1
|
Pan B, Cheng J, Tan W, Wu X, Fan Q, Fan L, Jiang M, Yu R, Cheng X, Deng Y. Pan-cancer analysis of LRRC59 with a focus on prognostic and immunological roles in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:8171-8197. [PMID: 38738999 PMCID: PMC11131990 DOI: 10.18632/aging.205810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND LRRC59 is a leucine-rich repeats-containing protein located in the endoplasmic reticulum (ER), it serves as a prognostic marker in several cancers. However, there has been no systematic analysis of its role in the tumor immune microenvironment, nor its predictive value of prognosis and immunotherapy response in different cancers. METHODS A comprehensive pan-cancer analysis of LRRC59 was conducted from various databases to elucidate the associations between its expression and the prognosis of cancer, genetic alterations, tumor metabolism, and tumor immunity. Additionally, further functional assays were performed in hepatocellular carcinoma (HCC) to study its biological role in regulating cell proliferation, migration, apoptosis, cell cycle arrest, and sensitivity to immunotherapy. RESULTS The pan-cancer analysis reveals a significant upregulation of LRRC59 in pan-cancer, and its overexpression is correlated with unfavorable prognosis in cancer patients. LRRC59 is negatively correlated with immune cell infiltration, tumor purity estimation, and immune checkpoint genes. Finally, the validation in HCC demonstrates LRRC59 is significantly overexpressed in cancer tissue and cell lines, and its knockdown inhibits cell proliferation and migration, promotes cell apoptosis, induces cell cycle arrest, and enhances the sensitivity to immunotherapy in HCC cells. CONCLUSIONS LRRC59 emerges as a novel potential prognostic biomarker across malignancies, offering promise for anti-cancer drugs and immunotherapy.
Collapse
Affiliation(s)
- Boyu Pan
- Department of Orthopaedics, The Third Hospital of Changsha, Changsha 410015, Hunan, China
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jun Cheng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xin Wu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Qizhi Fan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Lei Fan
- Department of Orthopaedics, The Third Hospital of Changsha, Changsha 410015, Hunan, China
| | - Minghui Jiang
- Department of Orthopaedics, The Third Hospital of Changsha, Changsha 410015, Hunan, China
| | - Rong Yu
- Department of Orthopaedics, The Third Hospital of Changsha, Changsha 410015, Hunan, China
| | - Xiaoyun Cheng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
2
|
Chen H, Zhao T, Fan J, Yu Z, Ge Y, Zhu H, Dong P, Zhang F, Zhang L, Xue X, Lin X. Construction of a prognostic model for colorectal adenocarcinoma based on Zn transport-related genes identified by single-cell sequencing and weighted co-expression network analysis. Front Oncol 2023; 13:1207499. [PMID: 37829346 PMCID: PMC10565862 DOI: 10.3389/fonc.2023.1207499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 10/14/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent malignancies and the third most lethal cancer globally. The most reported histological subtype of CRC is colon adenocarcinoma (COAD). The zinc transport pathway is critically involved in various tumors, and its anti-tumor effect may be through improving immune function. However, the Zn transport pathway in COAD has not been reported. Methods The determination of Zn transport-related genes in COAD was carried out through single-cell analysis of the GSE 161277 obtained from the GEO dataset. Subsequently, a weighted co-expression network analysis of the TCGA cohort was performed. Then, the prognostic model was conducted utilizing univariate Cox regression and least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Functional enrichment, immune microenvironment, and survival analyses were also carried out. Consensus clustering analysis was utilized to verify the validity of the prognostic model and explore the immune microenvironment. Ultimately, cell experiments, including CCK-8,transwell and scratch assays, were performed to identify the function of LRRC59 in COAD. Results According to the Zn transport-related prognostic model, the individuals with COAD in TCGA and GEO databases were classified into high- and low-risk groups. The group with low risk had a comparatively more favorable prognosis. Two groups had significant variations in the immune infiltration, MHC, and the expression of genes related to the immune checkpoint. The cell experiments indicated that the proliferation, migration, and invasion of the HCT-116, DLD-1, and RKO cell lines were considerably increased after LRRC59 knockdown. It proved that LRRC59 was indeed a protective factor for COAD. Conclusion A prognostic model for COAD was developed using zinc transport-related genes. This model can efficiently assess the immune microenvironment and prognosis of individuals with COAD. Subsequently, the function of LRRC59 in COAD was validated via cell experiments, highlighting its potential as a biomarker.
Collapse
Affiliation(s)
- Hua Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ting Zhao
- Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianing Fan
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqiang Yu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiwen Ge
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - He Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fu Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang Zhang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoming Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Jung M, Zimmermann R. Quantitative Mass Spectrometry Characterizes Client Spectra of Components for Targeting of Membrane Proteins to and Their Insertion into the Membrane of the Human ER. Int J Mol Sci 2023; 24:14166. [PMID: 37762469 PMCID: PMC10532041 DOI: 10.3390/ijms241814166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
To elucidate the redundancy in the components for the targeting of membrane proteins to the endoplasmic reticulum (ER) and/or their insertion into the ER membrane under physiological conditions, we previously analyzed different human cells by label-free quantitative mass spectrometry. The HeLa and HEK293 cells had been depleted of a certain component by siRNA or CRISPR/Cas9 treatment or were deficient patient fibroblasts and compared to the respective control cells by differential protein abundance analysis. In addition to clients of the SRP and Sec61 complex, we identified membrane protein clients of components of the TRC/GET, SND, and PEX3 pathways for ER targeting, and Sec62, Sec63, TRAM1, and TRAP as putative auxiliary components of the Sec61 complex. Here, a comprehensive evaluation of these previously described differential protein abundance analyses, as well as similar analyses on the Sec61-co-operating EMC and the characteristics of the topogenic sequences of the various membrane protein clients, i.e., the client spectra of the components, are reported. As expected, the analysis characterized membrane protein precursors with cleavable amino-terminal signal peptides or amino-terminal transmembrane helices as predominant clients of SRP, as well as the Sec61 complex, while precursors with more central or even carboxy-terminal ones were found to dominate the client spectra of the SND and TRC/GET pathways for membrane targeting. For membrane protein insertion, the auxiliary Sec61 channel components indeed share the client spectra of the Sec61 complex to a large extent. However, we also detected some unexpected differences, particularly related to EMC, TRAP, and TRAM1. The possible mechanistic implications for membrane protein biogenesis at the human ER are discussed and can be expected to eventually advance our understanding of the mechanisms that are involved in the so-called Sec61-channelopathies, resulting from deficient ER protein import.
Collapse
Affiliation(s)
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| |
Collapse
|
4
|
Lang S, Nguyen D, Bhadra P, Jung M, Helms V, Zimmermann R. Signal Peptide Features Determining the Substrate Specificities of Targeting and Translocation Components in Human ER Protein Import. Front Physiol 2022; 13:833540. [PMID: 35899032 PMCID: PMC9309488 DOI: 10.3389/fphys.2022.833540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
In human cells, approximately 30% of all polypeptides enter the secretory pathway at the level of the endoplasmic reticulum (ER). This process involves cleavable amino-terminal signal peptides (SPs) or more or less amino-terminal transmembrane helices (TMHs), which serve as targeting determinants, at the level of the precursor polypeptides and a multitude of cytosolic and ER proteins, which facilitate their ER import. Alone or in combination SPs and TMHs guarantee the initial ER targeting as well as the subsequent membrane integration or translocation. Cytosolic SRP and SR, its receptor in the ER membrane, mediate cotranslational targeting of most nascent precursor polypeptide chains to the polypeptide-conducting Sec61 complex in the ER membrane. Alternatively, fully-synthesized precursor polypeptides and certain nascent precursor polypeptides are targeted to the ER membrane by either the PEX-, SND-, or TRC-pathway. Although these targeting pathways may have overlapping functions, the question arises how relevant this is under cellular conditions and which features of SPs and precursor polypeptides determine preference for a certain pathway. Irrespective of their targeting pathway(s), most precursor polypeptides are integrated into or translocated across the ER membrane via the Sec61 channel. For some precursor polypeptides specific Sec61 interaction partners have to support the gating of the channel to the open state, again raising the question why and when this is the case. Recent progress shed light on the client spectrum and specificities of some auxiliary components, including Sec62/Sec63, TRAM1 protein, and TRAP. To address the question which precursors use a certain pathway or component in intact human cells, i.e., under conditions of fast translation rates and molecular crowding, in the presence of competing precursors, different targeting organelles, and relevant stoichiometries of the involved components, siRNA-mediated depletion of single targeting or transport components in HeLa cells was combined with label-free quantitative proteomics and differential protein abundance analysis. Here, we present a summary of the experimental approach as well as the resulting differential protein abundance analyses and discuss their mechanistic implications in light of the available structural data.
Collapse
Affiliation(s)
- Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Pratiti Bhadra
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
5
|
Svitkin YV, Gingras AC, Sonenberg N. Membrane-dependent relief of translation elongation arrest on pseudouridine- and N1-methyl-pseudouridine-modified mRNAs. Nucleic Acids Res 2021; 50:7202-7215. [PMID: 34933339 PMCID: PMC9303281 DOI: 10.1093/nar/gkab1241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Expression of therapeutically important proteins has benefited dramatically from the advent of chemically modified mRNAs that feature decreased lability and immunogenicity. This had a momentous effect on the rapid development of COVID-19 mRNA vaccines. Incorporation of the naturally occurring pseudouridine (Ψ) or N1-methyl-pseudouridine (N1mΨ) into in vitro transcribed mRNAs prevents the activation of unwanted immune responses by blocking eIF2α phosphorylation, which inhibits translation. Here, we report that Ψs in luciferase (Luc) mRNA exacerbate translation pausing in nuclease-untreated rabbit reticulocyte lysate (uRRL) and promote the formation of high-order-ribosome structures. The major deceleration of elongation occurs at the Ψ-rich nucleotides 1294-1326 of Ψ-Luc mRNA and results in premature termination of translation. The impairment of translation is mainly due to the shortage of membranous components. Supplementing uRRL with canine microsomal membranes (CMMs) relaxes the impediments to ribosome movement, resolves collided ribosomes, and greatly enhances full-size luciferase production. CMMs also strongly stimulated an extremely inefficient translation of N1mΨ-Luc mRNA in uRRL. Evidence is presented that translational pausing can promote membrane recruitment of polysomes with nascent polypeptides that lack a signal sequence. Our results highlight an underappreciated role of membrane binding to polysomes in the prevention of ribosome collision and premature release of nascent polypeptides.
Collapse
Affiliation(s)
- Yuri V Svitkin
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada.,Rosalind and Morris Goodman Cancer Institute, Montréal, Québec H3A 1A3, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1×5, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada.,Rosalind and Morris Goodman Cancer Institute, Montréal, Québec H3A 1A3, Canada
| |
Collapse
|
6
|
Bhadra P, Schorr S, Lerner M, Nguyen D, Dudek J, Förster F, Helms V, Lang S, Zimmermann R. Quantitative Proteomics and Differential Protein Abundance Analysis after Depletion of Putative mRNA Receptors in the ER Membrane of Human Cells Identifies Novel Aspects of mRNA Targeting to the ER. Molecules 2021; 26:3591. [PMID: 34208277 PMCID: PMC8230838 DOI: 10.3390/molecules26123591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022] Open
Abstract
In human cells, one-third of all polypeptides enter the secretory pathway at the endoplasmic reticulum (ER). The specificity and efficiency of this process are guaranteed by targeting of mRNAs and/or polypeptides to the ER membrane. Cytosolic SRP and its receptor in the ER membrane facilitate the cotranslational targeting of most ribosome-nascent precursor polypeptide chain (RNC) complexes together with the respective mRNAs to the Sec61 complex in the ER membrane. Alternatively, fully synthesized precursor polypeptides are targeted to the ER membrane post-translationally by either the TRC, SND, or PEX19/3 pathway. Furthermore, there is targeting of mRNAs to the ER membrane, which does not involve SRP but involves mRNA- or RNC-binding proteins on the ER surface, such as RRBP1 or KTN1. Traditionally, the targeting reactions were studied in cell-free or cellular assays, which focus on a single precursor polypeptide and allow the conclusion of whether a certain precursor can use a certain pathway. Recently, cellular approaches such as proximity-based ribosome profiling or quantitative proteomics were employed to address the question of which precursors use certain pathways under physiological conditions. Here, we combined siRNA-mediated depletion of putative mRNA receptors in HeLa cells with label-free quantitative proteomics and differential protein abundance analysis to characterize RRBP1- or KTN1-involving precursors and to identify possible genetic interactions between the various targeting pathways. Furthermore, we discuss the possible implications on the so-called TIGER domains and critically discuss the pros and cons of this experimental approach.
Collapse
Affiliation(s)
- Pratiti Bhadra
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66041 Saarbrücken, Germany; (P.B.); (D.N.); (V.H.)
| | - Stefan Schorr
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (S.S.); (M.L.); (J.D.); (S.L.)
| | - Monika Lerner
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (S.S.); (M.L.); (J.D.); (S.L.)
| | - Duy Nguyen
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66041 Saarbrücken, Germany; (P.B.); (D.N.); (V.H.)
| | - Johanna Dudek
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (S.S.); (M.L.); (J.D.); (S.L.)
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands;
| | - Volkhard Helms
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66041 Saarbrücken, Germany; (P.B.); (D.N.); (V.H.)
| | - Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (S.S.); (M.L.); (J.D.); (S.L.)
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (S.S.); (M.L.); (J.D.); (S.L.)
| |
Collapse
|
7
|
Hannigan MM, Hoffman AM, Thompson JW, Zheng T, Nicchitta CV. Quantitative Proteomics Links the LRRC59 Interactome to mRNA Translation on the ER Membrane. Mol Cell Proteomics 2020; 19:1826-1849. [PMID: 32788342 DOI: 10.1074/mcp.ra120.002228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Protein synthesis on the endoplasmic reticulum (ER) requires the dynamic coordination of numerous cellular components. Together, resident ER membrane proteins, cytoplasmic translation factors, and both integral membrane and cytosolic RNA-binding proteins operate in concert with membrane-associated ribosomes to facilitate ER-localized translation. Little is known, however, regarding the spatial organization of ER-localized translation. This question is of growing significance as it is now known that ER-bound ribosomes contribute to secretory, integral membrane, and cytosolic protein synthesis alike. To explore this question, we utilized quantitative proximity proteomics to identify neighboring protein networks for the candidate ribosome interactors SEC61β (subunit of the protein translocase), RPN1 (oligosaccharyltransferase subunit), SEC62 (translocation integral membrane protein), and LRRC59 (ribosome binding integral membrane protein). Biotin labeling time course studies of the four BioID reporters revealed distinct labeling patterns that intensified but only modestly diversified as a function of labeling time, suggesting that the ER membrane is organized into discrete protein interaction domains. Whereas SEC61β and RPN1 reporters identified translocon-associated networks, SEC62 and LRRC59 reporters revealed divergent protein interactomes. Notably, the SEC62 interactome is enriched in redox-linked proteins and ER luminal chaperones, with the latter likely representing proximity to an ER luminal chaperone reflux pathway. In contrast, the LRRC59 interactome is highly enriched in SRP pathway components, translation factors, and ER-localized RNA-binding proteins, uncovering a functional link between LRRC59 and mRNA translation regulation. Importantly, analysis of the LRRC59 interactome by native immunoprecipitation identified similar protein and functional enrichments. Moreover, [35S]-methionine incorporation assays revealed that siRNA silencing of LRRC59 expression reduced steady state translation levels on the ER by ca. 50%, and also impacted steady state translation levels in the cytosol compartment. Collectively, these data reveal a functional domain organization for the ER and identify a key role for LRRC59 in the organization and regulation of local translation.
Collapse
Affiliation(s)
- Molly M Hannigan
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alyson M Hoffman
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - J Will Thompson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Duke Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tianli Zheng
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christopher V Nicchitta
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
8
|
Li D, Xing Y, Tian T, Guo Y, Qian J. Overexpression of LRRC59 Is Associated with Poor Prognosis and Promotes Cell Proliferation and Invasion in Lung Adenocarcinoma. Onco Targets Ther 2020; 13:6453-6463. [PMID: 32753886 PMCID: PMC7342457 DOI: 10.2147/ott.s245336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022] Open
Abstract
Aim LRRC59 (leucine-rich repeat-containing protein 59) is a ribosome-binding protein that also interacts with fibroblast growth factors. Limited investigations revealed a possible role of LRRC59 in the aggressive phenotype of breast cancer. However, whether LRRC59 contributes to the progression of lung cancer remains unclear. Materials and Methods In this study, an online TCGA-based survival analysis software (GEPIA2) was used to estimate the prognostic value of LRRC59 mRNA expression level for lung cancer. Cell Counting Kit-8 assay, colony-forming assay, cell cycle analysis, and transwell assay were used to assess the biological functions of LRRC59 in lung cancer cells. Then, 94 lung adenocarcinoma (LUAD) patient tissues were collected to examine the expression level of LRRC59 by the tissue microarray (TMA)-based immunohistochemistry staining (IHC). Univariate Kaplan-Meier and multivariate Cox regression analyses were performed to evaluate the prognostic value of LRRC59 protein expression in LUAD. Results Higher mRNA level of LRRC59 was significantly associated with worse survival for lung adenocarcinoma, but not for lung squamous cell carcinoma. Knockdown of LRRC59 by shRNA apparently inhibited cell proliferation and colony formation in both H1299 and A549 cells. The G1/S phase arrest induced by LRRC59 depletion was observed in A549 and H1299 cells. Besides, the silencing of LRRC59 decreased cell migrative and invasive abilities. Moreover, TMA-based IHC showed that LRRC59 was highly expressed in LUAD tissues and closely associated with lymph node metastasis (P<0.001), TNM stage (P<0.001), and histological differentiation (P=0.007). Further multivariate analysis suggested that LRRC59 overexpression was an independent prognostic factor in LUAD. Conclusion LRRC59 may serve as a novel biomarkers and therapeutic target for LUAD clinical practice.
Collapse
Affiliation(s)
- Dong Li
- Department of Thoracic Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, People's Republic of China
| | - Ying Xing
- Department of Gastroenterology, The 72nd Army Hospital of the People's Liberation Army of China, Huzhou, Zhejiang, People's Republic of China
| | - Tiannv Tian
- Huzhou University Schools of Nursing and Medicine, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Yanan Guo
- Huzhou University Schools of Nursing and Medicine, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Jing Qian
- Huzhou University Schools of Nursing and Medicine, Huzhou University, Huzhou, Zhejiang, People's Republic of China.,Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou, Zhejiang, People's Republic of China
| |
Collapse
|
9
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
10
|
Hoffman AM, Chen Q, Zheng T, Nicchitta CV. Heterogeneous translational landscape of the endoplasmic reticulum revealed by ribosome proximity labeling and transcriptome analysis. J Biol Chem 2019; 294:8942-8958. [PMID: 31004035 DOI: 10.1074/jbc.ra119.007996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is a nexus for mRNA localization and translation, and recent studies have demonstrated that ER-bound ribosomes also play a transcriptome-wide role in regulating proteome composition. The Sec61 translocon (SEC61) serves as the receptor for ribosomes that translate secretory/integral membrane protein-encoding mRNAs, but whether SEC61 also serves as a translation site for cytosolic protein-encoding mRNAs remains unknown. Here, using a BioID proximity-labeling approach in HEK293T Flp-In cell lines, we examined interactions between ER-resident proteins and ribosomes in vivo Using in vitro analyses, we further focused on bona fide ribosome interactors (i.e. SEC61) and ER proteins (ribophorin I, leucine-rich repeat-containing 59 (LRRC59), and SEC62) previously implicated in associating with ribosomes. We observed labeling of ER-bound ribosomes with the SEC61β and LRRC59 BioID reporters, comparatively modest labeling with the ribophorin I reporter, and no labeling with the SEC62 reporter. A biotin pulse-chase/subcellular fractionation approach to examine ribosome exchange at the SEC61β and LRRC59 sites revealed that, at steady state, ribosomes at these sites comprise both rapid- and slow-exchanging pools. Global translational initiation arrest elicited by the inhibitor harringtonine accelerated SEC61β reporter-labeled ribosome exchange. RNA-Seq analyses of the mRNAs associated with SEC61β- and LRRC59-labeled ribosomes revealed both site-enriched and shared mRNAs and further established that the ER has a transcriptome-wide role in regulating proteome composition. These results provide evidence that ribosomes interact with the ER membrane via multiple modes and suggest regulatory mechanisms that control global proteome composition via ER membrane-bound ribosomes.
Collapse
Affiliation(s)
| | - Qiang Chen
- Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Tianli Zheng
- Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Christopher V Nicchitta
- From the Departments of Biochemistry and .,Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
11
|
Zhen Y, Sørensen V, Skjerpen CS, Haugsten EM, Jin Y, Wälchli S, Olsnes S, Wiedlocha A. Nuclear Import of Exogenous FGF1 Requires the ER-Protein LRRC59 and the Importins Kpnα1 and Kpnβ1. Traffic 2012; 13:650-64. [DOI: 10.1111/j.1600-0854.2012.01341.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | | | | | - Sebastien Wälchli
- Department of Immunology; Institute for Cancer Research; The Norwegian Radium Hospital; Montebello; Oslo; 0310; Norway
| | | | | |
Collapse
|
12
|
Adegbola O, Pasternack GR. Phosphorylated retinoblastoma protein complexes with pp32 and inhibits pp32-mediated apoptosis. J Biol Chem 2005; 280:15497-502. [PMID: 15716273 DOI: 10.1074/jbc.m411382200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma gene product (Rb) is a tumor suppressor that affects apoptosis paradoxically. Most sporadic cancers inactivate Rb by preferentially targeting the pathway that regulates Rb phosphorylation, resulting in resistance to apoptosis; this contrasts with Rb inactivation by mutation, which is associated with high rates of apoptosis. How phosphorylated Rb protects cells from apoptosis is not well understood, but there is evidence that Rb may sequester a pro-apoptotic nuclear factor. pp32 (ANP32A) is a pro-apoptotic nuclear phosphoprotein, the expression of which is commonly increased in cancer. We report that hyperphosphorylated Rb interacts with pp32 but not with the closely related proteins pp32r1 and pp32r2. We further demonstrate that pp32-Rb interaction inhibits the apoptotic activity of pp32 and stimulates proliferation. These results suggest a mechanism whereby cancer cells gain both a proliferative and survival advantage when Rb is inactivated by hyperphosphorylation.
Collapse
Affiliation(s)
- Onikepe Adegbola
- Division of Molecular Pathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
13
|
Olsnes S, Klingenberg O, Wiedłocha A. Transport of exogenous growth factors and cytokines to the cytosol and to the nucleus. Physiol Rev 2003; 83:163-82. [PMID: 12506129 DOI: 10.1152/physrev.00021.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years a number of growth factors, cytokines, protein hormones, and other proteins have been found in the nucleus after having been added externally to cells. This review evaluates the evidence that translocation takes place and discusses possible mechanisms. As a demonstration of the principle that extracellular proteins can penetrate cellular membranes and reach the cytosol, a brief overview of the penetration mechanism of protein toxins with intracellular sites of action is given. Then problems and pitfalls in attempts to demonstrate the presence of proteins in the cytosol and in the nucleus as opposed to intracellular vesicular compartments are discussed, and some new approaches to study this are described. A detailed overview of the evidence for translocation of fibroblast growth factor, HIV-Tat, interferon-gamma, and other proteins where there is evidence for intracellular action is given, and translocation mechanisms are discussed. It is concluded that although there are many pitfalls, the bulk of the experiments indicate that certain proteins are indeed able to enter the cytosol and nucleus. Possible roles of the internalized proteins are discussed.
Collapse
Affiliation(s)
- Sjur Olsnes
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo, Norway.
| | | | | |
Collapse
|
14
|
Skjerpen CS, Wesche J, Olsnes S. Identification of ribosome-binding protein p34 as an intracellular protein that binds acidic fibroblast growth factor. J Biol Chem 2002; 277:23864-71. [PMID: 11964394 DOI: 10.1074/jbc.m112193200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the aim of identifying new intracellular binding partners for acidic fibroblast growth factor (aFGF), proteins from U2OS human osteosarcoma cells were adsorbed to immobilized aFGF. One of the adsorbed proteins is a member of the leucine-rich repeat protein family termed ribosome-binding protein p34 (p34). This protein has previously been localized to endoplasmic reticulum membranes and is thought to span the membrane with the N terminus on the cytosolic side. Confocal microscopy of cells transfected with Myc-p34 confirmed the endoplasmic reticulum localization, and Northern blotting determined p34 mRNA to be present in a multitude of different tissues. Cross-linking experiments indicated that the protein is present in the cell as a dimer. In vitro translated p34 was found to interact with maltose-binding protein-aFGF through its cytosolic coiled-coil domain. The interaction between aFGF and p34 was further characterized by surface plasmon resonance, giving a K(D) of 1.4 +/- 0.3 microm. Even though p34 interacted with mitogenic aFGF, it bound poorly to the non-mitogenic aFGF(K132E) mutant, indicating a possible involvement of p34 in intracellular signaling by aFGF.
Collapse
Affiliation(s)
- Camilla Skiple Skjerpen
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | |
Collapse
|
15
|
Higashi Y, Itabe H, Fukase H, Mori M, Fujimoto Y, Sato R, Imanaka T, Takano T. Distribution of microsomal triglyceride transfer protein within sub-endoplasmic reticulum regions in human hepatoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1581:127-36. [PMID: 12020640 DOI: 10.1016/s1388-1981(02)00157-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Very low-density lipoprotein (VLDL) particles are formed in the endoplasmic reticulum (ER) through the association of lipids with apolipoprotein B (apoB). Microsomal triglyceride transfer protein (MTP), which transfers lipid molecules to nascent apoB, is essential for VLDL formation in ER. However, little is known of the distribution and interaction of MTP with apoB within ER. In this study, distribution patterns of apoB and MTP large subunit (lMTP) within ER were examined. Microsomes prepared from HuH-7 cells, a human hepatoma cell line, were further fractionated into rough ER (RER)-enriched subfractions (ER-I fraction) and smooth ER (SER)-enriched subfractions (ER-II fraction) by iodixanol density-gradient ultracentrifugation. ApoB was evenly distributed in the ER-I and the ER-II fractions, while 1.5 times more lMTP molecules were present in the ER-I fraction than in the ER-II fraction. lMTP and apoB were coprecipitated both in the ER-I and in the ER-II fractions by immunoprecipitation whenever anti-apoB or an anti-lMTP antibodies were used. ApoB-containing lipoprotein particles showed a lower density in the ER-II fraction than those in the ER-I fraction. From these results, it is suggested that MTP can function in both rough and smooth regions of ER in human hepatoma cells.
Collapse
Affiliation(s)
- Yusuke Higashi
- Department of Molecular Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Tsukui, Kanagawa 199-0195, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Luján HD, Mowatt MR, Nash TE. Mechanisms of Giardia lamblia differentiation into cysts. Microbiol Mol Biol Rev 1997; 61:294-304. [PMID: 9293183 PMCID: PMC232612 DOI: 10.1128/mmbr.61.3.294-304.1997] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Microbiologists have long been intrigued by the ability of parasitic organisms to adapt to changes in the environment. Since most parasites occupy several niches during their journey between vectors and hosts, they have developed adaptive responses which allow them to survive under adverse conditions. Therefore, the life cycles of protozoan and helminthic parasites are excellent models with which to study numerous mechanisms involved in cell differentiation, such as the regulation of gene expression, signal transduction pathways, and organelle biogenesis. Unfortunately, many of these studies are very difficult because the conditions needed to elicit developmental changes in parasites remain undetermined in most cases. Recently, several interesting findings were reported on the process of differentiation of Giardia lamblia trophozoites into cysts. G. lamblia is a flagellated protozoan that inhabits the upper small intestine of its vertebrate host and is a major cause of enteric disease worldwide. It belongs to the earliest identified lineage among eukaryotes and therefore offers a unique insight into the progression from primitive to more complex eukaryotic cells. The discovery of a specific stimulus that induces trophozoites to differentiate into cysts, the identification and characterization of encystation-specific molecules, the elucidation of novel biochemical pathways, and the development of useful reagents and techniques have made this parasite an excellent model with which to study differentiation in eukaryotic cells. In this review, we summarize the most recent fundings on several aspects of Giardia differentiation and discuss the significance of these findings within the context of current knowledge in the field.
Collapse
Affiliation(s)
- H D Luján
- Department of Biological Chemistry, School of Medicine, National University of Córdoba, Argentina
| | | | | |
Collapse
|
17
|
Savitz AJ, Meyer DI. Receptor-mediated ribosome binding to liposomes depends on lipid composition. J Biol Chem 1997; 272:13140-5. [PMID: 9148928 DOI: 10.1074/jbc.272.20.13140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ribosome binding to the endoplasmic reticulum has been traditionally studied using an in vitro assay in which potential ribosome receptors have been purified, incorporated into synthetic liposomes, and tested for activity. One such receptor (180 kDa; "p180") has been shown to bind ribosomes with high affinity in such a system when purified to homogeneity. This result has been challenged by data generated in other laboratories, and as a result, doubt has lingered as to the authenticity of p180 as a ribosome receptor. The contribution of the major difference between these studies, the lipid composition of the liposomes used in the in vitro assays, was assessed when identical fractions of rough endoplasmic reticulum-specific membrane proteins were incorporated into liposomes composed of only phosphatidylcholine (as used in other laboratories), a 50:50 mix of phosphatidylcholine and phosphatidylserine (as used in our original studies), or lipids derived from canine pancreatic microsomes (as a physiologically relevant control). The presence of PS was found to be crucial for the incorporation into and ribosome binding activity of p180 in liposomes. These observations are compatible with published studies on the importance of acidic phospholipids in ribosome binding to intact microsomes and reconcile the apparently conflicting in vitro results surrounding the assignment of p180 as a ribosome receptor.
Collapse
Affiliation(s)
- A J Savitz
- Department of Biological Chemistry and the Molecular Biology Institute, UCLA School of Medicine, Los Angeles, California 90024-1737, USA
| | | |
Collapse
|
18
|
Yoon DW, Lee H, Seol W, DeMaria M, Rosenzweig M, Jung JU. Tap: a novel cellular protein that interacts with tip of herpesvirus saimiri and induces lymphocyte aggregation. Immunity 1997; 6:571-82. [PMID: 9175835 DOI: 10.1016/s1074-7613(00)80345-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tip of herpesvirus saimiri associates with Lck and down-regulates Lck-mediated activation. We identified a novel cellular Tip-associated protein (Tap) by a yeast two-hybrid screen. Tap associated with Tip following transient expression in COS-1 cells and stable expression in human Jurkat-T cells. Expression of Tip and Tap in Jurkat-T cells induced dramatic cell aggregation. Aggregation was likely caused by the up-regulated surface expression of adhesion molecules including integrin alpha, L-selectin, ICAM-3, and H-CAM. Furthermore, NF-kappaB transcriptional factor of aggregated cells had approximately 40-fold higher activity than that of parental cells. Thus, Tap is likely to be an important cellular mediator of Tip function in T cell transformation by herpesvirus saimiri.
Collapse
Affiliation(s)
- D W Yoon
- Department of Microbiology and Molecular Genetics, New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ntwasa M, Egerton M, Gay NJ. Sequence and expression of Drosophila myristoyl-CoA: protein N-myristoyl transferase: evidence for proteolytic processing and membrane localisation. J Cell Sci 1997; 110 ( Pt 2):149-56. [PMID: 9044045 DOI: 10.1242/jcs.110.2.149] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzyme N-myristoyl transferase transfers the 14 carbon fatty acid myristate to an N-terminal glycine residue in a small subset of cytoplasmic proteins. Many myristoyl proteins are components of cellular signalling pathways, some of which play important roles during embryonic development, for example protein kinase A. Thus, the function of N-myristoyl transferase is probably essential for embryogenesis and it is of some interest to study the enzyme in an organism with well understood developmental biology. In this paper we report the purification of a processed form of the Drosophila enzyme from peripheral membrane fractions of embryos by affinity chromatography to a protein containing leucine rich repeats. We have also isolated the Drosophila N-myristoyl transferase gene and determined its nucleotide sequence. The predicted amino acid sequence of the Drosophila enzyme is closely related to that of mammalian and fungal N-myristoyl transferases and residues essential for enzyme function are conserved. Our findings indicate that a fraction of Drosophila NMT is bound to the membrane and they are consistent with recent results for the human enzyme. We suggest that N-myristoyl transferase may be recruited to the membrane as part of a translational complex, perhaps by binding to p34 ribosome binding protein, a leucine rich repeat receptor of the microsomal membranes. We have also studied the expression pattern of the gene in the embryo by northern blot analysis and in situ hybridization. The transcripts appear to be uniformly distributed in the pre-cellular embryo but at later stages the RNA is barely detectable with these methods. However, from about stage 14, high levels of transcript are detected in a small number of randomly distributed cells of the central and peripheral nervous system.
Collapse
Affiliation(s)
- M Ntwasa
- Department of Biochemistry, University of Cambridge, UK
| | | | | |
Collapse
|
20
|
Buchanan SG, Gay NJ. Structural and functional diversity in the leucine-rich repeat family of proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1996; 65:1-44. [PMID: 9029940 DOI: 10.1016/s0079-6107(96)00003-x] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- S G Buchanan
- Department of Biochemistry, University of Cambridge, U.K
| | | |
Collapse
|
21
|
Wanker EE, Sun Y, Savitz AJ, Meyer DI. Functional characterization of the 180-kD ribosome receptor in vivo. J Cell Biol 1995; 130:29-39. [PMID: 7790375 PMCID: PMC2120505 DOI: 10.1083/jcb.130.1.29] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A cDNA encoding the 180-kD canine ribosome receptor (RRp) was cloned and sequenced. The deduced primary structure indicates three distinct domains: an NH2-terminal stretch of 28 uncharged amino acids representing the membrane anchor, a basic region (pI = 10.74) comprising the remainder of the NH2-terminal half and an acidic COOH-terminal half (pI = 4.99). The most striking feature of the amino acid sequence is a 10-amino acid consensus motif, NQGKKAEGAP, repeated 54 times in tandem without interruption in the NH2-terminal positively charged region. We postulate that this repeated sequence represents a ribosome binding domain which mediates the interaction between the ribosome and the ER membrane. To substantiate this hypothesis, recombinant full-length ribosome receptor and two truncated versions of this protein, one lacking the potential ribosome binding domain, and one lacking the COOH terminus, were expressed in Saccharomyces cerevisiae. Morphological and biochemical analyses showed all proteins were targeted to, and oriented correctly in the ER membrane. In vitro ribosome binding assays demonstrated that yeast microsomes containing the full-length canine receptor or one lacking the COOH-terminal domain were able to bind two to four times as many human ribosomes as control membranes lacking a recombinant protein or microsomes containing a receptor lacking the NH2-terminal basic domain. Electron micrographs of these cells revealed that the expression of all receptor constructs led to a proliferation of perinuclear ER membranes known as "karmellae." Strikingly, in those strains which expressed cDNAs encoding a receptor containing the putative ribosome binding domain, the induced ER membranes (examined in situ) were richly studded with ribosomes. In contrast, karmellae resulting from the expression of receptor cDNA lacking the putative ribosome binding domain were uniformly smooth and free of ribosomes. Cell fractionation and biochemical analyses corroborated the morphological characterization. Taken together these data provide further evidence that RRp functions as a ribosome receptor in vitro, provide new evidence indicating its functionality in vivo, and in both cases indicate that the NH2-terminal basic domain is essential for ribosome binding.
Collapse
Affiliation(s)
- E E Wanker
- Department of Biological Chemistry, UCLA School of Medicine 90024, USA
| | | | | | | |
Collapse
|
22
|
Dramsi S, Biswas I, Maguin E, Braun L, Mastroeni P, Cossart P. Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol Microbiol 1995; 16:251-61. [PMID: 7565087 DOI: 10.1111/j.1365-2958.1995.tb02297.x] [Citation(s) in RCA: 366] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intracellular bacterium Listeria monocytogenes can invade several types of normally non-phagocytic cells. Entry into cultured epithelial cells requires the expression of inIA, the first gene of an operon, comprising two genes: inIA, which encodes internalin, an 800-amino-acid protein, and inIB, which encodes a 630-amino-acid protein. Several genes homologous to inIA are detected in the genome of L. monocytogenes; InIB is one of them. We have assessed the role of inIB in invasiveness of L. monocytogenes by constructing isogenic chromosomal deletion mutants in the inIAB locus. Our findings indicate that: i) inIB is required for entry of L. monocytogenes into hepatocytes, but not into intestinal epithelial cells; ii) inIB encodes a surface protein; iii) internalin plays a role for entry into some hepatocyte cell lines. These results provide the first insight into the cell tropism displayed by L. monocytogenes.
Collapse
Affiliation(s)
- S Dramsi
- Unite des Intéractions Bactéries-Cellules, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
23
|
Matsuoka K, Taoka M, Satozawa N, Nakayama H, Ichimura T, Takahashi N, Yamakuni T, Song SY, Isobe T. A nuclear factor containing the leucine-rich repeats expressed in murine cerebellar neurons. Proc Natl Acad Sci U S A 1994; 91:9670-4. [PMID: 7937870 PMCID: PMC44878 DOI: 10.1073/pnas.91.21.9670] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A nuclear protein, termed leucine-rich acidic nuclear protein (LANP), has been isolated from among rat cerebellar proteins whose expression was transiently increased during an early stage of postnatal development. The amino acid sequence, deduced from its cDNA, showed that LANP contains 247 amino acids consisting of two distinct structural domains: the N-terminal domain characterized by "leucine-rich repeat," which is found in many eukaryotic proteins and which potentially functions in mediating protein-protein interactions, and the C-terminal domain characterized by a cluster of acidic amino acids with a putative nuclear localization signal. Immunohistochemical study using an antibody against LANP revealed that the protein is localized mainly in nuclei of Purkinje cells. In the rat cerebellum on postnatal day 7, LANP mRNA was expressed moderately in the external granule and Purkinje cells and weakly in the internal granule cells. The expression in these cells, especially in Purkinje cells, increased in the second postnatal week and thereafter decreased to an adult level. The structural characteristics, localization, and the stage- and cell type-specific expression suggest a potential role of LANP in a signal transduction pathway that directs differentiation of cerebellar neurons.
Collapse
Affiliation(s)
- K Matsuoka
- Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Leucine-rich repeats are short sequence motifs present in a number of proteins with diverse functions and cellular locations. All proteins containing these repeats are thought to be involved in protein-protein interactions. The crystal structure of ribonuclease inhibitor protein has revealed that leucine-rich repeats correspond to beta-alpha structural units. These units are arranged so that they form a parallel beta-sheet with one surface exposed to solvent, so that the protein acquires an unusual, nonglobular shape. These two features may be responsible for the protein-binding functions of proteins containing leucine-rich repeats.
Collapse
Affiliation(s)
- B Kobe
- Howard Hughes Medical Institute, Dallas, TX
| | | |
Collapse
|
25
|
Masaki R, Yamamoto A, Tashiro Y. Microsomal aldehyde dehydrogenase is localized to the endoplasmic reticulum via its carboxyl-terminal 35 amino acids. J Biophys Biochem Cytol 1994; 126:1407-20. [PMID: 8089174 PMCID: PMC2290952 DOI: 10.1083/jcb.126.6.1407] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Rat microsomal aldehyde dehydrogenase (msALDH) has no amino-terminal signal sequence, but instead it has a characteristic hydrophobic domain at the carboxyl terminus (Miyauchi, K., R. Masaki, S. Taketani, A. Yamamoto, A. Akayama, and Y. Tashiro. 1991. J. Biol. Chem. 266:19536-19542). This membrane-bound enzyme is a useful model protein for studying posttranslational localization to its final destination. When expressed from cDNA in COS-1 cells, wild-type msALDH is localized exclusively in the well-developed ER. The removal of the hydrophobic domain results in the cytosolic localization of truncated proteins, thus suggesting that the portion is responsible for membrane anchoring. The last 35 amino acids of msALDH, including the hydrophobic domain, are sufficient for targeting of E. coli beta-galactosidase to the ER membrane. Further studies using chloramphenicol acetyltransferase fusion proteins suggest that two hydrophilic sequences on either side of the hydrophobic domain play an important role in ER targeting.
Collapse
Affiliation(s)
- R Masaki
- Department of Physiology, Kansai Medical University, Osaka, Japan
| | | | | |
Collapse
|