1
|
Wang CC, Wei SC, Luo SC. Recent Advances and Biomedical Applications of Peptide-Integrated Conducting Polymers. ACS APPLIED BIO MATERIALS 2022; 5:1916-1933. [PMID: 35119258 DOI: 10.1021/acsabm.1c01194] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conducting polymers (CPs) are of great interests to researchers around the world in biomedical applications owing to their unique electrical and mechanical properties. Besides, they are easy to fabricate and have long-term stability. These features make CPs a powerful building block of modern biomaterials. Peptide functionalization has been a versatile tool for the development of CP-based biomaterials. With the aid of peptide modifications, the biocompatibility, target selectivity, and cellular interactions of CPs can be greatly improved. Reflecting these aspects, an increasing number of studies on peptide-integrated conducting polymers have been reported recently. In this review, various kinds of peptide immobilization strategies on CPs are introduced. Moreover, the aims of peptide modification are discussed in three aspects: enhancing the specific selectivity, avoiding nonspecific adhesion, and mimicking the environment of extracellular matrix. We highlighted recent studies in the applications of peptide-integrated CPs in electrochemical sensors, antifouling surfaces, and conductive biointerfaces. These studies have shown great potentials from the integration of peptide and CPs as a versatile platform for advanced biological and clinical applications in the near future.
Collapse
Affiliation(s)
- Chi-Cha Wang
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, No.1 Jen Ai Road, Section 1, Taipei 10051, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County, 35053 Taiwan
| |
Collapse
|
2
|
|
3
|
Takemoto N, Suehara T, Frisco HL, Sato SI, Sezaki T, Kusamori K, Kawazoe Y, Park SM, Yamazoe S, Mizuhata Y, Inoue R, Miller GJ, Hansen SU, Jayson GC, Gardiner JM, Kanaya T, Tokitoh N, Ueda K, Takakura Y, Kioka N, Nishikawa M, Uesugi M. Small-molecule-induced clustering of heparan sulfate promotes cell adhesion. J Am Chem Soc 2013; 135:11032-9. [PMID: 23822587 DOI: 10.1021/ja4018682] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adhesamine is an organic small molecule that promotes adhesion and growth of cultured human cells by binding selectively to heparan sulfate on the cell surface. The present study combined chemical, physicochemical, and cell biological experiments, using adhesamine and its analogues, to examine the mechanism by which this dumbbell-shaped, non-peptidic molecule induces physiologically relevant cell adhesion. The results suggest that multiple adhesamine molecules cooperatively bind to heparan sulfate and induce its assembly, promoting clustering of heparan sulfate-bound syndecan-4 on the cell surface. A pilot study showed that adhesamine improved the viability and attachment of transplanted cells in mice. Further studies of adhesamine and other small molecules could lead to the design of assembly-inducing molecules for use in cell biology and cell therapy.
Collapse
Affiliation(s)
- Naohiro Takemoto
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Murali R, Greene MI. Structure based antibody-like peptidomimetics. Pharmaceuticals (Basel) 2012; 5:209-35. [PMID: 24288089 PMCID: PMC3763629 DOI: 10.3390/ph5020209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 12/22/2022] Open
Abstract
Biologics such as monoclonal antibodies (mAb) and soluble receptors represent new classes of therapeutic agents for treatment of several diseases. High affinity and high specificity biologics can be utilized for variety of clinical purposes. Monoclonal antibodies have been used as diagnostic agents when coupled with radionuclide, immune modulatory agents or in the treatment of cancers. Among other limitations of using large molecules for therapy the actual cost of biologics has become an issue. There is an effort among chemists and biologists to reduce the size of biologics which includes monoclonal antibodies and receptors without a reduction of biological efficacy. Single chain antibody, camel antibodies, Fv fragments are examples of this type of deconstructive process. Small high-affinity peptides have been identified using phage screening. Our laboratory used a structure-based approach to develop small-size peptidomimetics from the three-dimensional structure of proteins with immunoglobulin folds as exemplified by CD4 and antibodies. Peptides derived either from the receptor or their cognate ligand mimics the functions of the parental macromolecule. These constrained peptides not only provide a platform for developing small molecule drugs, but also provide insight into the atomic features of protein-protein interactions. A general overview of the reduction of monoclonal antibodies to small exocyclic peptide and its prospects as a useful diagnostic and as a drug in the treatment of cancer are discussed.
Collapse
Affiliation(s)
- Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, D5091 Davis Building, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark I. Greene
- Department of Pathology and Laboratory of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Ortinau S, Schmich J, Block S, Liedmann A, Jonas L, Weiss DG, Helm CA, Rolfs A, Frech MJ. Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells. Biomed Eng Online 2010; 9:70. [PMID: 21070668 PMCID: PMC2996398 DOI: 10.1186/1475-925x-9-70] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 11/11/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 3D-scaffolds have been shown to direct cell growth and differentiation in many different cell types, with the formation and functionalisation of the 3D-microenviroment being important in determining the fate of the embedded cells. Here we used a hydrogel-based scaffold to investigate the influences of matrix concentration and functionalisation with laminin on the formation of the scaffolds, and the effect of these scaffolds on human neural progenitor cells cultured within them. METHODS In this study we used different concentrations of the hydrogel-based matrix PuraMatrix. In some experiments we functionalised the matrix with laminin I. The impact of concentration and treatment with laminin on the formation of the scaffold was examined with atomic force microscopy. Cells from a human fetal neural progenitor cell line were cultured in the different matrices, as well as in a 2D culture system, and were subsequently analysed with antibody stainings against neuronal markers. In parallel, the survival rate of the cells was determined by a live/dead assay. RESULTS Atomic force microscopy measurements demonstrated that the matrices are formed by networks of isolated PuraMatrix fibres and aggregates of fibres. An increase of the hydrogel concentration led to a decrease in the mesh size of the scaffolds and functionalisation with laminin promoted aggregation of the fibres (bundle formation), which further reduces the density of isolated fibres. We showed that laminin-functionalisation is essential for human neural progenitor cells to build up 3D-growth patterns, and that proliferation of the cells is also affected by the concentration of matrix. In addition we found that 3D-cultures enhanced neuronal differentiation and the survival rate of the cells compared to 2D-cultures. CONCLUSIONS Taken together, we have demonstrated a direct influence of the 3D-scaffold formation on the survival and neuronal differentiation of human neural progenitor cells. These findings emphasize the importance of optimizing 3D-scaffolds protocols prior to in vivo engraftment of stem and progenitor cells in the context of regenerative medicine.
Collapse
Affiliation(s)
- Stefanie Ortinau
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties. Acta Biomater 2010; 6:63-71. [PMID: 19563922 DOI: 10.1016/j.actbio.2009.06.030] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 06/18/2009] [Accepted: 06/22/2009] [Indexed: 01/09/2023]
Abstract
Conductive neural interfaces tailored for cell interaction by incorporation of bioactive factors are hypothesized to produce superior neuroprostheses with improved charge transfer capabilities. This study examined the effect of entrapping nerve growth factor (NGF) within the conducting polymer poly(ethylene dioxythiophene) (PEDOT) during electrodeposition to create a polymer capable of stimulating neurite outgrowth from proximal neural tissue. NGF entrapment was performed on polymers doped with laminin peptides DEDEDYFQRYLI and DCDPGYIGSR and, additionally, a conventional dopant, paratoluene sulphonate (pTS). All polymer coatings were analysed for a range of physical, electrical and mechanical properties, with the biological activity of ligands examined using a PC12 neurite outgrowth assay. NGF was successfully entrapped in PEDOT during electrodeposition and was shown to produce a softer interface than conventional conducting polymers and films without the NGF modification. However, it was found that the use of a peptide dopant combined with NGF entrapment resulted in polymers with diminished electrical and mechanical stability. Entrapped NGF was determined to be biologically active, with PEDOT/pTS/NGF producing neurite outgrowth comparable with control films where NGF was supplied via the medium. Future studies will determine the effect of typical neural prosthetic stimulation regimes on the release of neurotrophins and subsequent cell response.
Collapse
|
7
|
Jung SY, Kim JM, Kang HK, Jang DH, Min BM. A biologically active sequence of the laminin alpha2 large globular 1 domain promotes cell adhesion through syndecan-1 by inducing phosphorylation and membrane localization of protein kinase Cdelta. J Biol Chem 2009; 284:31764-75. [PMID: 19762914 DOI: 10.1074/jbc.m109.038547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Laminin-2 promotes basement membrane assembly and peripheral myelinogenesis; however, a receptor-binding motif within laminin-2 and the downstream signaling pathways for motif-mediated cell adhesion have not been fully established. The human laminin-2 alpha2 chain cDNAs cloned from human keratinocytes and fibroblasts correspond to the laminin alpha2 chain variant sequence from the human brain. Individually expressed recombinant large globular (LG) 1 protein promotes cell adhesion and has heparin binding activities. Studies with synthetic peptides delineate the DLTIDDSYWYRI motif (Ln2-P3) within the LG1 as a major site for both heparin and cell binding. Cell adhesion to LG1 and Ln2-P3 is inhibited by treatment of heparitinase I and chondroitinase ABC. Syndecan-1 from PC12 cells binds to LG1 and Ln2-P3 and colocalizes with both molecules. Suppression of syndecan-1 with RNA interference inhibits cell adhesion to LG1 and Ln2-P3. The binding of syndecan-1 with LG1 and Ln2-P3 induces the recruitment of protein kinase Cdelta (PKCdelta) into the membrane and stimulates its tyrosine phosphorylation. A decrease in PKCdelta activity significantly reduces cell adhesion to LG1 and Ln2-P3. Taken together, these results indicate that the Ln2-P3 motif and LG1 domain, containing the motif, within the human laminin-2 alpha2 chain are major ligands for syndecan-1, which mediates cell adhesion through the PKCdelta signaling pathway.
Collapse
Affiliation(s)
- Sung Youn Jung
- Department of Oral Biochemistry and Program of Craniomaxillofacial Reconstruction Science, Dental Research Institute, Intellectual Biointerface Engineering Center, BK21 CLS, Seoul National University School of Dentistry, Seoul 110-749, Korea
| | | | | | | | | |
Collapse
|
8
|
Abstract
Successful treatment of neurodegenerative diseases and CNS trauma are the most intractable problems in modern medicine. Numerous reports have shown the strong role that laminins have on the survival, regeneration and development of various types of cells, including neural cells. It would be desirable to take advantage of laminin activities for therapeutic purposes. However, there are at least ten laminin variants and the trimeric molecules are of the order of 800,000 molecular weight. Furthermore, human laminins are not available in quantity. Therefore, we and others have taken the approach of determining which domains of the laminin molecules are functional in the CNS, and whether short peptides from these regions exhibit biological activities with the intent of testing their potential for therapeutic use. Understanding the role of laminins and their small biologically active peptide domains, such as the KDI (lysine–aspartic acid–isoleucine) peptide from γ1 laminin, in neuronal development, CNS trauma (spinal cord injury and stroke) and neurodegenerative disorders (amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson’s disease) may help to develop clinically applicable methods to treat the presently untreatable CNS diseases and trauma even in the near future.
Collapse
Affiliation(s)
- Päivi Liesi
- The Brain Laboratory, Department of Biological & Environmental Sciences, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 University of Helsinki, Finland
| |
Collapse
|
9
|
Cell attachment functionality of bioactive conducting polymers for neural interfaces. Biomaterials 2009; 30:3637-44. [DOI: 10.1016/j.biomaterials.2009.03.043] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/18/2009] [Indexed: 11/23/2022]
|
10
|
Palu E, Liesi P. Differential distribution of laminins in Alzheimer disease and normal human brain tissue. J Neurosci Res 2002; 69:243-56. [PMID: 12111806 DOI: 10.1002/jnr.10292] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immunocytochemistry, Western blotting, and RT-PCR were used to identify the isoforms of laminin expressed in the Alzheimer disease, but not in normal human brain tissue. We found that alpha 1 laminin was heavily over-expressed in Alzheimer disease frontal cortex, and localized in reactive astrocytes of the grey and white matter, and as punctate deposits in the senile placques of the Alzheimer brain tissue. Antibodies against the C-terminal neurite outgrowth domain of the gamma 1 laminin demonstrated expression of the gamma 1 laminin in GFAP-immunoreactive reactive astrocytes of the Alzheimer disease frontal cortex. The gamma 1 laminin was also heavily over-expressed in reactive astrocytes of both grey and white matter. Although antibodies against the C-terminal neurite outgrowth domain failed to localize gamma 1 laminin in senile plaques, antibodies against the N-terminal domains of the gamma 1 laminin demonstrated gamma 1 laminin as punctate deposits in the senile plaques. The present results indicate that enhanced and specialized expression patterns of alpha 1 and gamma 1 laminins distinctly associate these two laminins with the Alzheimer disease. The fact that domain specific antibodies localize both alpha1 and gamma 1 laminins in the senile plaques as punctate deposits and in astrocytes of both the gray and white matter indicate that these laminins and their specific domains may have distinct functions in the pathophysiology of the Alzheimer disease.
Collapse
Affiliation(s)
- Edouard Palu
- The Brain Laboratory, Biomedicum Helsinki, Institute of Biomedicine (Anatomy), University of Helsinki, University of Helsinki, Finland
| | | |
Collapse
|
11
|
|
12
|
Silvestri ME, Sundqvist VA. An investigation into the heparin-binding properties of a synthetic peptide deduced from the antigenic domain 2 of human cytomegalovirus glycoprotein B. Scand J Immunol 2001; 53:282-9. [PMID: 11251886 DOI: 10.1046/j.1365-3083.2001.00878.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An investigation was performed into the heparin-binding properties of a synthetic peptide deduced from the sequence of human cytomegalovirus glycoprotein B. The peptide, T7-13:3, amino acids 69-78, which was previously shown to contain a neutralization epitope was able to bind heparin coated onto microtitre plates as well as immobilized on agarose beads. Conversely, labelled heparin could be used to specifically detect the immobilized peptide. The peptide bound to human cells in a manner which suggested an interaction with extracellular matrix, and binding of the peptide to human fibroblasts could be inhibited both by adding soluble heparin and by enzymatic pretreatment of the cells with heparinase. The sequence of T7-13:3 shows similarity to several proteins with known or supposed ability to bind heparin, e.g. basic fibroblast growth factor, the heparin-binding capacity of which could also be inhibited by T7-13:3. The peptide was also found to bind DNA, probably due to the similarities between DNA and heparin in terms of structure and charge. Because heparin is a chemical homologue of heparan sulfate, the results strongly indicate that the sequence represented by T7-13:3 is involved in the binding of virus to cell surface heparan sulfate. The described region of gB may have the potential to contribute to a subunit vaccine although possible hazards, such as the induction of auto-antibodies to heparin, and thus also to DNA, need to be considered.
Collapse
Affiliation(s)
- M E Silvestri
- Division of Biomedical Laboratory Technology, Department of Microbiology, Pathology and Immunology, Karolinska Institutet, PO Box 12 773, S-112 96 Stockholm, Sweden.
| | | |
Collapse
|
13
|
Tashiro K, Monji A, Yoshida I, Hayashi Y, Matsuda K, Tashiro N, Mitsuyama Y. An IKLLI-containing peptide derived from the laminin alpha1 chain mediating heparin-binding, cell adhesion, neurite outgrowth and proliferation, represents a binding site for integrin alpha3beta1 and heparan sulphate proteoglycan. Biochem J 1999; 340 ( Pt 1):119-26. [PMID: 10229666 PMCID: PMC1220229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
We synthesized and characterized several peptides containing the IKLLI sequence in the alpha1 chain of laminin-1. The IKLLI-containing peptides, such as LA4 (CSRNLSEIKLLISRARK), LA5 (EIKLLIS) and LA5L (SEIKLLIS), were found to mediate heparin binding and cell adhesion, while also promoting neurite outgrowth in PC12 cells. Furthermore, peptides LA4 and LA5 also mediated proliferation. However, a scrambled peptide, LA5S (ILEKSLI), did not show any of these activities. Anti-LA4 antibodies inhibited laminin- and LA5-mediated cell adhesion and neurite outgrowth, and anti-(integrin alpha3) and anti-(integrin beta1) antibodies inhibited LA5-mediated cell adhesion and neurite outgrowth. Heparin and heparan sulphate inhibited LA5-mediated heparin binding and PC12 cell adhesion in a dose- dependent manner. The IC50 for inhibition of heparin binding and cell adhesion was observed with 9 microM and 8 microM heparin/heparan sulphate respectively. Furthermore, heparan sulphate proteoglycan also inhibited LA5-mediated PC12 cell adhesion with an IC50 of 100 micrograms/ml. However, chondroitin sulphate (dermatan sulphate) did not inhibit cell adhesion. These data suggest that an IKLLI-containing peptide derived from the laminin alpha1 chain may be an active site of laminin and that its cell adhesion may thus interact with both integrin alpha3beta1 and cell- surface heparan sulphate proteoglycan.
Collapse
Affiliation(s)
- K Tashiro
- Department of Psychiatry, Miyazaki Medical College, 5200, Kihara, Kiyotake-cho, Miyazaki-gun, Miyazaki, 889-1692, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Yoshida I, Tashiro K, Monji A, Nagata I, Hayashi Y, Mitsuyama Y, Tashiro N. Identification of a heparin binding site and the biological activities of the laminin alpha1 chain carboxy-terminal globular domain. J Cell Physiol 1999; 179:18-28. [PMID: 10082128 DOI: 10.1002/(sici)1097-4652(199904)179:1<18::aid-jcp3>3.0.co;2-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The carboxy-terminal globular domain (G-domain) of the laminin alpha1 chain has been shown to promote heparin binding, cell adhesion, and neurite outgrowth. In this study, we defined the potential sequences originating from the G-domain of laminin alpha1 chain which possess these functional activities. A series of peptides were synthesized from the G-domain, termed LG peptides (LG-1 to LG-6) and were tested for their various biological activities. In the direct [3H] heparin binding assays, LG-6 (residues 2,335-2,348: KDFLSIELVRGRVK) mediated high levels of [3H]heparin binding, and this peptide also directly promoted cell adhesion and spreading, including B16F10, M2, HT1080, and PC12 cells. The peptide LG-6 also promoted the neurite outgrowth of PC12 cells, mouse granule cells, and chick telencephalic cells. An anti-peptide LG-6 antibody inhibited laminin-1 and peptide LG-6-mediated cell adhesion and neurite outgrowth. Furthermore, an anti-integrin alpha2 antibody also inhibited the cell adhesion activity. These results suggest that peptide LG-6 plays a functional role as a heparin binding site in the G-domain of the laminin alpha1 chain, and this sequence was thus concluded to play a crucial role in regulating cell adhesion and spreading and neurite out-growth which is related to integrin alpha2.
Collapse
Affiliation(s)
- I Yoshida
- Department of Neuro-Psychiatry, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Nomizu M, Kuratomi Y, Malinda KM, Song SY, Miyoshi K, Otaka A, Powell SK, Hoffman MP, Kleinman HK, Yamada Y. Cell binding sequences in mouse laminin alpha1 chain. J Biol Chem 1998; 273:32491-9. [PMID: 9829982 DOI: 10.1074/jbc.273.49.32491] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Laminin-1, a multifunctional glycoprotein of the basement membrane, consists of three different subunits, alpha1, beta1, and gamma1 chains. Previously, we used synthetic peptides to screen for biologically active sequences in the laminin alpha1 chain C-terminal globular domain (G domain) and identified several cell binding sequences (Nomizu, M., Kim, W. H., Yamamura, K., Utani, A., Song, S. Y., Otaka, A., Roller, P. P., Kleinman, H. K., and Yamada, Y. (1995) J. Biol. Chem. 270, 20583-20590). Here, we identify new cell binding sequences on the remainder of the laminin alpha1 chain by systematic peptide screening, using 208 overlapping synthetic peptides encompassing the central and N-terminal portions of the alpha1 chain. HT-1080 cell attachment activity to the peptides was evaluated using peptide-coated plastic substrates and peptide-conjugated Sepharose beads. Twenty five peptides showed cell attachment activities on either the peptide-coated plastic substrates and/or the peptide-conjugated Sepharose beads. A-13 (RQVFQVAYIIIKA) showed strongest cell attachment activity in both the assays. Cell attachment to 14 of the peptides was inhibited by heparin. EDTA and integrin antibodies inhibited cell adhesion to two of the peptides, A-13 and A-25, suggesting that these sites likely bind to integrins. These peptides inhibited cell attachment to laminin-1 but not to collagen I, suggesting these active sites are available on the intact molecule. Most of active sequences were localized on globular domains suggesting that these structures play a critical role in binding to cell-surface receptors.
Collapse
Affiliation(s)
- M Nomizu
- Craniofacial Developmental Biology and Regeneration Branch, NIDR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Huber M, Heiduschka P, Kienle S, Pavlidis C, Mack J, Walk T, Jung G, Thanos S. Modification of glassy carbon surfaces with synthetic laminin-derived peptides for nerve cell attachment and neurite growth. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1998; 41:278-88. [PMID: 9638533 DOI: 10.1002/(sici)1097-4636(199808)41:2<278::aid-jbm13>3.0.co;2-h] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interactions between cultured nerve cells and surfaces are of importance for the implantation of biocompatible electrode materials such as glassy carbon (GC). Since implants serve as recording sensors in prosthetic neuroscience, we investigated whether coating electrodes with certain laminin derivatives containing the peptide sequences SIKVAV, CDPGYIGSR, PDSGR, YFQRYLI, and RNIAEIIKDA influences neuronal adhesion and neurite outgrowth in vitro. The coating of GC was performed by electrochemical polymerization and, for comparison, by adsorption or covalent coupling. Electrochemical polymerization is suitable for the coupling of peptides to GC, as shown by amino acid analysis and sequencing. Embryonic chicken retinal ganglion cells and brain cells (days E7 or E17) were used for both attachment and growth studies. Surfaces made by electrochemical polymerization of peptides were more efficient than those made by adsorption or covalent coupling of peptides. Synthetic cyclic peptide derivatives of CDPGYIGSR and 18-mer SIKVAV were found to be more efficient than the linear peptides. Competitive effects that resulted in a decreased cell attachment could be found upon application of soluble peptides. Nevertheless, irrespective of the method of coating, peptides were less efficient compared with the whole laminin molecule, as expected from its multiple adhesion sites. When small GC pins were implanted into the brain of E17 chicken after coating with the 18-mer SIKVAV peptide, nerve cell attachment was observed in vivo. The results suggest that chronically implantable materials may exert a higher neurocompatibility when coated with synthetic peptides.
Collapse
Affiliation(s)
- M Huber
- University of Münster, Eye Hospital, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Neuronal cells are unique within the organism. In addition to forming long-distance connections with other nerve cells and non-neuronal targets, they lose the ability to regenerate their neurites and to divide during maturation. Consequently, external violations like trauma or disease frequently lead to their disappearance and replacement by non-neuronal, and thus not properly functioning cells. The advent of microtechnology and construction of artificial implants prompted to create particular devices for specialised regions of the nervous system, in order to compensate for the loss of function. The scope of the present work is to review the current devices in connection with their applicability and functional perspectives. (1) Successful implants like the cochlea implant and peripherally implantable stimulators are discussed. (2) Less developed and not yet applicable devices like retinal or cortical implants are introduced, with particular emphasis given to the reasons for their failure to replace very complex functions like vision. (3) Material research is presented both from the technological aspect and from their biocompatibility as prerequisite of any implantation. (4) Finally, basic studies are presented, which deal with methods of shaping the implants, procedures of testing biocompatibility and modification of improving the interfaces between a technical device and the biological environment. The review ends by pointing to future perspectives in neuroimplantation and restoration of interrupted neuronal pathways.
Collapse
Affiliation(s)
- P Heiduschka
- University Eye Hospital Münster, Experimental Ophthalmology, Germany
| | | |
Collapse
|
18
|
Monji A, Tashiro K, Hayashi Y, Yoshida I, Tashiro N. The inhibitory effect of laminin 1 and synthetic peptides deduced from the sequence in the laminin alpha1 chain on Abeta40 fibril formation in vitro. Neurosci Lett 1998; 251:65-8. [PMID: 9714466 DOI: 10.1016/s0304-3940(98)00499-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We investigated whether or not laminin 1 and the two different synthetic peptides deduced from the sequence in the laminin alphal chain, both of which mediate cell attachment and neurite outgrowth in PC12 cells, have an effect on Abeta40 fibril formation in vitro. A thioflavine-T fluorometric assay showed a synthetic peptide containing the YFQRYLI sequence from the laminin alpha1 chain to inhibit Abeta40 fibril formation while the inhibitory effect of this peptide was found to be somewhat less than that of intact laminin 1. These results were confirmed by electron microscopic observations using negative staining. The findings of the present study suggested that the synthetic peptide derived from the laminin alpha1 chain may thus be an effective therapeutic agent for either preventing or slowing down the progression of amyloidogenesis in Alzheimer's disease.
Collapse
Affiliation(s)
- A Monji
- Department of Neuropsychiatry, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
19
|
Stitt AW, McKenna D, Simpson DA, Gardiner TA, Harriott P, Archer DB, Nelson J. The 67-kd laminin receptor is preferentially expressed by proliferating retinal vessels in a murine model of ischemic retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 152:1359-65. [PMID: 9588904 PMCID: PMC1858592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cell association with vascular basement membranes is complex and plays a critical role in regulation of cell adhesion and proliferation. The interaction between the membrane-associated 67-kd receptor (67LR) and the basement membrane protein laminin has been studied in several cell systems where it was shown to be crucial for adhesion and attachment during angiogenesis. As angiogenesis in the pathological setting of proliferative retinopathy is a major cause of blindness in the Western world we examined the expression of 67LR in a murine model of hyperoxia-induced retinopathy that exhibits retinal neovascularization. Mice exposed to hyperoxia for 5 days starting at postnatal day 7 (P7) and returned to room air (at P12) showed closure of the central retinal vasculature. In response to the ensuing retinal ischemia, there was consistent preretinal neovascularization starting around P17, which persisted until P21, after which the new vessels regressed. Immunohistochemistry was performed on these retinas using an antibody specific for 67LR. At P12, immunoreactivity for 67LR was absent in the retina, but by P17 it was observed in preretinal proliferating vessels and also within the adjacent intraretinal vasculature. Intraretinal 67LR immunoreactivity diminished beyond P17 until by P21 immunoreactivity was almost completely absent, although it persisted in the preretinal vasculature. Control P17 mice (not exposed to hyperoxia) failed to demonstrate any 67LR immunoreactivity in their retinas. Parallel in situ hybridization studies demonstrated 67LR gene expression in the retinal ganglion cells of control and hyperoxia-exposed mice. In addition, the neovascular intra- and preretinal vessels of hyperoxia-treated P17 and P21 mice labeled strongly for 67LR mRNA. This study has characterized 67LR immunolocalization and gene expression in a murine model of ischemic retinopathy. Results suggest that, although the 67LR gene is expressed at high levels in the retinal ganglion cells, the mature receptor protein is preferentially localized to the proliferating retinal vasculature and is almost completely absent from quiescent vessels. The differential expression of 67LR between proliferating and quiescent retinal vessels suggests that this laminin receptor is an important and novel target for future chemotherapeutic intervention during proliferative vasculopathies.
Collapse
Affiliation(s)
- A W Stitt
- Department of Ophthalmology, The Queen's University of Belfast, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
20
|
Baldwin SP, Krewson CE, Saltzman WM. PC12 cell aggregation and neurite growth in gels of collagen, laminin and fibronectin. Int J Dev Neurosci 1996; 14:351-64. [PMID: 8842809 DOI: 10.1016/0736-5748(96)00018-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PC12 cells form aggregates when suspended within three-dimensional, self-assembled, type I collagen gels; these aggregates increase in size over time. In addition, when the cells are cultured in the presence of nerve growth factor, they express neurites, which extend through the three-dimensional matrix. In this report, the roles of fibronectin, laminin and nerve growth factor in PC12 cell aggregation and neurite growth following suspension in collagen matrices were evaluated. Single cells and small clusters of cells were suspended in collagen gels; the kinetics of aggregation were determined by measurement of the projected area of each aggregate, and neurite lengths were determined by measurement of end-to-end distance. Fibronectin and laminin inhibited the aggregation of PC12 cells at 50 micrograms/ml, and fibronectin, but not laminin, inhibited the growth of neurites at 100 micrograms/ml. In the absence of serum, the aggregation of cells cultured with nerve growth factor was almost completely inhibited, but the average neurite length was unaffected. In the presence of nerve growth factor, the extent of cell aggregation could not be explained simply by an increase in cell number, suggesting the presence of two separate mechanisms for aggregate growth: one dependent on cell motility and another dependent on cell proliferation.
Collapse
Affiliation(s)
- S P Baldwin
- Department of Chemical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|