1
|
Receptor-specific Ca 2+ oscillation patterns mediated by differential regulation of P2Y purinergic receptors in rat hepatocytes. iScience 2021; 24:103139. [PMID: 34646983 PMCID: PMC8496176 DOI: 10.1016/j.isci.2021.103139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Extracellular agonists linked to inositol-1,4,5-trisphosphate (IP3) formation elicit cytosolic Ca2+ oscillations in many cell types, but despite a common signaling pathway, distinct agonist-specific Ca2+ spike patterns are observed. Using qPCR, we show that rat hepatocytes express multiple purinergic P2Y and P2X receptors (R). ADP acting through P2Y1R elicits narrow Ca2+ oscillations, whereas UTP acting through P2Y2R elicits broad Ca2+ oscillations, with composite patterns observed for ATP. P2XRs do not play a role at physiological agonist levels. The discrete Ca2+ signatures reflect differential effects of protein kinase C (PKC), which selectively modifies the falling phase of the Ca2+ spikes. Negative feedback by PKC limits the duration of P2Y1R-induced Ca2+ spikes in a manner that requires extracellular Ca2+. By contrast, P2Y2R is resistant to PKC negative feedback. Thus, the PKC leg of the bifurcated IP3 signaling pathway shapes unique Ca2+ oscillation patterns that allows for distinct cellular responses to different agonists. Distinct stereotypic Ca2+ oscillations are elicited by P2Y1 and P2Y2 receptors P2X receptors do not contribute to the generation of Ca2+ oscillations Agonist-specific Ca2+ spike shapes reflect discrete modes of PKC negative feedback Bifurcation of IP3/PKC signaling yields unique Ca2+ oscillation signatures
Collapse
|
2
|
Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014; 10:51-70. [PMID: 24271096 PMCID: PMC3944046 DOI: 10.1007/s11302-013-9398-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5'-triphosphate, adenosine diphosphate, uridine 5'-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
3
|
Dupont G, Croisier H. Spatiotemporal organization of Ca dynamics: a modeling-based approach. HFSP JOURNAL 2010; 4:43-51. [PMID: 20885772 DOI: 10.2976/1.3385660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 02/19/2010] [Indexed: 12/26/2022]
Abstract
Calcium is a ubiquitous second messenger that mediates vital physiological responses such as fertilization, secretion, gene expression, or apoptosis. Given this variety of processes mediated by Ca(2+), these signals are highly organized both in time and space to ensure reliability and specificity. This review deals with the spatiotemporal organization of the Ca(2+) signaling pathway in electrically nonexcitable cells in which InsP(3) receptors are by far the most important Ca(2+) channels. We focus on the aspects of this highly regulated dynamical system for which an interplay between experiments and modeling is particularly fruitful. In particular, the importance of the relative densities of the different InsP(3) receptor subtypes will be discussed on the basis of a modeling approach linking the steady-state behaviors of these channels in electrophysiological experiments with their behavior in a cellular environment. Also, the interplay between InsP(3) metabolism and Ca(2+) oscillations will be considered. Finally, we discuss the relationships between stochastic openings of the Ca(2+) releasing channels at the microscopic level and the coordinated, regular behavior observed at the whole cell level on the basis of a combined experimental and modeling approach.
Collapse
Affiliation(s)
- Geneviève Dupont
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles, CP231, Boulevard du Triomphe, B-1050 Brussels, Belgium
| | | |
Collapse
|
4
|
Borghans JM, Dupont G, Goldbeter A. Complex intracellular calcium oscillations. A theoretical exploration of possible mechanisms. Biophys Chem 2007; 66:25-41. [PMID: 17029867 DOI: 10.1016/s0301-4622(97)00010-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/1996] [Revised: 01/13/1997] [Accepted: 01/16/1997] [Indexed: 11/16/2022]
Abstract
Intracellular Ca(2+) oscillations are commonly observed in a large number of cell types in response to stimulation by an extracellular agonist. In most cell types the mechanism of regular spiking is well understood and models based on Ca(2+)-induced Ca(2+) release (CICR) can account for many experimental observations. However, cells do not always exhibit simple Ca(2+) oscillations. In response to given agonists, some cells show more complex behaviour in the form of bursting, i.e. trains of Ca(2+) spikes separated by silent phases. Here we develop several theoretical models, based on physiologically plausible assumptions, that could account for complex intracellular Ca(2+) oscillations. The models are all based on one- or two-pool models based on CICR. We extend these models by (i) considering the inhibition of the Ca(2+)-release channel on a unique intracellular store at high cytosolic Ca(2+) concentrations, (ii) taking into account the Ca(2+)-activated degradation of inositol 1,4,5-trisphosphate (IP(3)), or (iii) considering explicity the evolution of the Ca(2+) concentration in two different pools, one sensitive and the other one insensitive to IP(3). Besides simple periodic oscillations, these three models can all account for more complex oscillatory behaviour in the form of bursting. Moreover, the model that takes the kinetics of IP(3) into account shows chaotic behaviour.
Collapse
Affiliation(s)
- J M Borghans
- Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine, C.P. 231, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
5
|
Schuster S, Knoke B, Marhl M. Differential regulation of proteins by bursting calcium oscillations--a theoretical study. Biosystems 2005; 81:49-63. [PMID: 15917128 DOI: 10.1016/j.biosystems.2005.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 02/14/2005] [Indexed: 11/29/2022]
Abstract
Calcium in ionic form is a second messenger connecting several input signals to several target processes in the cell. The question arises how one second messenger can transmit more than one signal simultaneously (bow-tie structure of signalling). Experimental data on calcium dynamics often show patterns of successive low-peak and high-peak oscillatory phases, known as bursting. Here, we propose that bursting calcium oscillations can perform the function of simultaneous transmission of two signals at physiological calcium concentrations, for example, by selective activation of two calcium-binding proteins. This differential regulation by periodic bursting is investigated in a theoretical model. The two proteins are assumed to be activated by calcium, and one of them is assumed to be subject to biphasic regulation due to additional inhibitory binding sites. To explore which characteristics of the complex signal could be responsible for independent regulation of low-peak activated and spike activated targets, different bursting patterns of simplified square pulses are applied. Depending on the change in the bursting pattern, one protein can be gradually activated at a constant level of the other protein's activity, or the two proteins can be activated simultaneously, or one protein can be activated while the other one is deactivated simultaneously. Thus, the two proteins can be regulated virtually independently.
Collapse
Affiliation(s)
- Stefan Schuster
- Department of Bioinformatics, Faculty of Biology and Pharmaceutics, Friedrich-Schiller University of Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany.
| | | | | |
Collapse
|
6
|
Larsen AZ, Olsen LF, Kummer U. On the encoding and decoding of calcium signals in hepatocytes. Biophys Chem 2004; 107:83-99. [PMID: 14871603 DOI: 10.1016/j.bpc.2003.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 08/25/2003] [Accepted: 08/25/2003] [Indexed: 11/24/2022]
Abstract
Many different agonists use calcium as a second messenger. Despite intensive research in intracellular calcium signalling it is an unsolved riddle how the different types of information represented by the different agonists, is encoded using the universal carrier calcium. It is also still not clear how the information encoded is decoded again into the intracellular specific information at the site of enzymes and genes. After the discovery of calcium oscillations, one likely mechanism is that information is encoded in the frequency, amplitude and waveform of the oscillations. This hypothesis has received some experimental support. However, the mechanism of decoding of oscillatory signals is still not known. Here, we study a mechanistic model of calcium oscillations, which is able to reproduce both spiking and bursting calcium oscillations. We use the model to study the decoding of calcium signals on the basis of co-operativity of calcium binding to various proteins. We show that this co-operativity offers a simple way to decode different calcium dynamics into different enzyme activities.
Collapse
Affiliation(s)
- Ann Zahle Larsen
- Celcom, Department of Biochemistry and Molecular Biology, Syddansk Universitet, Campusvej 55, Odense M DK-5230, Denmark.
| | | | | |
Collapse
|
7
|
Marhl M, Schuster S. Under what conditions signal transduction pathways are highly flexible in response to external forcing? A case study on calcium oscillations. J Theor Biol 2003; 224:491-500. [PMID: 12957122 DOI: 10.1016/s0022-5193(03)00199-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sensitivity and flexibility are typical properties of biological systems. These properties are here investigated in a model for simple and complex intracellular calcium oscillations. In particular, the influence of external periodic forcing is studied. The main point of the study is to compare responses of the system in a chaotic regime with those obtained in a regular periodic regime. We show that the response to external signals in terms of the range of synchronization is not significantly different in regular and chaotic Ca2+ oscillations. However, both types of oscillation are highly flexible in regimes with weak dissipation. Therefore, we conclude that dissipation of free energy is a suitable index characterizing flexibility. For biological systems this appears to be of special importance since for thermodynamic reasons, notably in view of low free energy consumption, dissipation should be minimized.
Collapse
Affiliation(s)
- Marko Marhl
- Department of Physics, Faculty of Education, University of Maribor, Koroska cesta 160, SI-2000 Maribor, Slovenia.
| | | |
Collapse
|
8
|
Schuster S, Marhl M, Höfer T. Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1333-55. [PMID: 11874447 DOI: 10.1046/j.0014-2956.2001.02720.x] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review provides a comparative overview of recent developments in the modelling of cellular calcium oscillations. A large variety of mathematical models have been developed for this wide-spread phenomenon in intra- and intercellular signalling. From these, a general model is extracted that involves six types of concentration variables: inositol 1,4,5-trisphosphate (IP3), cytoplasmic, endoplasmic reticulum and mitochondrial calcium, the occupied binding sites of calcium buffers, and the fraction of active IP3 receptor calcium release channels. Using this framework, the models of calcium oscillations can be classified into 'minimal' models containing two variables and 'extended' models of three and more variables. Three types of minimal models are identified that are all based on calcium-induced calcium release (CICR), but differ with respect to the mechanisms limiting CICR. Extended models include IP3--calcium cross-coupling, calcium sequestration by mitochondria, the detailed gating kinetics of the IP3 receptor, and the dynamics of G-protein activation. In addition to generating regular oscillations, such models can describe bursting and chaotic calcium dynamics. The earlier hypothesis that information in calcium oscillations is encoded mainly by their frequency is nowadays modified in that some effect is attributed to amplitude encoding or temporal encoding. This point is discussed with reference to the analysis of the local and global bifurcations by which calcium oscillations can arise. Moreover, the question of how calcium binding proteins can sense and transform oscillatory signals is addressed. Recently, potential mechanisms leading to the coordination of oscillations in coupled cells have been investigated by mathematical modelling. For this, the general modelling framework is extended to include cytoplasmic and gap-junctional diffusion of IP3 and calcium, and specific models are compared. Various suggestions concerning the physiological significance of oscillatory behaviour in intra- and intercellular signalling are discussed. The article is concluded with a discussion of obstacles and prospects.
Collapse
Affiliation(s)
- Stefan Schuster
- Max Delbrück Centre for Molecular Medicine, Department of Bioinformatics, Berlin-Buch, Germany.
| | | | | |
Collapse
|
9
|
Dixon CJ. Evidence that 2-methylthioATP and 2-methylthioADP are both agonists at the rat hepatocyte P2Y(1) receptor. Br J Pharmacol 2000; 130:664-8. [PMID: 10821796 PMCID: PMC1572108 DOI: 10.1038/sj.bjp.0703350] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the absence of selective antagonists, pharmacological characterization of P2Y receptor subtypes has relied heavily upon their distinct agonist profiles. 2-methylthioADP (2-MeSADP) is a selective agonist for the P2Y(1) receptor. The agonist action of 2-MeSATP at the P2Y(1) receptor has recently been questioned. The effects of both 2-MeSADP and 2-MeSATP have been studied on rat hepatocytes injected with the bioluminescent Ca(2+) indicator, aequorin. Single hepatocytes generate series of repetitive transients in cytosolic free calcium concentration ([Ca(2+)](i)) when stimulated with agonists acting through the phosphoinositide signalling pathway. The transients induced by 2-MeSADP and 2-MeSATP in the same cell were indistinguishable, indicating that they act at a common receptor. In contrast the transients evoked by ATP and UTP had very different profiles. Treatment of 2-MeSATP with an ATP-regenerating system to remove contaminating 2-MeSADP did not abolish its agonist activity. Application of the P2Y(1) antagonist, adenosine-3'-phosphate-5'-phosphate (A3P5P) inhibited the transients induced by both 2-MeSADP and 2-MeSATP. In contrast the transients induced by ATP and UTP were enhanced by the addition of A3P5P. These results indicate that both 2-MeSADP and 2-MeSATP are agonists at the rat hepatocyte P2Y(1) receptor.
Collapse
Affiliation(s)
- C J Dixon
- Department of Human Anatomy and Cell Biology, The University of Liverpool, New Medical School, Ashton Street, Liverpool L69 3GE.
| |
Collapse
|
10
|
Dixon CJ, Woods NM, Webb TE, Green AK. Evidence that rat hepatocytes co-express functional P2Y1 and P2Y2 receptors. Br J Pharmacol 2000; 129:764-70. [PMID: 10683201 PMCID: PMC1571892 DOI: 10.1038/sj.bjp.0703103] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Previous studies have indicated the expression of multiple P2Y receptors by rat hepatocytes although they have not been identified. Here we show by reverse transcriptase-polymerase chain reaction (RT - PCR) that rat hepatocytes express mRNA encoding all of the four cloned rat P2Y receptors (P2Y(1), P2Y(2), P2Y(4) and P2Y(6)). The effects of UTP have been examined on single aequorin-injected rat hepatocytes. The [Ca(2+)](i) transients induced by UTP were indistinguishable from those induced by ATP in the same cell. The modulatory effects of elevated intracellular cyclic AMP concentration were the same on both UTP- and ATP-induced [Ca(2+)](i) transients. UDP, an agonist at the P2Y(6) receptor, failed to induce transients in hepatocytes, indicating that functional P2Y(6) receptors coupled to increased [Ca(2+)](i) are not expressed. The transients evoked by ADP were more sensitive to inhibition by suramin than those induced by either ATP or UTP. Within an individual cell, the transients induced by ATP and UTP were inhibited by the same concentration of suramin. This sensitivity of ATP and UTP responses to suramin suggests action through P2Y(2) rather than P2Y(4) receptors. Co-application of 30 microM pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) caused a decrease in frequency and amplitude of transients induced by ADP. ATP- and UTP-induced transients also displayed a decrease in amplitude in response to addition of PPADS, but this was accompanied by an increase in frequency of transients. In conclusion the data presented here are consistent with the co-expression of P2Y(1) and P2Y(2) receptors by rat hepatocytes.
Collapse
MESH Headings
- Adenosine Diphosphate/pharmacology
- Adenosine Triphosphate/pharmacology
- Animals
- Calcium/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Liver/drug effects
- Liver/metabolism
- Male
- Pyridoxal Phosphate/analogs & derivatives
- Pyridoxal Phosphate/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Wistar
- Receptors, Purinergic P2/biosynthesis
- Receptors, Purinergic P2/classification
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2Y1
- Reverse Transcriptase Polymerase Chain Reaction
- Suramin/pharmacology
- Uridine Diphosphate/pharmacology
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- C J Dixon
- Department of Human Anatomy and Cell Biology, The University of Liverpool, Ashton Street, Liverpool, L69 3GE.
| | | | | | | |
Collapse
|
11
|
Keppens S. Effects of diadenosine triphosphate and diadenosine tetraphosphate on rat liver cells. Differences and similarities with ADP and ATP. Biochem Pharmacol 1996; 52:441-5. [PMID: 8687498 DOI: 10.1016/0006-2952(96)00246-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Liver cells possess multiple types of purinoceptors that mediate the effects of extracellular nucleotides. Like ADP and ATP, the dinucleotides diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) fully activated glycogen phosphorylase, with ED50 values of 0.31 microM and 1.3 microM, respectively. At variance with ATP, neither the dinucleotides nor ADP significantly increased the levels of IP3.Ap4A (and also ADP) moderately increased IP3 (+/- 72%) whereas Ap3A was completely ineffective. Like ATP, Ap3A, Ap4A, and ADP inhibited the cAMP increase after glucagon. Phorbol-12-myristate-13-acetate (PMA) pretreatment of the hepatocytes clearly inhibited the glycogenolytic potency of Ap3A and ADP, but had only a minor effect on the potency of Ap4A or ATP. It is concluded that, depending upon the effect studied (glycogenolytic effect with or without PMA, increasing IP3 potency, or inhibition of cAMP increase), different analogies between the agonists studied emerged, indicating the complexity of the interaction of ATP and its analogues with liver purinoceptors and/or of the transduction mechanism(s) initiated by the different nucleotides.
Collapse
Affiliation(s)
- S Keppens
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Belgium.
| |
Collapse
|
12
|
Kreisel W, Spamer C, Heilmann C. Partial characterization of a new nucleotide binding glycoprotein of hepatocyte plasma membrane. Biochem Pharmacol 1996; 51:1269-76. [PMID: 8787541 DOI: 10.1016/0006-2952(95)02439-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatocyte plasma membranes contain a glycosylated 230-kDa Ca(2+) -dependent, Mg(2+)-stimulated ATPase (pgp230), which consists of two subunits, one of 120 kDa and the other of 110 kDa. pgp230 can be enriched by the use of affinity chromatography on Concanavalin A-Sepharose, wheat germ lectin-Sepharose, and 5'-AMP-Sepharose. It has a high-affinity Ca2+ binding site. In the presence of Ca2+, it forms a phosphorylated intermediate by autocatalytic transfer of the terminal phosphate residue from ATP. Maximal Ca(2+)-dependent autophosphorylation is observed at pH 5-6. Photoaffinity labeling using 8-azido-[alpha-32P]ATP or [y-32P]ATP confirms the presence of ATP binding sites. Incubation with [alpha-32P]ATP leads to a rapid but transient labeling of pgp230. Various nucleotides, nucleotide receptor agonists, or antagonists inhibit Ca(2+)-dependent phosphorylation by [y-32P]ATP. The concentrations of half-maximal inhibition range from 10(-7) M to 10(-3) M. The rank order of inhibitory potency is: ATP > alpha,beta-methylene-ATP > CTP = TTP > y-4-amino-phenyl-ATP = 2-methyl-thio-ATP > UTP = GTP > GDP = ADP = beta,y-methylene-ATP = beta, y-methylene-TTP = beta,y-methylene-GTP = adenosine-5'-O-2-thiodiphosphate = CMP = AMP > adenosine > cytidine > guanosine = suramin > Reactive blue 2 > iso-butyl-methyl-xanthine > thymidine > uridine. These data suggest a nucleotide binding capacity of this new hepatocyte membrane glycoprotein. Further investigations should be carried out to reveal its biological function.
Collapse
Affiliation(s)
- W Kreisel
- Klinikum Der Albert-Ludwigs-Universität, Medizinische Klinik, Abteilung Gastroenterologie, Hepatologie und Endokrinologie, Freiburg, Germany
| | | | | |
Collapse
|
13
|
Dixon CJ, Cobbold PH, Green AK. Actions of ADP, but not ATP, on cytosolic free Ca2+ in single rat hepatocytes mimicked by 2-methylthioATP. Br J Pharmacol 1995; 116:1979-84. [PMID: 8640335 PMCID: PMC1908934 DOI: 10.1111/j.1476-5381.1995.tb16401.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. Aequorin-injected, single rat hepatocytes generate series of repetitive transients in cytosolic free calcium concentration ([Ca2+]i) when stimulated with agonists acting through the phosphoinositide signalling pathway, including ADP and ATP. We have previously described differences in the [Ca2+]i responses of aequorin-injected hepatocytes to ADP and ATP. 2. The effects of the phosphorothioate analogue of ATP, 2-methylthioATP (2-meSATP), have been examined on single rat hepatocytes. This analogue is belived to be the most potent agonist at the P2Y1 subclass of purinoceptor. 3. The [Ca2+]i transients induced by 2-meSATP were indistinguishable from those induced by ADP, and in contrast to those induced by ATP. 4. At hig concentrations, 2-meSATP and ADP both induced transients at high frequency. In contrast, hepatocytes responded to high concentrations of ATP with an initial rapid rise in [Ca2+]i, followed by a slowly decaying fall. 5. The modulatory effects of elevated intracellular cyclic AMP concentration were the same on both 2-meSATP- and ADP-induced [Ca2+]i transients; the peak height and frequency of transients were enhanced. ATP-induced transients, however, underwent either an increase in duration or conversion into a sustained rise in [Ca2+]i. 6. ATP-induced transients were specifically potentiated by the co-addition of alpha, beta-methyleneATP, whereas 2-meSATP- and ADP-induced transients were unaffected by this treatment. 7. We conclude that 2-meSATP acts at the same receptor as ADP on rat hepatocytes, and that this is distinct from teh receptor(s) mediating the effects of ATP.
Collapse
Affiliation(s)
- C J Dixon
- Dept. of Human Anatomy and Cell Biology, University of Liverpool
| | | | | |
Collapse
|
14
|
Dixon CJ, Cobbold PH, Green AK. Oscillations in cytosolic free Ca2+ induced by ADP and ATP in single rat hepatocytes display differential sensitivity to application of phorbol ester. Biochem J 1995; 309 ( Pt 1):145-9. [PMID: 7619050 PMCID: PMC1135812 DOI: 10.1042/bj3090145] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have previously described differences in the oscillatory responses of cytosolic free Ca2+ concentration ([Ca2+]i) in hepatocytes to ADP and ATP, which we have interpreted as evidence that these two nucleotides are acting at distinct receptors. We show here that ADP- and ATP-induced oscillations are differentially sensitive to application of the phorbol ester 4 beta-phorbol 12,13-dibutyrate (PDB). ADP-induced [Ca2+]i oscillations are abolished by low concentrations of PDB (5-10 nM), whereas ATP-induced oscillations of long duration are refractory to PDB, even at greatly elevated concentrations (100 nM). The data illustrate a further difference in the actions of ADP and ATP, strengthening the argument that these agonists are not acting at the same receptor on rat hepatocytes.
Collapse
Affiliation(s)
- C J Dixon
- Department of Human Anatomy and Cell Biology, University of Liverpool, U.K
| | | | | |
Collapse
|
15
|
Boarder MR, Weisman GA, Turner JT, Wilkinson GF. G protein-coupled P2 purinoceptors: from molecular biology to functional responses. Trends Pharmacol Sci 1995; 16:133-9. [PMID: 7610499 DOI: 10.1016/s0165-6147(00)89001-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nucleotides such as ATP and ADP act as intercellular messengers and exert a widespread influence on cellular function by acting on a variety of cell surface receptors. Until recently, progress has been restrained, in part, by a lack of cloned receptors. Now, however, the successful cloning of a variety of P2 purinoceptors is holding out the prospect of rapid advances in the understanding of this diverse group of receptors and the potent therapeutic resource they represent. In this article, Michael Boarder and colleagues summarize the findings of recent cloning studies, and assess the impact of these on the understanding of the function of the G protein-coupled P2 purinoceptors in several types of cells and tissues.
Collapse
Affiliation(s)
- M R Boarder
- Department of Cell Physiology and Pharmacology, University of Leicester, UK
| | | | | | | |
Collapse
|
16
|
Peres A, Giovannardi S. Characteristics of the signal transduction system activated by ATP receptors in the hepatoma cell line N1S1-67. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1265:33-9. [PMID: 7857982 DOI: 10.1016/0167-4889(94)00192-h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transmembrane transduction mechanism coupled to purinergic receptors has been studied in a rat hepatoma cell line (N1S1) at the single cell level by a combination of microfluorimetric and electrophysiological techniques. ATP in the micromolar range causes release of Ca2+ from internal stores and consequent opening of Ca(2+)-activated K+ channels, leading to membrane hyperpolarization. The order of potency of the various nucleotides tested is UTP = ATP = ADP >> AMP, and ATP > beta, gamma-CH2 ATP, indicating that these receptors belong to the P2U subtype. The Ca2+ rise induced by various amounts of ATP exhibits an all-or-none behaviour already observable at 10 microM ATP. Intracellular injection of (10-20 microM) InsP3 or of its non-metabolizable analogue 3-F-InsP3 through the patch pipette, does not always result in a Ca2+ rise. These results may be interpreted assuming that the InsP3 receptors-Ca2+ release channels involved in the purinergic/pyrimidinergic stimulation are located in a subcellular compartment not easily accessible from the bulk cytosol and that a positive feedback loop occurs in this restricted space.
Collapse
Affiliation(s)
- A Peres
- Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, Italy
| | | |
Collapse
|
17
|
Heilmann C, Spamer C, Mössner W, Dietz C, Reutter W, Kreisel W. A new type of Ca(2+)-dependent, Mg(2+)-stimulated ATPase of rat liver plasma membrane. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:971-80. [PMID: 7813488 DOI: 10.1111/j.1432-1033.1994.00971.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Incubation of a glycoprotein fraction obtained from rat liver plasma membrane which has been previously well characterized using [gamma-32P]ATP results in the phosphorylation of a 230-kDa glycoprotein (pgp230). It is composed of a 120-kDa subunit (pgp120) and a 110-kDa subunit (pgp110) linked by interchain disulfide bonds. Peptide maps of pgp120 and pgp110 suggest extensive similarity in their polypeptide chains. Glycan analysis reveals between four and six hybrid-type oligosaccharide chains for both phosphoproteins. Immunoblotting using monoclonal antibodies and endoglycosidase digestion exclude an identity of pgp120 or pgp110 with the hepatocyte plasma membrane glycoproteins dipeptidylpeptidase IV or the taurocholate transport protein, which co-purify and co-migrate in SDS/PAGE. Protein phosphorylation is Ca(2+)-dependent (K0.5(Ca2+) = 0.35 microM, in the absence of Mg2+). In the presence of Mg2+, the glycoprotein undergoes rapid cycles of phosphorylation and dephosphorylation, resulting in ATPase activity. Analysis of phosphorylated amino acids identifies phosphothreonine as the major one. Photoaffinity labeling with 8-azido-[alpha-32P]ATP demonstrates the presence of one or more ATP binding site(s). Preincubation of pgp230 with various purine or pyrimidine nucleotides (ATP, UTP, TTP, ADP, GDP, AMP, CMP) or known P2-purinoceptor agonists or antagonists (adenosine 5'-[alpha,beta-methylene]triphosphate, 2-methyl-thio-adenosine 5'-triphosphate, suramin) inhibits its phosphorylation by [gamma-32P]ATP. The biological function of pgp230 is unknown at present. Several findings of the present study are compatible with the idea that pgp230 may be involved in a P2-purinoceptor function of the hepatocyte. Following this concept, a mechanism is discussed where a cytosolically exposed high-affinity Ca(2+)-binding site of pgp230 would allow for receptor feedback control, via phosphorylation and dephosphorylation, by sensing changes in cytosolic Ca2+ concentration.
Collapse
Affiliation(s)
- C Heilmann
- Abteilung Gastroenterologie und Hepatologie, Medizinische Klinik, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Green AK, Cobbold PH, Dixon CJ. Elevated intracellular cyclic AMP exerts different modulatory effects on cytosolic free Ca2+ oscillations induced by ADP and ATP in single rat hepatocytes. Biochem J 1994; 302 ( Pt 3):949-55. [PMID: 7945225 PMCID: PMC1137322 DOI: 10.1042/bj3020949] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Single aequorin-injected hepatocytes respond to agonists acting via the phosphoinositide signalling pathway by the generation of oscillations in cytosolic free Ca2+ concentration ([Ca2+]free). The duration of [Ca2+]free transients is characteristic of the stimulating agonist. We have previously reported that ADP and ATP, which are believed to act through a single P(2y)-purinoceptor species, induce very different oscillatory [Ca2+]free responses in the majority of hepatocytes. We have interpreted these data as evidence for two separate Ca(2+)-mobilizing purinoceptors for these nucleotides. We show here that the elevation of intracellular cyclic AMP concentration, by the co-application of either dibutyryl cyclic AMP or 7 beta-desacetyl-7 beta-[gamma-(N-methylpiperazino)butyryl]- forskolin (L858051), exerts different modulatory effects on [Ca2+]free oscillations induced by ADP and ATP in single rat hepatocytes. Elevated intracellular cyclic AMP levels enhance the frequency and peak [Ca2+]free of transients induced by ADP. In contrast, the elevation of intracellular cyclic AMP levels in hepatocytes producing [Ca2+]free oscillations in response to ATP stimulates either an increase in the duration of transients or a sustained rise in [Ca2+]free. The data illustrate a further difference between the oscillatory [Ca2+]free responses of hepatocytes to ADP and ATP, thus further arguing against ADP and ATP acting via a single purinoceptor species.
Collapse
Affiliation(s)
- A K Green
- Department of Human Anatomy and Cell Biology, University of Liverpool, U.K
| | | | | |
Collapse
|