the physical properties of the different quinones and their efficacy in restoring mitochondrial respiration, a survey ensues of the advantages and drawbacks of the quinones commonly used in Complex I activity determination and of their kinetic properties. The available evidence is then displayed on structure-activity relationships of various quinone compounds in terms of electron transfer activity and proton translocation, and the present knowledge is discussed in terms of the nature of multiple quinone-binding sites in the Complex.
Collapse
Affiliation(s)
- G Lenaz
- Dipartimento di Biochimica 'G. Moruzzi', University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
39
|
Jarmuszkiewicz W, Sluse-Goffart CM, Hryniewiecka L, Michejda J, Sluse FE. Electron partitioning between the two branching quinol-oxidizing pathways in Acanthamoeba castellanii mitochondria during steady-state state 3 respiration. J Biol Chem 1998; 273:10174-80. [PMID: 9553066 DOI: 10.1074/jbc.273.17.10174] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amoeba mitochondria possess a respiratory chain with two quinol-oxidizing pathways: the cytochrome pathway and the cyanide-resistant alternative oxidase pathway. The ADP/O method, based on the non-phosphorylating property of alternative oxidase, was used to determine contributions of both pathways in overall state 3 respiration in the presence of GMP (an activator of the alternative oxidase in amoeba) and succinate as oxidizable substrate. This method involves pair measurements of ADP/O ratios plus and minus benzohydroxamate (an inhibitor of the alternative oxidase). The requirements of the method are listed and verified. When overall state 3 respiration was decreased by increasing concentrations of n-butyl malonate (a non-penetrating inhibitor of succinate uptake), the quinone reduction level declined. At the same time, the alternative pathway contribution decreased sharply and became negligible when quinone redox state was lower than 50%, whereas the cytochrome pathway contribution first increased and then passed through a maximum at a quinone redox state of 58% and sharply decreased at a lower level of quinone reduction. This study is the first attempt to examine the steady-state kinetics of the two quinol-oxidizing pathways when both are active and to describe electron partitioning between them when the steady-state rate of the quinone-reducing pathway is varied.
Collapse
Affiliation(s)
- W Jarmuszkiewicz
- Department of Bioenergetics, Adam Mickiewicz University, Fredry 10, 61-701 Poznan, Poland.
| | | | | | | | | |
Collapse
|
40
|
Di Bernardo S, Fato R, Casadio R, Fariselli P, Lenaz G. A high diffusion coefficient for coenzyme Q10 might be related to a folded structure. FEBS Lett 1998; 426:77-80. [PMID: 9598982 DOI: 10.1016/s0014-5793(98)00313-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We measured the lateral diffusion of different coenzyme Q homologues and analogues in model lipid vesicles using the fluorescence collisional quenching technique with pyrene derivatives and found diffusion coefficients in the range of 10(-6) cm2/s. Theoretical diffusion coefficients for these highly hydrophobic components were calculated according to the free volume theory. An important parameter in the free volume theory is the relative dimension between diffusant and solvent: a molecular dynamics computer simulation of the coenzymes yielded their most probable geometries and volumes and revealed surprisingly similar sizes of the short and long homologues, due to a folded structure of the isoprenoid chain in the latter, with a length for coenzyme Q10 of 21 A. Using this information we were able to calculate diffusion coefficients in the range of 10(-6) cm2/s, in good agreement with those found experimentally.
Collapse
Affiliation(s)
- S Di Bernardo
- Department of Biochemistry G. Moruzzi, University of Bologna, Italy
| | | | | | | | | |
Collapse
|
41
|
Rauchová H, Fato R, Drahota Z, Lenaz G. Steady-state kinetics of reduction of coenzyme Q analogs by glycerol-3-phosphate dehydrogenase in brown adipose tissue mitochondria. Arch Biochem Biophys 1997; 344:235-41. [PMID: 9244403 DOI: 10.1006/abbi.1997.0150] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have undertaken a study of the role of coenzyme Q (CoQ) in glycerol-3-phosphate oxidation in mitochondrial membranes from hamster brown adipose tissue, using either quinone homologs, as CoQ1 and CoQ2, or the analogs duroquinone and decylubiquinone as artificial electron acceptors. We have found that the most suitable electron acceptor for glycerol-3-phosphate:CoQ reductase activity in situ in the mitochondrial membrane is the homolog CoQ1 yielding the highest rate of enzyme activity (225 +/- 41 nmol x min(-1) x mg(-1) protein). With all acceptors tested the quinone reduction rates were completely insensitive to Complex III inhibitors, indicating that all acceptors were easily accessible to the quinone-binding site of the dehydrogenase preferentially with respect to the endogenous CoQ pool, in such a way that Complex III was kept in the oxidized state. We have also experimentally investigated the saturation kinetics of endogenous CoQ (1.35 nmol/mg protein of a mixture of 70% CoQ9 and 30% CoQ10) by stepwise pentane extraction of brown adipose tissue mitochondria and found a K(m) of the integrated activity of glycerol-3-phosphate cytochrome c reductase for endogenous CoQ of 0.22 nmol/mg protein, indicating that glycerol-3-phosphate-supported respiration is over 80% of V(max) with respect to the CoQ pool. A similar K(m) of 0.19 nmol CoQ/mg protein was found in glycerol-3-phosphate cytochrome c reductase in cockroach flight muscle mitochondria.
Collapse
Affiliation(s)
- H Rauchová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská, Praha
| | | | | | | |
Collapse
|
42
|
Brandt U. Proton-translocation by membrane-bound NADH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1318:79-91. [PMID: 9030257 DOI: 10.1016/s0005-2728(96)00141-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
For the catalytic mechanism of proton-translocating NADH-dehydrogenase (complex I, EC 1.6.99.3) a number of hypothetical models have been proposed over the last three decades. These models are discussed in the light of recent substantial progress on the structure and function of this very complicated multiprotein complex. Only the high-potential iron-sulfur center N-2 and ubiquinone seem to contribute to the proton-translocating machinery of complex I: Based on the pH dependent midpoint potential of iron-sulfur cluster N-2 and the physical properties of ubiquinone intermediates a novel mechanism is proposed. The model builds on a series of defined chemical reactions taking place at three different ubiquinone-binding sites. Therefore, some aspects of this redox-gated ligand conduction mechanism are reminiscent to the proton-motive Q-cycle. However, its central feature is the abstraction of a proton from ubihydroquinone by a redox-Bohr group associated with iron-sulfur cluster N-2. Thus, in the proposed mechanism proton translocation is driven by a direct linkage between redox dependent protonation of iron-sulfur cluster N-2 and the redox chemistry of ubiquinone.
Collapse
Affiliation(s)
- U Brandt
- Universitätsklinikum Frankfurt, Zentrum der Biologischen Chemie, Germany.
| |
Collapse
|
43
|
Fato R, Bernardo SD, Estornell E, Parentic Castelli G, Lenaz G. Saturation kinetics of coenzyme Q in NADH oxidation: rate enhancement by incorporation of excess quinone. Mol Aspects Med 1997; 18 Suppl:S269-73. [PMID: 9266535 DOI: 10.1016/s0098-2997(97)00027-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In beef heart mitochondria it has been found that the Km for coenzyme Q10 of the NADH oxidation system is in the range of the membrane concentration of the quinone; this is contrary to succinate oxidation which is in Vmax with respect to quinone content. The same proportional difference between the two systems is maintained in their affinities for the exogenous acceptor CoQ1 in non-extracted mitochondria. The Km of succinate- coenzyme Q reductase for CoQ1 is reversibly lowered in CoQ-depleted mitochondria; while in contrast the Km for NADH-coenzyme Q reductase is reversibly increased by CoQ extraction. Incorporation of exogenous quinones by co-sonication with submitochondrial particles, as evidenced by fluorescence quenching of pyrene, enhances NADH-cytochrome c reductase activity in accordance with the lack of saturation of the former system.
Collapse
Affiliation(s)
- R Fato
- Department of Biochemistry, G. Moruzzi, University of Bologna, Italy
| | | | | | | | | |
Collapse
|
44
|
Fato R, Estornell E, Di Bernardo S, Pallotti F, Parenti Castelli G, Lenaz G. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles. Biochemistry 1996; 35:2705-16. [PMID: 8611577 DOI: 10.1021/bi9516034] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The reduction kinetics of coenzyme Q (CoQ, ubiquinone) by NADH:ubiquinone oxidoreductase (complex I, EC 1.6.99.3) was investigated in bovine heart mitochondrial membranes using water-soluble homologs and analogs of the endogenous ubiquinone acceptor CoQ10 [the lower homologs from CoQ0 to CoQ3, the 6-pentyl (PB) and 6-decyl (DB) analogs, and duroquinone]. By far the best substrates in bovine heart submitochondrial particles are CoQ1 and PB. The kinetics of NADH-CoQ reductase was investigated in detail using CoQ1 and PB as acceptors. The kinetic pattern follows a ping-pong mechanism; the Km for CoQ1 is in the range of 20 microM but is reversibly increased to 60 microM by extraction of the endogenous CoQ10. The increased Km in CoQ10-depleted membranes indicates that endogenous ubiquinone not only does not exert significant product inhibition but rather is required for the appropriate structure of the acceptor site. The much lower Vmax with CoQ2 but not with DB as acceptor, associated with an almost identical Km, suggests that the sites for endogenous ubiquinone bind 6-isoprenyl- and 6-alkylubiquinones with similar affinity, but the mode of electron transfer is less efficient with CoQ2. The Kmin (kcat/Km) for CoQ1 is 4 orders of magnitude lower than the bimolecular collisional constant calculated from fluorescence quenching of membrane probes; moreover, the activation energy calculated from Arrhenius plots of kmin is much higher than that of the collisional quenching constants. These observations strongly suggest that the interaction of the exogenous quinones with the enzyme is not diffusion-controlled. Contrary to other systems, in bovine submitochondrial particles, CoQ1 usually appears to be able to support a rate approaching that of endogenous CoQ10, as shown by application of the "pool equation" [Kröger, A., & Klingenberg, M. (1973) Eur. J. Biochem. 39, 313-323] relating the rate of ubiquinone reduction to the rate of ubiquinol oxidation and the overall rate through the ubiquinone pool.
Collapse
Affiliation(s)
- R Fato
- Dipartimento di Biochimica, Universita' di Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Griffiths DE. Dibutyltin-3-hydroxyflavone titrates a dissociable component (cofactor) of mitochondrial ATP synthase: An energy-transfer component linked to the ubiquinone pool. Appl Organomet Chem 1994. [DOI: 10.1002/aoc.590080210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|