1
|
Cheng Q, DeYonker NJ. Acylation and deacylation mechanism and kinetics of penicillin G reaction with Streptomyces R61 DD-peptidase. J Comput Chem 2020; 41:1685-1697. [PMID: 32323874 DOI: 10.1002/jcc.26210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/26/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
Abstract
Two quantum mechanical (QM)-cluster models are built for studying the acylation and deacylation mechanism and kinetics of Streptomyces R61 DD-peptidase with the penicillin G at atomic level detail. DD-peptidases are bacterial enzymes involved in the cross-linking of peptidoglycan to form the cell wall, necessary for bacterial survival. The cross-linking can be inhibited by antibiotic beta-lactam derivatives through acylation, preventing the acyl-enzyme complex from undergoing further deacylation. The deacylation step was predicted to be rate-limiting. Transition state and intermediate structures are found using density functional theory in this study, and thermodynamic and kinetic properties of the proposed mechanism are evaluated. The acyl-enzyme complex is found lying in a deep thermodynamic sink, and deacylation is indeed the severely rate-limiting step, leading to suicide inhibition of the peptidoglycan cross-linking. The usage of QM-cluster models is a promising technique to understand, improve, and design antibiotics to disrupt function of the Streptomyces R61 DD-peptidase.
Collapse
Affiliation(s)
- Qianyi Cheng
- Department of Chemistry, University of Memphis, Memphis, Tennessee, USA
| | - Nathan J DeYonker
- Department of Chemistry, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Dalal V, Kumar P, Rakhaminov G, Qamar A, Fan X, Hunter H, Tomar S, Golemi-Kotra D, Kumar P. Repurposing an Ancient Protein Core Structure: Structural Studies on FmtA, a Novel Esterase of Staphylococcus aureus. J Mol Biol 2019; 431:3107-3123. [DOI: 10.1016/j.jmb.2019.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022]
|
3
|
Identification and characterization of a calcium dependent bacillopeptidase from Bacillus subtilis CFR5 with novel kunitz trypsin inhibitor degradation activity. Food Res Int 2018; 103:263-272. [DOI: 10.1016/j.foodres.2017.10.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/16/2017] [Accepted: 10/28/2017] [Indexed: 12/24/2022]
|
4
|
Bansal A, Kar D, Pandey SD, Matcha A, Kumar NG, Nathan S, Ghosh AS. A Tyrosine Residue Along with a Glutamic Acid of the Omega-Like Loop Governs the Beta-Lactamase Activity of MSMEG_4455 in Mycobacterium smegmatis. Protein J 2017; 36:220-227. [PMID: 28421415 DOI: 10.1007/s10930-017-9713-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterial beta-lactamases are involved in exerting beta-lactam resistance, though many of these proteins remain uncharacterized. Here, we have characterized MSMEG_4455 of Mycobacterium smegmatis as a beta-lactamase using molecular, biochemical and mutational techniques. To elucidate its nature in vivo and in vitro, and to predict its structure-function relationship in silico analysis is done. The MSMEG_4455 is cloned and expressed ectopically in a beta-lactamase deficient Escherichia coli mutant to establish the in vivo beta-lactamase like nature via minimum inhibitory concentration (MIC) determination. Likewise the in vivo results, purified soluble form of MSMEG_4455 showed beta-lactam hydrolysis pattern similar to group 2a penicillinase. In silico analyses of MSMEG_4455 reveal glutamic acid (E)193 and tyrosine (Y)194 of omega-like loop might have importance in strengthening hydrogen bond network around the active-site, though involvement of tyrosine is rare for beta-lactamase activity. Accordingly, these residues are mutated to alanine (A) and phenylalanine (F), respectively. The mutated proteins have partially lost their ability to exert beta-lactamase activity both in vivo and in vitro. The Y194F mutation had more prominent effect on the enzymatic activity. Therefore, we infer that Y194 is the key for beta-lactamase activity of MSMEG_4455.
Collapse
Affiliation(s)
- Ankita Bansal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Debasish Kar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Satya Deo Pandey
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Ashok Matcha
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - N Ganesh Kumar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Soshina Nathan
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
5
|
Valegård K, Iqbal A, Kershaw NJ, Ivison D, Généreux C, Dubus A, Blikstad C, Demetriades M, Hopkinson RJ, Lloyd AJ, Roper DI, Schofield CJ, Andersson I, McDonough MA. Structural and mechanistic studies of the orf12 gene product from the clavulanic acid biosynthesis pathway. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1567-79. [PMID: 23897479 DOI: 10.1107/s0907444913011013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/23/2013] [Indexed: 11/10/2022]
Abstract
Structural and biochemical studies of the orf12 gene product (ORF12) from the clavulanic acid (CA) biosynthesis gene cluster are described. Sequence and crystallographic analyses reveal two domains: a C-terminal penicillin-binding protein (PBP)/β-lactamase-type fold with highest structural similarity to the class A β-lactamases fused to an N-terminal domain with a fold similar to steroid isomerases and polyketide cyclases. The C-terminal domain of ORF12 did not show β-lactamase or PBP activity for the substrates tested, but did show low-level esterase activity towards 3'-O-acetyl cephalosporins and a thioester substrate. Mutagenesis studies imply that Ser173, which is present in a conserved SXXK motif, acts as a nucleophile in catalysis, consistent with studies of related esterases, β-lactamases and D-Ala carboxypeptidases. Structures of wild-type ORF12 and of catalytic residue variants were obtained in complex with and in the absence of clavulanic acid. The role of ORF12 in clavulanic acid biosynthesis is unknown, but it may be involved in the epimerization of (3S,5S)-clavaminic acid to (3R,5R)-clavulanic acid.
Collapse
Affiliation(s)
- Karin Valegård
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Asano Y, Lübbehüsen TL. Enzymes acting on peptides containing D-amino acid. J Biosci Bioeng 2005; 89:295-306. [PMID: 16232749 DOI: 10.1016/s1389-1723(00)88949-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2000] [Accepted: 02/21/2000] [Indexed: 11/17/2022]
Abstract
Mainly microorganisms but only a few higher organisms are presently known to express enzymes that hydrolyze peptides containing D-amino acids. These enzymes can be involved in proceedings at the bacterial cell wall, in either assembly or modification, and thus cause resistance to glycopeptide antibiotics, or mediate resistance against beta-lactam antibiotics. In other cases the in vivo function is still unknown. New enzymes screened from nature, such as D-aminopeptidase, D-amino acid amidase, alkaline D-peptidase or D-aminoacylase, offer potential application in the production of D-amino acids, the synthesis of D-amino acid oligomers by promoting the reversed reaction under appropriate conditions, or in the field of semi-synthetic antibiotics.
Collapse
Affiliation(s)
- Y Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Kosugi, Toyama 939-0398, Japan
| | | |
Collapse
|
7
|
Gherman BF, Goldberg SD, Cornish VW, Friesner RA. Mixed Quantum Mechanical/Molecular Mechanical (QM/MM) Study of the Deacylation Reaction in a Penicillin Binding Protein (PBP) versus in a Class C β-Lactamase. J Am Chem Soc 2004; 126:7652-64. [PMID: 15198613 DOI: 10.1021/ja036879a] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The origin of the substantial difference in deacylation rates for acyl-enzyme intermediates in penicillin-binding proteins (PBPs) and beta-lactamases has remained an unsolved puzzle whose solution is of great importance to understanding bacterial antibiotic resistance. In this work, accurate, large-scale mixed ab initio quantum mechanical/molecular mechanical (QM/MM) calculations have been used to study the hydrolysis of acyl-enzyme intermediates formed between cephalothin and the dd-peptidase of Streptomyces sp. R61, a PBP, and the Enterobacter cloacae P99 cephalosporinase, a class C beta-lactamase. Qualitative and, in the case of P99, quantitative agreement was achieved with experimental kinetics. The faster rate of deacylation in the beta-lactamase is attributed to a more favorable electrostatic environment around Tyr150 in P99 (as compared to that for Tyr159 in R61) which facilitates this residue's function as the general base. This is found to be in large part accomplished by the ability of P99 to covalently bind the ligand without concurrent elimination of hydrogen bonds to Tyr150, which proves not to be the case with Tyr159 in R61. This work provides an essential foundation for further work in this area, such as selecting mutations capable of converting the PBP into a beta-lactamase.
Collapse
Affiliation(s)
- Benjamin F Gherman
- Department of Chemistry and Center for Biomolecular Simulation, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
8
|
McDonough MA, Anderson JW, Silvaggi NR, Pratt RF, Knox JR, Kelly JA. Structures of two kinetic intermediates reveal species specificity of penicillin-binding proteins. J Mol Biol 2002; 322:111-22. [PMID: 12215418 DOI: 10.1016/s0022-2836(02)00742-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Penicillin-binding proteins (PBPs), the target enzymes of beta-lactam antibiotics such as penicillins and cephalosporins, catalyze the final peptidoglycan cross-linking step of bacterial cell-wall biosynthesis. beta-Lactams inhibit this reaction because they mimic the D-alanyl-D-alanine peptide precursors of cell-wall structure. Prior crystallographic studies have described the site of beta-lactam binding and inhibition, but they have failed to show the binding of D-Ala-D-Ala substrates. We present here the first high-resolution crystallographic structures of a PBP, D-Ala-D-Ala-peptidase of Streptomyces sp. strain R61, non-covalently complexed with a highly specific fragment (glycyl-L-alpha-amino-epsilon-pimelyl-D-Ala-D-Ala) of the cell-wall precursor in both enzyme-substrate and enzyme-product forms. The 1.9A resolution structure of the enzyme-substrate Henri-Michaelis complex was achieved by using inactivated enzyme, which was formed by cross-linking two catalytically important residues Tyr159 and Lys65. The second structure at 1.25A resolution of the uncross-linked, active form of the DD-peptidase shows the non-covalent binding of the two products of the carboxypeptidase reaction. The well-defined substrate-binding site in the two crystallographic structures shows a subsite that is complementary to a portion of the natural cell-wall substrate that varies among bacterial species. In addition, the structures show the displacement of 11 water molecules from the active site, the location of residues responsible for substrate binding, and clearly demonstrate the necessity of Lys65 and or Tyr159 for the acylation step with the donor peptide. Comparison of the complexed structures described here with the structures of other known PBPs suggests the design of species-targeted antibiotics as a counter-strategy towards beta-lactamase-elicited bacterial resistance.
Collapse
Affiliation(s)
- Michael A McDonough
- Department of Molecular and Cell Biology and Institute for Materials Science, University of Connecticut, Storrs 06269-3125, USA
| | | | | | | | | | | |
Collapse
|
9
|
Vilar M, Galleni M, Solmajer T, Turk B, Frère JM, Matagne A. Kinetic study of two novel enantiomeric tricyclic beta-lactams which efficiently inactivate class C beta-lactamases. Antimicrob Agents Chemother 2001; 45:2215-23. [PMID: 11451677 PMCID: PMC90634 DOI: 10.1128/aac.45.8.2215-2223.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A detailed kinetic study of the interaction between two ethylidene derivatives of tricyclic carbapenems, Lek 156 and Lek 157, and representative beta-lactamases and D-alanyl-D-alanine peptidases (DD-peptidases) is presented. Both compounds are very efficient inactivators of the Enterobacter cloacae 908R beta-lactamase, which is usually resistant to inhibition. Preliminary experiments indicate that various extended-spectrum class C beta-lactamases (ACT-1, CMY-1, and MIR-1) are also inactivated. With the E. cloacae 908R enzyme, complete inactivation occurs with a second-order rate constant, k(2)/K', of 2 x 10(4) to 4 x 10(4) M(-1) s(-1), and reactivation is very slow, with a half-life of >1 h. Accordingly, Lek 157 significantly decreases the MIC of ampicillin for E. cloacae P99, a constitutive class C beta-lactamase overproducer. With the other serine beta-lactamases tested, the covalent adducts exhibit a wide range of stabilities, with half-lives ranging from long (>4 h with the TEM-1 class A enzyme), to medium (10 to 20 min with the OXA-10 class D enzyme), to short (0.2 to 0.4 s with the NmcA class A beta-lactamase). By contrast, both carbapenems behave as good substrates of the Bacillus cereus metallo-beta-lactamase (class B). The Streptomyces sp. strain R61 and K15 extracellular DD-peptidases exhibit low levels of sensitivity to both compounds.
Collapse
Affiliation(s)
- M Vilar
- Laboratoire d'Enzymologie, Centre for Protein Engineering, University of Liège, Institut de Chimie, Belgium
| | | | | | | | | | | |
Collapse
|
10
|
Zhao GH, Duez C, Lepage S, Forceille C, Rhazi N, Klein D, Ghuysen JM, Frère JM. Site-directed mutagenesis of the Actinomadura R39 DD-peptidase. Biochem J 1997; 327 ( Pt 2):377-81. [PMID: 9359404 PMCID: PMC1218804 DOI: 10.1042/bj3270377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of various residues in the conserved structural elements of the Actinomadura R39 penicillin-sensitive dd-peptidase has been studied by site-directed mutagenesis. Replacement of Ser-298 of the 'SDN loop' by Ala or Gly significantly decreased the kcat/Km value for the peptide substrate, but only by a factor of 15 and had little effect on the other catalytic properties. Mutations of Asn-300 of the same loop and of Lys-410 of the KTG triad yielded very unstable proteins. However, the N300S mutant could be purified as a fusion protein with thioredoxin that exhibited decreased rates of acylation by the peptide substrate and various cephalosporins. Similar fusion proteins obtained with the N300A, K410H and K410N mutants were unstable and their catalytic and penicillin-binding properties were very strongly affected. In transpeptidation reactions, the presence of the acceptor influenced the kcat/Km values, which suggested a catalytic pathway more complex than a simple partition of the acyl-enzyme between hydrolysis and aminolysis. These results are compared with those obtained with two other penicillin-sensitive enzymes, the Streptomyces R61 dd-peptidase and Escherichia coli penicillin-binding protein (PBP) 5.
Collapse
Affiliation(s)
- G H Zhao
- Centre d'Ingénierie des Protéines and Laboratoire d'Enzymologie, Université de Liège, Institut de Chimie, B6, B-4000 Sart Tilman (Liège), Belgium
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lewis ER, Winterberg KM, Fink AL. A point mutation leads to altered product specificity in beta-lactamase catalysis. Proc Natl Acad Sci U S A 1997; 94:443-7. [PMID: 9012802 PMCID: PMC19531 DOI: 10.1073/pnas.94.2.443] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
beta-Lactamases are the primary cause of beta-lactam antibiotic resistance in many pathogenic organisms. The beta-lactamase catalytic mechanism has been shown to involve a covalent acyl-enzyme. Examination of the structure of the class A beta-lactamase from Bacillus licheniformis suggested that replacement of Asn-170 by leucine would disrupt the deacylation reaction by displacing the hydrolytic water molecule. When N170L beta-lactamase was reacted with penicillins, a novel product was formed. We postulate that with leucine at position 170 the acyl-enzyme undergoes deacylation by an intramolecular rearrangement (rather than hydrolysis) to form a thiazolidine-oxazolinone as the initial product. The oxazolinone subsequently undergoes rapid breakdown leading to the formation of N-phenylacetylglycine and N-formylpenicillamine. This appears to be the first reported case where a point mutation leads to a change in enzyme mechanism resulting in a substantially altered product, effectively changing the product specificity of beta-lactamase into that of D-Ala-D-Ala-carboxypeptidase interacting with benzylpenicillin.
Collapse
Affiliation(s)
- E R Lewis
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA
| | | | | |
Collapse
|
12
|
Mukherjee T, Basu D, Mahapatra S, Goffin C, van Beeumen J, Basu J. Biochemical characterization of the 49 kDa penicillin-binding protein of Mycobacterium smegmatis. Biochem J 1996; 320 ( Pt 1):197-200. [PMID: 8947487 PMCID: PMC1217917 DOI: 10.1042/bj3200197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 49 kDa penicillin-binding protein (PBP) of Mycobacterium smegmatis catalyses the hydrolysis of the peptide or S-ester bond of carbonyl donors R1-CONH-CHR2-COX-CHR2-COO- (where X is NH or S). In the presence of a suitable amino acceptor, the reaction partitions between the transpeptidation and hydrolysis pathways, with the amino acceptor, behaving as a simple alternative nucleophile at the level of the acyl-enzyme. By virtue of its N-terminal sequence similarity, the 49 kDa PBP represents one of the class of monofunctional low-molecular-mass PBPs. An immunologically related protein of M(r) 52,000 is present in M. tuberculosis. The 49 kDa PBP is sensitive towards amoxycillin, imipenem, flomoxef and cefoxitin.
Collapse
Affiliation(s)
- T Mukherjee
- Department of Chemistry, Bose Institute, Calcutta, India
| | | | | | | | | | | |
Collapse
|
13
|
Dubus A, Ledent P, Lamotte-Brasseur J, Frère JM. The roles of residues Tyr150, Glu272, and His314 in class C beta-lactamases. Proteins 1996; 25:473-85. [PMID: 8865342 DOI: 10.1002/prot.7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Serine beta-lactamases contribute widely to the beta-lactam resistance phenomena. Unfortunately, the intimate details of their catalytic mechanism remain elusive and subject to some controversy even though many "natural" and "artificial" mutants of these different enzymes have been isolated. This paper is essentially focused on class C beta-lactamases, which contain a Tyr (Tyr150) as the first residue of the second conserved element, in contrast to their class A counterparts, in which a Ser is found in the corresponding position. We have modified this Tyr residue by site-directed mutagenesis. On the basis of the three-dimensional structure of the Enterobacter cloacae P99 enzyme, it seemed that residues Glu272 and His314 might also be important. They were similarly substituted. The modified enzymes were isolated and their catalytic properties determined. Our results indicated that His314 was not required for catalysis and that Glu272 did not play an important role in acylation but was involved to a small extent in the deacylation process. Conversely, Tyr150 was confirmed to be central for catalysis, at least with the best substrates. On the basis of a comparison of data obtained for several class C enzyme mutants and in agreement with recent structural data, we propose that the phenolate anion of Tyr150, in conjunction with the alkyl ammonium of Lys315, acts as the general base responsible for the activation of the active-site Ser64 during the acylation step and for the subsequent activation of a water molecule in the deacylation process. The evolution of the important superfamily of penicillin-recognizing enzymes is further discussed in the light of this proposed mechanism.
Collapse
Affiliation(s)
- A Dubus
- Centre d'Ingénierie des Protéines, Université de Liége, Belgium
| | | | | | | |
Collapse
|
14
|
Kuzin AP, Liu H, Kelly JA, Knox JR. Binding of cephalothin and cefotaxime to D-ala-D-ala-peptidase reveals a functional basis of a natural mutation in a low-affinity penicillin-binding protein and in extended-spectrum beta-lactamases. Biochemistry 1995; 34:9532-40. [PMID: 7626623 DOI: 10.1021/bi00029a030] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two clinically-important beta-lactam antibiotics, cephalothin and cefotaxime, have been observed by X-ray crystallography bound to the reactive Ser62 of the D-alanyl-D-alanine carboxypeptidase/transpeptidase of Streptomyces sp. R61. Refinement of the two crystal structures produced R factors for 3 sigma (F) data of 0.166 (to 1.8 A) and 0.170 (to 2.0 A) for the cephalothin and cefotaxime complexes, respectively. In each complex, a water molecule is within 3.1 and 3.6 A of the acylated beta-lactam carbonyl carbon atom, but is poorly activated by active site residues for nucleophilic attack and deacylation. This apparent lack of good stereochemistry for facile hydrolysis is in accord with the long half-lives of cephalosporin intermediates in solution (20-40 h) and the efficacy of these beta-lactams as inhibitors of bacterial cell wall synthesis. Different hydrogen binding patterns of the two cephalosporins to Thr301 are consistent with the low cefotaxime affinity of an altered penicillin-binding protein, PBP-2x, reported in cefotaxime-resistant strains of Streptococcus pneumoniae, and with the ability of mutant class A beta-lactamases to hydrolyze third-generation cephalosporins.
Collapse
Affiliation(s)
- A P Kuzin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3125, USA
| | | | | | | |
Collapse
|
15
|
Damblon C, Zhao GH, Jamin M, Ledent P, Dubus A, Vanhove M, Raquet X, Christiaens L, Frère JM. Breakdown of the stereospecificity of DD-peptidases and beta-lactamases with thiolester substrates. Biochem J 1995; 309 ( Pt 2):431-6. [PMID: 7626006 PMCID: PMC1135750 DOI: 10.1042/bj3090431] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With peptide analogues of their natural substrates (the glycopeptide units of nascent peptidoglycan), the DD-peptidases exhibit a strict preference for D-Ala-D-Xaa C-termini. Gly is tolerated as the C-terminal residue, but with a significantly decreased activity. These enzymes were also known to hydrolyse various ester and thiolester analogues of their natural substrates. Some thiolesters with a C-terminal leaving group that exhibited L stereochemistry were significantly hydrolysed by some of the enzymes, particularly the Actinomadura R39 DD-peptidase, but the strict specificity for a D residue in the penultimate position was fully retained. These esters and thiolesters also behave as substrates for beta-lactamases. In this case, thiolesters exhibiting L stereochemistry in the ultimate position could also be hydrolysed, mainly by the class-C and class-D enzymes. However, more surprisingly, the class-C Enterobacter cloacae P99 beta-lactamase also hydrolysed thiolesters containing an L residue in the penultimate position, sometimes with a higher efficiency than the D isomer.
Collapse
Affiliation(s)
- C Damblon
- Laboratoire d'Enzymologie, Université de Liège, Institut de Chimie, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wilkin JM, Dubus A, Joris B, Frère JM. The mechanism of action of DD-peptidases: the role of Threonine-299 and -301 in the Streptomyces R61 DD-peptidase. Biochem J 1994; 301 ( Pt 2):477-83. [PMID: 8042992 PMCID: PMC1137106 DOI: 10.1042/bj3010477] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The side chains of residues Thr299 and Thr301 in the Streptomyces R61 DD-peptidase have been modified by site-directed mutagenesis. These amino acids are part of a beta-strand which forms a wall of the active-site cavity. Thr299 corresponds to the second residue of the Lys-Thr(Ser)-Gly triad, highly conserved in active-site beta-lactamases and penicillin-binding proteins (PBPs). Modification of Thr301 resulted only in minor alterations of the catalytic and penicillin-binding properties of the enzyme. No selective decrease of the rate of acylation was observed for any particular class of compounds. By contrast, the loss of the hydroxy group of the residue in position 299 yielded a seriously impaired enzyme. The rates of inactivation by penicillins were decreased 30-50-fold, whereas the reactions with cephalosporins were even more affected. The efficiency of hydrolysis against the peptide substrate was also seriously decreased. More surprisingly, the mutant was completely unable to catalyse transpeptidation reactions. The conservation of an hydroxylated residue in this position in PBPs is thus easily explained by these results.
Collapse
Affiliation(s)
- J M Wilkin
- Centre d'Ingéniérie des protéines, Université de Liège, Belgium
| | | | | | | |
Collapse
|
17
|
Chapter 6 Biochemistry of the penicilloyl serine transferases. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0167-7306(08)60409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Jamin M, Hakenbeck R, Frere JM. Penicillin binding protein 2x as a major contributor to intrinsic beta-lactam resistance of Streptococcus pneumoniae. FEBS Lett 1993; 331:101-4. [PMID: 8405385 DOI: 10.1016/0014-5793(93)80305-e] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The production and purification to protein homogeneity of a soluble form of PBP2x from a cefotaxime-resistant Streptococcus pneumoniae strain is reported. It was obtained by a site-directed deletion of the membrane anchor in the corresponding gene, a method similar to that successfully utilized for the production of PBP2x from a cefotaxime-sensitive wild type strain. The kinetic parameters characterizing the interactions of both cefotaxime-resistant and -sensitive proteins have been determined and compared. The results are in agreement with the identification of PBP2x as the primary target for cefotaxime in the sensitive strain and as probably one of several targets in the resistant strain.
Collapse
Affiliation(s)
- M Jamin
- Laboratoire d'Enzymologie, Université de Liège, Sart Tilman, Belgium
| | | | | |
Collapse
|
19
|
Wilkin JM, Jamin M, Joris B, Frere JM. Mechanism of action of DD-peptidases: role of asparagine-161 in the Streptomyces R61 DD-peptidase. Biochem J 1993; 293 ( Pt 1):195-201. [PMID: 8328960 PMCID: PMC1134339 DOI: 10.1042/bj2930195] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The role of residue Asn-161 in the interaction between the Streptomyces R61 DD-peptidase and various substrates or beta-lactam inactivators was probed by site-directed mutagenesis. The residue was successively replaced by serine and alanine. In the first case, acylation rates were mainly affected with the peptide and ester substrates but not with the thiol-ester substrates and beta-lactams. However, the deacylation rates were decreased 10-30-fold with the substrates yielding benzoylglycyl and benzoylalanyl adducts. The Asn161Ala mutant was more generally affected, although the acylation rates with cefuroxime and cefotaxime remained similar to those observed with the wild-type enzyme. Surprisingly, the deacylation rates of the benzoylglycyl and benzoylalanyl adducts were very close to those observed with the wild-type enzyme. The results also indicate that the interaction with the peptide substrate and the transpeptidation reaction were more sensitive to the mutations than the other reactions studied. The results are discussed and compared with those obtained with the Asn-132 mutants of a class A beta-lactamase.
Collapse
Affiliation(s)
- J M Wilkin
- Centre d'Ingéniérie des Protéines, Université de Liége, Belgium
| | | | | | | |
Collapse
|