1
|
Antón Palma B, Leff Gelman P, Medecigo Ríos M, Calva Nieves JC, Acevedo Ortuño R, Matus Ortega ME, Hernández Calderón JA, Hernández Miramontes R, Flores Zamora A, Salazar Juárez A. Generation of a novel monoclonal antibody that recognizes the alpha (α)-amidated isoform of a valine residue. BMC Neurosci 2015; 16:65. [PMID: 26463686 PMCID: PMC4603347 DOI: 10.1186/s12868-015-0206-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background Alpha (α)-amidation of peptides is a mechanism required for the conversion of prohormones into functional peptide sequences that display biological activities, receptor recognition and signal transduction on target cells. Alpha (α)-amidation occurs in almost all species and amino acids identified in nature. C-terminal valine amide neuropeptides constitute the smallest group of functional peptide compounds identified in neurosecretory structures in vertebrate and invertebrate species. Methods The α-amidated isoform of valine residue (Val-CONH2) was conjugated to KLH-protein carrier and used to immunize mice. Hyperimmune animals displaying high titers of valine amide antisera were used to generate stable hybridoma-secreting mAbs. Three productive hybridoma (P15A4, P17C11, and P18C5) were tested against peptides antigens containing both the C-terminal α-amidated (–CONH2) and free α-carboxylic acid (−COO−) isovariant of the valine residue. Results P18C5 mAb displayed the highest specificity and selectivity against C-terminal valine amidated peptide antigens in different immunoassays. P18C5 mAb-immunoreactivity exhibited a wide distribution along the neuroaxis of the rat brain, particularly in brain areas that did not cross-match with the neuronal distribution of known valine amide neuropeptides (α-MSH, adrenorphin, secretin, UCN1-2). These brain regions varied in the relative amount of putative novel valine amide peptide immunoreactive material (nmol/μg protein) estimated through a fmol-sensitive solid-phase radioimmunoassay (RIA) raised for P18C5 mAb. Conclusions Our results demonstrate the versatility of a single mAb able to differentiate between two structural subdomains of a single amino acid. This mAb offers a wide spectrum of potential applications in research and medicine, whose uses may extend from a biological reagent (used to detect valine amidated peptide substances in fluids and tissues) to a detoxifying reagent (used to neutralize exogenous toxic amide peptide compounds) or as a specific immunoreagent in immunotherapy settings (used to reduce tumor growth and tumorigenesis) among many others.
Collapse
Affiliation(s)
- Benito Antón Palma
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Philippe Leff Gelman
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico. .,Department of Neuroscience, National Institute of Perinatology, Montes Urales # 800, 11000, México D.F., Mexico.
| | - Mayra Medecigo Ríos
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Juan Carlos Calva Nieves
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Rodolfo Acevedo Ortuño
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Maura Epifanía Matus Ortega
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Jorge Alberto Hernández Calderón
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Ricardo Hernández Miramontes
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Anabel Flores Zamora
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Alberto Salazar Juárez
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| |
Collapse
|
2
|
Crivellato E, Belloni A, Nico B, Nussdorfer GG, Ribatti D. In vivo administered reserpine increases piecemeal degranulation in rat adrenal chromaffin cells. ACTA ACUST UNITED AC 2006; 288:286-91. [PMID: 16475147 DOI: 10.1002/ar.a.20280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of the amine-depletory agent reserpine have been evaluated by transmission electron microscopy in chromaffin cells of the rat adrenal glands. The drug has been injected intraperitoneally in the animals at a dose of 0.5 mg/kg body weight in two administrations at 24-hr interval. The observed ultrastructural changes closely reminded of piecemeal degranulation (PMD), a slow and long-lasting secretory process previously described in normal and tumor pheochromocytes. Both adrenaline- and noradrenaline-storing cells presented the following microscopic features: high granule polymorphism, due to coexistence in the same cell of normal resting granules, granules with partially mobilized components, and large empty containers; absence of granule fusion; characteristic "haloed" pattern of residual secretory contents; great amount of 30-150 nm diameter, membrane-bound, electron-dense and -lucent vesicles, free in the cytoplasm or attached to granules; and multiple vesicles budding from the granule-limiting membranes. Morphometric analysis revealed that the frequency of all these microscopic parameters was found to be significantly increased in adrenal chromaffin cells from reserpinized rats in comparison to cells from control animals. These data suggest that reserpine, besides blocking the inward transport of catecholamines in chromaffin granules, might also stimulate a complex secretory reaction, which shares many common passages with bona fide PMD.
Collapse
Affiliation(s)
- Enrico Crivellato
- Department of Medical and Morphological Research, Section of Anatomy, University of Udine School of Medicine, Udine, Italy.
| | | | | | | | | |
Collapse
|
3
|
Goumon Y, Lugardon K, Gadroy P, Strub JM, Welters ID, Stefano GB, Aunis D, Metz-Boutigue MH. Processing of proenkephalin-A in bovine chromaffin cells. Identification of natural derived fragments by N-terminal sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Biol Chem 2000; 275:38355-62. [PMID: 10988298 DOI: 10.1074/jbc.m007557200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large variety of proenkephalin-A-derived peptides (PEAPs) are present in bovine adrenal medulla secretory granules that are cosecreted with catecholamines upon stimulation of chromaffin cells. In the present paper, after reverse phase high performance liquid chromatography of intragranular soluble material, PEAPs were immunodetected with antisera raised against specific proenkephalin-A (PEA) sequences (PEA63-70 and PEA224-237) and analyzed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Thirty PEAPs were characterized in addition to enkephalins and whole PEA, indicating that preferential proteolytic attacks occurred at both N- and C-terminal regions. A similar approach was used to characterize PEA-derived fragments exocytotically released into the extracellular space that showed five additional minor PEAPs. Among all these naturally generated peptides, enkelytin, the antibacterial bisphos- phorylated C-terminal peptide (PEA209-237), was predominantly generated, as shown by MALDI-TOF mass spectrometry analysis, which constituted an efficient method for its identification. Finally, the data on PEA intragranular and extracellular processing in adrenal medulla are discussed in regard to the known enzymatic processing mechanisms. We note the high conservation of the cleavage points in evolutionarily diverse organisms, highlighting an important biological function for the released PEAPs.
Collapse
Affiliation(s)
- Y Goumon
- INSERM Unité 338, Biologie de la Communication Cellulaire, 67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Murphy FJ, Hayes MP, Burd PR. Disparate intracellular processing of human IL-12 preprotein subunits: atypical processing of the P35 signal peptide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:839-47. [PMID: 10623830 DOI: 10.4049/jimmunol.164.2.839] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-12 is a heterodimeric cytokine produced by APC that critically regulates cell-mediated immunity. Because of its crucial function during immune responses, IL-12 production is stringently regulated, in part through transcriptional control of its p35 subunit, which requires the differentiative effects of IFN-gamma for expression. To determine whether post-transcriptional aspects of IL-12 production might be regulated, we examined intracellular protein processing of each subunit. We report here that p40 and p35 subunits are processed by disparate pathways. Whereas processing of p40 conforms to the cotranslational model of signal peptide removal concomitant with translocation into the endoplasmic reticulum (ER), processing of p35 does not. Translocation of the p35 preprotein into the ER was not accompanied by cleavage of the signal peptide; rather, removal of the p35 signal peptide occurred via two sequential cleavages. The first cleavage took place within the ER, and the cleavage site localized to the middle of the hydrophobic region of the signal peptide. Although the preprotein was glycosylated upon entry into the ER, its glycosylation status did not affect primary cleavage. Subsequently, the remaining portion of the p35 signal peptide was removed by a second cleavage, possibly involving a metalloprotease, concomitant with additional glycosylation and secretion. Secretion could be inhibited by mutation of the second cleavage site or by inhibition of glycosylation with tunicamycin. In contrast, p40 secretion was not affected by inhibition of glycosylation. Our findings demonstrate that IL-12 subunits are processed by disparate pathways and suggest new modalities for regulation of IL-12 production.
Collapse
Affiliation(s)
- F J Murphy
- Division of Cytokine Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852, USA
| | | | | |
Collapse
|
5
|
Day R, Lazure C, Basak A, Boudreault A, Limperis P, Dong W, Lindberg I. Prodynorphin processing by proprotein convertase 2. Cleavage at single basic residues and enhanced processing in the presence of carboxypeptidase activity. J Biol Chem 1998; 273:829-36. [PMID: 9422738 DOI: 10.1074/jbc.273.2.829] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Endoproteolytic processing of the 26-kDa protein precursor prodynorphin (proDyn) at paired and single basic residues is most likely carried out by the proprotein convertases (PCs); however, the role of PCs at single basic residues is unclear. In previous studies we showed that limited proDyn processing by PC1/PC3 at both paired and single basic residues resulted in the formation of 8- and 10-kDa intermediates. Because PC2 is colocalized with proDyn, we examined the potential role of this convertase in cleaving proDyn. PC2 cleaved proDyn to produce dynorphin (Dyn) A 1-17, Dyn B 1-13, and alpha-neo-endorphin, without a previous requirement for PC1/PC3. PC2 also cleaved at single basic residues, resulting in the formation of the C-peptide and Dyn A 1-8. Only PC2, but not furin or PC1/PC3, could cleave the Arg-Pro bond to yield Dyn 1-8. Structure-activity studies with Dyn A 1-17 showed that a P4 Arg residue is important for single basic cleavage by PC2 and that the P1' Pro residue impedes processing. Conversion of Dyn A 1-17 or Dyn B 1-13 into leucine-enkephalin (Leu-Enk) by PC2 was never observed; however, Dyn AB 1-32 cleavage yielded small amounts of Leu-Enk, suggesting that Leu-Enk can be generated from the proDyn precursor only through a specific pathway. Finally, PC2 cleavages at single and paired basic residues were enhanced when carried out in the presence of carboxypeptidase (CP) E. Enhancement was blocked by GEMSA, a specific inhibitor of CPE activity, and could be duplicated by other carboxypeptidases, including CPD, CPB, or CPM. Our data suggest that carboxypeptidase activity enhances PC2 processing by the elimination of product inhibition caused by basic residue-extended peptides.
Collapse
Affiliation(s)
- R Day
- Department of Pharmacology, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.
| | | | | | | | | | | | | |
Collapse
|
6
|
Wolkersdorfer M, Laslop A, Lazure C, Fischer-Colbrie R, Winkler H. Processing of chromogranins in chromaffin cell culture: effects of reserpine and alpha-methyl-p-tyrosine. Biochem J 1996; 316 ( Pt 3):953-8. [PMID: 8670175 PMCID: PMC1217441 DOI: 10.1042/bj3160953] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bovine chromaffin cell cultures were treated with either reserpine or alpha-methyl-p-tyrosine for up to 10 days. Afterwards the cells were harvested and the degree of proteolytic processing of secretogranin II, chromogranin A and chromogranin B was determined by immunoblotting and HPLC followed by RIA. There was a significant increase in the proteolysis of all three chromogranins after 4-6 days in the presence of reserpine. The small peptides formed in the presence of reserpine in vitro are also produced in vivo. A similar effect was observed with alpha-methyl-p-tyrosine, an inhibitor of tyrosine hydroxylase, but the response took up to 10 days to develop. Both drugs decreased catecholamine levels but reserpine was more effective, reaching a high degree of depletion after 4 days. In addition, experiments in vitro indicate that low millimolar amounts of either adrenaline (IC50 5.2 mM) or noradrenaline (IC50 2.4 mM) can significantly impair the proteolytic activity of recombinant murine prohormone convertase 1 when assayed with synthetic fluorogenic and/or peptidyl substrates. We conclude that a lowering of catecholamine levels in chromaffin granules leads to a concomitant increase in proteolytic processing of all secretory peptides. Apparently within chromaffin granules the endoproteases are inhibited by catecholamines and thus their removal leads to increased proteolysis.
Collapse
Affiliation(s)
- M Wolkersdorfer
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | | | |
Collapse
|
7
|
Berman YL, Juliano L, Devi LA. Purification and characterization of a dynorphin-processing endopeptidase. J Biol Chem 1995; 270:23845-50. [PMID: 7559562 DOI: 10.1074/jbc.270.40.23845] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Dynorphin B (Dyn B-13, also known as rimorphin) is generated from Dyn B-29 (leumorphin) by the cleavage at a single Arg residue. An enzymatic activity capable of processing at this monobasic site has been previously reported in neurosecretory vesicles of the bovine pituitary and pituitary-derived cell lines. This enzyme termed "the dynorphin-converting enzyme" (DCE) has been purified to apparent homogeneity from the neurointermediate lobe of the bovine pituitary using hydrophobic chromatography on phenyl-Sepharose, preparative isoelectrofocusing in a granulated gel between pH 4 to 6.5, and non-denaturing electrophoresis on 5% polyacrylamide gel. DCE exhibits a pI of about 5.1 and a molecular mass of about 54 kDa under reducing conditions. DCE is a metallopeptidase and exhibits a neutral pH optimum. Specific Inhibitors of soluble metallopeptidases such as enkephalinase (EC 3.4.24.11) or enkephalin generating neutral endopeptidase (EC 3.4.24.15) do not inhibit DCE activity indicating that DCE is distinct from these two enzymes. Cleavage site determination with matrix-assisted laser desorption ionization time of flight (MALDITOF) mass spectrometry shows that DCE cleaves the Dyn B-29 N terminus to the Arg14 generating Dyn B-13 and Dyn B-(14-29). Among other peptides derived from Dyn B-29, DCE cleaves only those peptides that fit the predicted "consensus motif" for monobasic processing. These data are consistent with a broader role for the dynorphin converting enzyme in the biosynthesis of many peptide hormones and neuropeptides by processing at monobasic sites.
Collapse
Affiliation(s)
- Y L Berman
- Department of Pharmacology, New York University Medical Center, New York 10016, USA
| | | | | |
Collapse
|