1
|
Lin C, Li Y, Zhang E, Feillet F, Zhang S, Blau N. Importance of the long non-coding RNA (lncRNA) transcript HULC for the regulation of phenylalanine hydroxylase and treatment of phenylketonuria. Mol Genet Metab 2022; 135:171-178. [PMID: 35101330 DOI: 10.1016/j.ymgme.2022.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
More than 1280 variants in the phenylalanine hydroxylase (PAH) gene are responsible for a broad spectrum of phenylketonuria (PKU) phenotypes. While the genotype-phenotype correlation is reaching 88%, for some inconsistent phenotypes with the same genotype additional factors like tetrahydrobiopterin (BH4), the PAH co-chaperone DNAJC12, phosphorylation of the PAH residues or epigenetic factors may play an important role. Very recently an additional player, the long non-coding RNA (lncRNA) transcript HULC, was described to regulate PAH activity and enhance residual enzyme activity of some PAH variants (e.g., the most common p.R408W) by using HULC mimics. In this review we present an overview of the lncRNA function and in particular the interplay of the HUCL transcript with the PAH and discuss potential applications for the future treatment of some PKU patients.
Collapse
Affiliation(s)
- Chunru Lin
- Department of Molecular and Cellular Oncology, Division of Basic Science Research, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, Division of Basic Science Research, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
| | - Eric Zhang
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
| | - François Feillet
- INSERM, U1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, France; Pediatric Department Reference Center for Inborn Errors of Metabolism Children University Hospital Nancy, Nancy, France
| | - Shuxing Zhang
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital Zürich, Zurich, Switzerland.
| |
Collapse
|
2
|
Loza-Valdes A, Mayer AE, Kassouf T, Trujillo-Viera J, Schmitz W, Dziaczkowski F, Leitges M, Schlosser A, Sumara G. A phosphoproteomic approach reveals that PKD3 controls PKA-mediated glucose and tyrosine metabolism. Life Sci Alliance 2021; 4:4/8/e202000863. [PMID: 34145024 PMCID: PMC8321662 DOI: 10.26508/lsa.202000863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Protein kinase D3 (PKD3) regulates hepatic metabolism in a PKA-dependent manner and reveals many other putative PKD3 targets in the liver. Members of the protein kinase D (PKD) family (PKD1, 2, and 3) integrate hormonal and nutritional inputs to regulate complex cellular metabolism. Despite the fact that a number of functions have been annotated to particular PKDs, their molecular targets are relatively poorly explored. PKD3 promotes insulin sensitivity and suppresses lipogenesis in the liver of animals fed a high-fat diet. However, its substrates are largely unknown. Here we applied proteomic approaches to determine PKD3 targets. We identified more than 300 putative targets of PKD3. Furthermore, biochemical analysis revealed that PKD3 regulates cAMP-dependent PKA activity, a master regulator of the hepatic response to glucagon and fasting. PKA regulates glucose, lipid, and amino acid metabolism in the liver, by targeting key enzymes in the respective processes. Among them the PKA targets phenylalanine hydroxylase (PAH) catalyzes the conversion of phenylalanine to tyrosine. Consistently, we showed that PKD3 is activated by glucagon and promotes glucose and tyrosine levels in hepatocytes. Therefore, our data indicate that PKD3 might play a role in the hepatic response to glucagon.
Collapse
Affiliation(s)
- Angel Loza-Valdes
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alexander E Mayer
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Toufic Kassouf
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jonathan Trujillo-Viera
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Filip Dziaczkowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michael Leitges
- Tier 1, Canada Research Chair in Cell Signaling and Translational Medicine, Division of BioMedical Sciences/Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University of Newfoundland, Health Science Centre, St. Johns, Canada
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Grzegorz Sumara
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany .,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Arturo EC, Merkel GW, Hansen MR, Lisowski S, Almeida D, Gupta K, Jaffe EK. Manipulation of a cation-π sandwich reveals conformational flexibility in phenylalanine hydroxylase. Biochimie 2021; 183:63-77. [PMID: 33221376 PMCID: PMC9856217 DOI: 10.1016/j.biochi.2020.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 01/24/2023]
Abstract
Phenylalanine hydroxylase (PAH) is an allosteric enzyme that maintains phenylalanine (Phe) below neurotoxic levels; its failure results in phenylketonuria, an inborn error of amino acid metabolism. Wild type (WT) PAH equilibrates among resting-state (RS-PAH) and activated (A-PAH) conformations, whose equilibrium position depends upon allosteric Phe binding. The RS-PAH conformation of WT rat PAH (rPAH) contains a cation-π sandwich involving Phe80 that cannot exist in the A-PAH conformation. Phe80 variants F80A, F80D, F80L, and F80R were prepared and evaluated using native PAGE, size exclusion chromatography, ion exchange behavior, intrinsic protein fluorescence, enzyme kinetics, and limited proteolysis, each as a function of [Phe]. Like WT rPAH, F80A and F80D show allosteric activation by Phe while F80L and F80R are constitutively active. Maximal activity of all variants suggests relief of a rate-determining conformational change. Limited proteolysis of WT rPAH (minus Phe) reveals facile cleavage within a 4-helix bundle that is buried in the RS-PAH tetramer interface, reflecting dynamic dissociation of that tetramer. This cleavage is not seen for the Phe80 variants, which all show proteolytic hypersensitivity in a linker that repositions during the RS-PAH to A-PAH interchange. Hypersensitivity is corrected by addition of Phe such that all variants become like WT rPAH and achieve the A-PAH conformation. Thus, manipulation of Phe80 perturbs the conformational space sampled by PAH, increasing sampling of on-pathway intermediates in the RS-PAH and A-PAH interchange. The behavior of the Phe80 variants mimics that of disease-associated R68S and suggests a molecular basis for proteolytic susceptibility in PKU-associated human PAH variants.
Collapse
Affiliation(s)
- Emilia C. Arturo
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 10111,Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - George W. Merkel
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 10111
| | - Michael R. Hansen
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 10111
| | - Sophia Lisowski
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 10111
| | - Deeanne Almeida
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 10111
| | - Kushol Gupta
- Department pf Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Eileen K. Jaffe
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 10111,To whom correspondence should be addressed: Eileen K. Jaffe: Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111; ; Tel.(215) 728-3695; Fax. (215) 728-2412
| |
Collapse
|
4
|
Flydal MI, Alcorlo-Pagés M, Johannessen FG, Martínez-Caballero S, Skjærven L, Fernandez-Leiro R, Martinez A, Hermoso JA. Structure of full-length human phenylalanine hydroxylase in complex with tetrahydrobiopterin. Proc Natl Acad Sci U S A 2019; 116:11229-11234. [PMID: 31118288 PMCID: PMC6561269 DOI: 10.1073/pnas.1902639116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phenylalanine hydroxylase (PAH) is a key enzyme in the catabolism of phenylalanine, and mutations in this enzyme cause phenylketonuria (PKU), a genetic disorder that leads to brain damage and mental retardation if untreated. Some patients benefit from supplementation with a synthetic formulation of the cofactor tetrahydrobiopterin (BH4) that partly acts as a pharmacological chaperone. Here we present structures of full-length human PAH (hPAH) both unbound and complexed with BH4 in the precatalytic state. Crystal structures, solved at 3.18-Å resolution, show the interactions between the cofactor and PAH, explaining the negative regulation exerted by BH4 BH4 forms several H-bonds with the N-terminal autoregulatory tail but is far from the catalytic FeII Upon BH4 binding a polar and salt-bridge interaction network links the three PAH domains, explaining the stability conferred by BH4 Importantly, BH4 binding modulates the interaction between subunits, providing information about PAH allostery. Moreover, we also show that the cryo-EM structure of hPAH in absence of BH4 reveals a highly dynamic conformation for the tetramers. Structural analyses of the hPAH:BH4 subunits revealed that the substrate-induced movement of Tyr138 into the active site could be coupled to the displacement of BH4 from the precatalytic toward the active conformation, a molecular mechanism that was supported by site-directed mutagenesis and targeted molecular dynamics simulations. Finally, comparison of the rat and human PAH structures show that hPAH is more dynamic, which is related to amino acid substitutions that enhance the flexibility of hPAH and may increase the susceptibility to PKU-associated mutations.
Collapse
Affiliation(s)
| | - Martín Alcorlo-Pagés
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | | | | | - Lars Skjærven
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Rafael Fernandez-Leiro
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway;
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain;
| |
Collapse
|
5
|
Khan CA, Fitzpatrick PF. Phosphorylation of Phenylalanine Hydroxylase Increases the Rate Constant for Formation of the Activated Conformation of the Enzyme. Biochemistry 2018; 57:6274-6277. [PMID: 30346142 DOI: 10.1021/acs.biochem.8b00919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver phenylalanine hydroxylase (PheH) is an allosteric enzyme that is activated by phenylalanine. The enzyme is also phosphorylated by protein kinase A, but the effects of phosphorylation are unclear. Recent structural studies ( Meisburger et al. ( 2016 ) J. Amer. Chem. Soc. 138 , 6506 - 6516 ) support a model in which activation of the enzyme involves dimerization of the regulatory domains, creating the allosteric site for phenylalanine at the dimer interface. This conformational change also results in a change in the fluorescence of the protein that can be used to monitor activation. The kinetics of activation of PheH are biphasic over a range of phenylalanine concentrations. These data are well-described by a model involving an initial equilibrium between the resting form and the activated conformation, with a value of the equilibrium constant for formation of the activated conformation, L, equal to 0.007, followed by binding of two molecules of phenylalanine. Phosphorylation increases L 10-fold by increasing the rate constant for conversion of the resting form to the activated form. The results provide functional support for the previous structural model, identify the specific effect of phosphorylation on the enzyme, and rationalize the lack of change in the protein structure upon phosphorylation.
Collapse
Affiliation(s)
- Crystal A Khan
- Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , Texas 78229 , United States
| | - Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , Texas 78229 , United States
| |
Collapse
|
6
|
Pellegrini E, Palencia A, Braun L, Kapp U, Bougdour A, Belrhali H, Bowler MW, Hakimi MA. Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist. Structure 2016; 25:16-26. [PMID: 27889209 PMCID: PMC5222587 DOI: 10.1016/j.str.2016.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023]
Abstract
The causative agent of toxoplasmosis, the intracellular parasite Toxoplasma gondii, delivers a protein, GRA24, into the cells it infects that interacts with the mitogen-activated protein (MAP) kinase p38α (MAPK14), leading to activation and nuclear translocation of the host kinase and a subsequent inflammatory response that controls the progress of the parasite. The purification of a recombinant complex of GRA24 and human p38α has allowed the molecular basis of this activation to be determined. GRA24 is shown to be intrinsically disordered, binding two kinases that act independently, and is the only factor required to bypass the canonical mitogen-activated protein kinase activation pathway. An adapted kinase interaction motif (KIM) forms a highly stable complex that competes with cytoplasmic regulatory partners. In addition, the recombinant complex forms a powerful in vitro tool to evaluate the specificity and effectiveness of p38α inhibitors that have advanced to clinical trials, as it provides a hitherto unavailable stable and highly active form of p38α. Toxoplasmosis controls its host immune response via a protein effector, GRA24 A recombinant complex of GRA24 and MAPK p38α demonstrates how the protein works An adapted KIM domain ensures activation and a sustained inflammatory response The recombinant complex is useful in the evaluation of p38 inhibitors
Collapse
Affiliation(s)
- Erika Pellegrini
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Andrés Palencia
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Laurence Braun
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Ulrike Kapp
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Alexandre Bougdour
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| | - Mohamed-Ali Hakimi
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France.
| |
Collapse
|
7
|
Patel D, Kopec J, Fitzpatrick F, McCorvie TJ, Yue WW. Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain. Sci Rep 2016; 6:23748. [PMID: 27049649 PMCID: PMC4822156 DOI: 10.1038/srep23748] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/08/2016] [Indexed: 02/01/2023] Open
Abstract
The multi-domain enzyme phenylalanine hydroxylase (PAH) catalyzes the hydroxylation of dietary I-phenylalanine (Phe) to I-tyrosine. Inherited mutations that result in PAH enzyme deficiency are the genetic cause of the autosomal recessive disorder phenylketonuria. Phe is the substrate for the PAH active site, but also an allosteric ligand that increases enzyme activity. Phe has been proposed to bind, in addition to the catalytic domain, a site at the PAH N-terminal regulatory domain (PAH-RD), to activate the enzyme via an unclear mechanism. Here we report the crystal structure of human PAH-RD bound with Phe at 1.8 Å resolution, revealing a homodimer of ACT folds with Phe bound at the dimer interface. This work delivers the structural evidence to support previous solution studies that a binding site exists in the RD for Phe, and that Phe binding results in dimerization of PAH-RD. Consistent with our structural observation, a disease-associated PAH mutant impaired in Phe binding disrupts the monomer:dimer equilibrium of PAH-RD. Our data therefore support an emerging model of PAH allosteric regulation, whereby Phe binds to PAH-RD and mediates the dimerization of regulatory modules that would bring about conformational changes to activate the enzyme.
Collapse
Affiliation(s)
- Dipali Patel
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| | - Jolanta Kopec
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| | - Fiona Fitzpatrick
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| | - Thomas J McCorvie
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| |
Collapse
|
8
|
Zhang S, Fitzpatrick PF. Identification of the Allosteric Site for Phenylalanine in Rat Phenylalanine Hydroxylase. J Biol Chem 2016; 291:7418-25. [PMID: 26823465 DOI: 10.1074/jbc.m115.709998] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 11/06/2022] Open
Abstract
Liver phenylalanine hydroxylase (PheH) is an allosteric enzyme that requires activation by phenylalanine for full activity. The location of the allosteric site for phenylalanine has not been established. NMR spectroscopy of the isolated regulatory domain (RDPheH(25-117) is the regulatory domain of PheH lacking residues 1-24) of the rat enzyme in the presence of phenylalanine is consistent with formation of a side-by-side ACT dimer. Six residues in RDPheH(25-117) were identified as being in the phenylalanine-binding site on the basis of intermolecular NOEs between unlabeled phenylalanine and isotopically labeled protein. The location of these residues is consistent with two allosteric sites per dimer, with each site containing residues from both monomers. Site-specific variants of five of the residues (E44Q, A47G, L48V, L62V, and H64N) decreased the affinity of RDPheH(25-117) for phenylalanine based on the ability to stabilize the dimer. Incorporation of the A47G, L48V, and H64N mutations into the intact protein increased the concentration of phenylalanine required for activation. The results identify the location of the allosteric site as the interface of the regulatory domain dimer formed in activated PheH.
Collapse
Affiliation(s)
- Shengnan Zhang
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Paul F Fitzpatrick
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| |
Collapse
|
9
|
Carluccio C, Fraternali F, Salvatore F, Fornili A, Zagari A. Towards the identification of the allosteric Phe-binding site in phenylalanine hydroxylase. J Biomol Struct Dyn 2015; 34:497-507. [PMID: 26479306 DOI: 10.1080/07391102.2015.1052016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The enzyme phenylalanine hydroxylase (PAH) is defective in the inherited disorder phenylketonuria. PAH, a tetrameric enzyme, is highly regulated and displays positive cooperativity for its substrate, Phe. Whether Phe binds to an allosteric site is a matter of debate, despite several studies worldwide. To address this issue, we generated a dimeric model for Phe-PAH interactions, by performing molecular docking combined with molecular dynamics simulations on human and rat wild-type sequences and also on a human G46S mutant. Our results suggest that the allosteric Phe-binding site lies at the dimeric interface between the regulatory and the catalytic domains of two adjacent subunits. The structural and dynamical features of the site were characterized in depth and described. Interestingly, our findings provide evidence for lower allosteric Phe-binding ability of the G46S mutant than the human wild-type enzyme. This also explains the disease-causing nature of this mutant.
Collapse
Affiliation(s)
- Carla Carluccio
- a CEINGE-Biotecnologie Avanzate , S.c. a r.l., Napoli , Italy
| | - Franca Fraternali
- b Randall Division of Cell and Molecular Biophysics , King's College London , London , UK
| | - Francesco Salvatore
- a CEINGE-Biotecnologie Avanzate , S.c. a r.l., Napoli , Italy.,c SDN-Istituto di Ricerca Diagnostica e Nucleare , Napoli , Italy
| | - Arianna Fornili
- b Randall Division of Cell and Molecular Biophysics , King's College London , London , UK
| | - Adriana Zagari
- a CEINGE-Biotecnologie Avanzate , S.c. a r.l., Napoli , Italy
| |
Collapse
|
10
|
Zhang S, Hinck AP, Fitzpatrick PF. The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers. Biochemistry 2015; 54:5167-74. [PMID: 26252467 PMCID: PMC4551101 DOI: 10.1021/acs.biochem.5b00616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Liver
phenylalanine hydroxylase is allosterically activated by
phenylalanine. The structural changes that accompany activation have
not been identified, but recent studies of the effects of phenylalanine
on the isolated regulatory domain of the enzyme support a model in
which phenylalanine binding promotes regulatory domain dimerization.
Such a model predicts that compounds that stabilize the regulatory
domain dimer will also activate the enzyme. Nuclear magnetic resonance
spectroscopy and analytical ultracentrifugation were used to determine
the ability of different amino acids and phenylalanine analogues to
stabilize the regulatory domain dimer. The abilities of these compounds
to activate the enzyme were analyzed by measuring their effects on
the fluorescence change that accompanies activation and on the activity
directly. At concentrations of 10–50 mM, d-phenylalanine, l-methionine, l-norleucine, and (S)-2-amino-3-phenyl-1-propanol were able to activate the enzyme to
the same extent as 1 mM l-phenylalanine. Lower levels of
activation were seen with l-4-aminophenylalanine, l-leucine, l-isoleucine, and 3-phenylpropionate. The ability
of these compounds to stabilize the regulatory domain dimer agreed
with their ability to activate the enzyme. These results support a
model in which allosteric activation of phenylalanine hydroxylase
is linked to dimerization of regulatory domains.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Biochemistry, University of Texas Health Science Center , San Antonio, Texas 78229, United States
| | - Andrew P Hinck
- Department of Biochemistry, University of Texas Health Science Center , San Antonio, Texas 78229, United States
| | - Paul F Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center , San Antonio, Texas 78229, United States
| |
Collapse
|
11
|
Fitzpatrick PF. Structural insights into the regulation of aromatic amino acid hydroxylation. Curr Opin Struct Biol 2015; 35:1-6. [PMID: 26241318 DOI: 10.1016/j.sbi.2015.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/30/2015] [Accepted: 07/15/2015] [Indexed: 11/30/2022]
Abstract
The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase are homotetramers, with each subunit containing a homologous catalytic domain and a divergent regulatory domain. The solution structure of the regulatory domain of tyrosine hydroxylase establishes that it contains a core ACT domain similar to that in phenylalanine hydroxylase. The isolated regulatory domain of tyrosine hydroxylase forms a stable dimer, while that of phenylalanine hydroxylase undergoes a monomer-dimer equilibrium, with phenylalanine stabilizing the dimer. These solution properties are consistent with the regulatory mechanisms of the two enzymes, in that phenylalanine hydroxylase is activated by phenylalanine binding to an allosteric site, while tyrosine hydroxylase is regulated by binding of catecholamines in the active site.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, United States.
| |
Collapse
|
12
|
Smith KP, Gifford KM, Waitzman JS, Rice SE. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects. Proteins 2015; 83:25-36. [PMID: 24833420 PMCID: PMC4233198 DOI: 10.1002/prot.24605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
While it is currently estimated that 40 to 50% of eukaryotic proteins are phosphorylated, little is known about the frequency and local effects of phosphorylation near pharmaceutical inhibitor binding sites. In this study, we investigated how frequently phosphorylation may affect the binding of drug inhibitors to target proteins. We examined the 453 non-redundant structures of soluble mammalian drug target proteins bound to inhibitors currently available in the Protein Data Bank (PDB). We cross-referenced these structures with phosphorylation data available from the PhosphoSitePlus database. Three hundred twenty-two of 453 (71%) of drug targets have evidence of phosphorylation that has been validated by multiple methods or labs. For 132 of 453 (29%) of those, the phosphorylation site is within 12 Å of the small molecule-binding site, where it would likely alter small molecule binding affinity. We propose a framework for distinguishing between drug-phosphorylation site interactions that are likely to alter the efficacy of drugs versus those that are not. In addition we highlight examples of well-established drug targets, such as estrogen receptor alpha, for which phosphorylation may affect drug affinity and clinical efficacy. Our data suggest that phosphorylation may affect drug binding and efficacy for a significant fraction of drug target proteins.
Collapse
Affiliation(s)
- Kyle P Smith
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611
| | | | | | | |
Collapse
|
13
|
Roberts KM, Khan CA, Hinck CS, Fitzpatrick PF. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site. Biochemistry 2014; 53:7846-53. [PMID: 25453233 PMCID: PMC4270383 DOI: 10.1021/bi501183x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
Phenylalanine
hydroxylase (PheH), a liver enzyme that catalyzes
the hydroxylation of excess phenylalanine in the diet to tyrosine,
is activated by phenylalanine. The lack of activity at low levels
of phenylalanine has been attributed to the N-terminus of the protein’s
regulatory domain acting as an inhibitory peptide by blocking substrate
access to the active site. The location of the site at which phenylalanine
binds to activate the enzyme is unknown, and both the active site
in the catalytic domain and a separate site in the N-terminal regulatory
domain have been proposed. Binding of catecholamines to the active-site
iron was used to probe the accessibility of the active site. Removal
of the regulatory domain increases the rate constants for association
of several catecholamines with the wild-type enzyme by ∼2-fold.
Binding of phenylalanine in the active site is effectively abolished
by mutating the active-site residue Arg270 to lysine. The kcat/Kphe value is
down 104 for the mutant enzyme, and the Km value for phenylalanine for the mutant enzyme is >0.5
M. Incubation of the R270K enzyme with phenylalanine also results
in a 2-fold increase in the rate constants for catecholamine binding.
The change in the tryptophan fluorescence emission spectrum seen in
the wild-type enzyme upon activation by phenylalanine is also seen
with the R270K mutant enzyme in the presence of phenylalanine. Both
results establish that activation of PheH by phenylalanine does not
require binding of the amino acid in the active site. This is consistent
with a separate allosteric site, likely in the regulatory domain.
Collapse
Affiliation(s)
- Kenneth M Roberts
- Department of Biochemistry, University of Texas Health Science Center , San Antonio, Texas 78229, United States
| | | | | | | |
Collapse
|
14
|
Zhang S, Roberts KM, Fitzpatrick PF. Phenylalanine binding is linked to dimerization of the regulatory domain of phenylalanine hydroxylase. Biochemistry 2014; 53:6625-7. [PMID: 25299136 PMCID: PMC4251497 DOI: 10.1021/bi501109s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Analytical ultracentrifugation has
been used to analyze the oligomeric
structure of the isolated regulatory domain of phenylalanine hydroxylase.
The protein exhibits a monomer–dimer equilibrium with a dissociation
constant of ∼46 μM; this value is unaffected by the removal
of the 24 N-terminal residues or by phosphorylation of Ser16. In contrast,
phenylalanine binding (Kd = 8 μM)
stabilizes the dimer. These results suggest that dimerization of the
regulatory domain of phenylalanine hydroxylase is linked to allosteric
activation of the enzyme.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Biochemistry, University of Texas Health Science Center at San Antonio , San Antonio, Texas 78229, United States
| | | | | |
Collapse
|
15
|
Heintz C, Cotton RGH, Blau N. Tetrahydrobiopterin, its mode of action on phenylalanine hydroxylase, and importance of genotypes for pharmacological therapy of phenylketonuria. Hum Mutat 2013; 34:927-36. [PMID: 23559577 DOI: 10.1002/humu.22320] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 11/11/2022]
Abstract
In about 20%-30% of phenylketonuria (PKU) patients (all phenotypes of PAH deficiency), Phe levels may be controlled through phenylalanine hydroxylase cofactor tetrahydrobiopterin therapy. These patients can be diagnosed by an oral tetrahydrobiopterin challenge and are characterized by mutations coding for proteins with substantial residual PAH activity. They can be treated with a commercially available synthetic form of tetrahydrobiopterin, either as a monotherapy or as adjunct to the diet. This review article summarizes molecular and metabolic bases of PKU and the importance of the tetrahydrobiopterin loading test used for PKU patients. On the basis of in vitro residual PAH activity, more than 1,200 genotypes from patients challenged with tetrahydrobiopterin were categorized as predictive for tetrahydrobiopterin responsiveness or non-responsiveness and correlated with the loading test, phenotype, and residual in vitro PAH activity. The coexpression of two distinct PAH mutant alleles revealed possible dominance effects (positive or negative) by one of the mutations on residual activity as result of interallelic complementation. The treatment of the transfected cells with tetrahydrobiopterin showed an increase in residual PAH activity with several mutations coexpressed.
Collapse
|
16
|
Regulation of phenylalanine hydroxylase: conformational changes upon phosphorylation detected by H/D exchange and mass spectrometry. Arch Biochem Biophys 2013; 535:115-9. [PMID: 23537590 DOI: 10.1016/j.abb.2013.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/20/2013] [Accepted: 03/17/2013] [Indexed: 02/06/2023]
Abstract
The enzyme phenylalanine hydroxylase catalyzes the hydroxylation of excess phenylalanine in the liver to tyrosine. The enzyme is regulated allosterically by phenylalanine and by phosphorylation of Ser16. Hydrogen/deuterium exchange monitored by mass spectrometry has been used to gain insight into any structural change upon phosphorylation. Peptides in both the catalytic and regulatory domains show increased deuterium incorporation into the phosphorylated protein. Deuterium is incorporated into fewer peptides than when the enzyme is activated by phenylalanine, and the incorporation is slower. This establishes that the conformational change upon phosphorylation of phenylalanine hydroxylase is different from and less extensive than that upon phenylalanine activation.
Collapse
|
17
|
Fitzpatrick PF. Allosteric regulation of phenylalanine hydroxylase. Arch Biochem Biophys 2012; 519:194-201. [PMID: 22005392 PMCID: PMC3271142 DOI: 10.1016/j.abb.2011.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
Abstract
The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, TX 78229-3900, USA.
| |
Collapse
|
18
|
Cerreto M, Cavaliere P, Carluccio C, Amato F, Zagari A, Daniele A, Salvatore F. Natural phenylalanine hydroxylase variants that confer a mild phenotype affect the enzyme's conformational stability and oligomerization equilibrium. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:1435-45. [PMID: 21820508 DOI: 10.1016/j.bbadis.2011.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/26/2022]
Abstract
Hyperphenylalaninemias are genetic diseases prevalently caused by mutations in the phenylalanine hydroxylase (PAH) gene. The wild-type PAH enzyme is a homotetramer regulated by its substrate, cofactor and phosphorylation. We reproduced a full-length wild-type protein and seven natural full-length PAH variants, p.I65M, p.N223Y, p.R297L, p.F382L, p.K398N, p.A403V, and p.Q419R, and analyzed their biochemical and biophysical behavior. All mutants exhibited reduced enzymatic activity, namely from 38% to 69% of wild-type activity. Biophysical characterization was performed by size-exclusion chromatography, light scattering and circular dichroism. In the purified wild-type PAH, we identified the monomer in equilibrium with the dimer and tetramer. In most mutants, the equilibrium shifted toward the dimer and most tended to form aggregates. All PAH variants displayed different biophysical behaviors due to loss of secondary structure and thermal destabilization. Specifically, p.F382L was highly unstable at physiological temperature. Moreover, using confocal microscopy with the number and brightness technique, we studied the effect of BH4 addition directly in living human cells expressing wild-type PAH or p.A403V, a mild mutant associated with BH4 responsiveness in vivo. Our results demonstrate that BH4 addition promotes re-establishment of the oligomerization equilibrium, thus indicating that the dimer-to-tetramer shift in pA403V plays a key role in BH4 responsiveness. In conclusion, we show that the oligomerization process and conformational stability are altered by mutations that could affect the physiological behavior of the enzyme. This endorses the hypothesis that oligomerization and folding defects of PAH variants are the most common causes of HPAs, particularly as regards mild human phenotypes.
Collapse
|
19
|
Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 2010; 508:1-12. [PMID: 21176768 DOI: 10.1016/j.abb.2010.12.017] [Citation(s) in RCA: 638] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 01/22/2023]
Abstract
Tyrosine hydroxylase is the rate-limiting enzyme of catecholamine biosynthesis; it uses tetrahydrobiopterin and molecular oxygen to convert tyrosine to DOPA. Its amino terminal 150 amino acids comprise a domain whose structure is involved in regulating the enzyme's activity. Modes of regulation include phosphorylation by multiple kinases at four different serine residues, and dephosphorylation by two phosphatases. The enzyme is inhibited in feedback fashion by the catecholamine neurotransmitters. Dopamine binds to TyrH competitively with tetrahydrobiopterin, and interacts with the R domain. TyrH activity is modulated by protein-protein interactions with enzymes in the same pathway or the tetrahydrobiopterin pathway, structural proteins considered to be chaperones that mediate the neuron's oxidative state, and the protein that transfers dopamine into secretory vesicles. TyrH is modified in the presence of NO, resulting in nitration of tyrosine residues and the glutathionylation of cysteine residues.
Collapse
Affiliation(s)
- S Colette Daubner
- Department of Biological Sciences, St. Mary's University, San Antonio, TX 78228, USA.
| | | | | |
Collapse
|
20
|
Leandro J, Simonsen N, Saraste J, Leandro P, Flatmark T. Phenylketonuria as a protein misfolding disease: The mutation pG46S in phenylalanine hydroxylase promotes self-association and fibril formation. Biochim Biophys Acta Mol Basis Dis 2010; 1812:106-20. [PMID: 20937381 DOI: 10.1016/j.bbadis.2010.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/02/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
The missense mutation pG46S in the regulatory (R) domain of human phenylalanine hydroxylase (hPAH), associated with a severe form of phenylketonuria, generates a misfolded protein which is rapidly degraded on expression in HEK293 cells. When overexpressed as a MBP-G46S fusion protein, soluble and fully active tetrameric/dimeric forms are assembled and recovered in a metastable conformational state. When MBP is cleaved off, G46S undergoes a conformational change and self-associates with a lag phase and an autocatalytic growth phase (tetramers≫dimers), as determined by light scattering. The self-association is controlled by pH, ionic strength, temperature, protein concentration and the phosphorylation state of Ser16; the net charge of the protein being a main modulator of the process. A superstoichiometric amount of WT dimers revealed a 2-fold enhancement of the rate of G46S dimer self-association. Electron microscopy demonstrates the formation of higher-order oligomers and linear polymers of variable length, partly as a branching network, and partly as individual long and twisted fibrils (diameter ~145-300Å). The heat-shock proteins Hsp70/Hsp40, Hsp90 and a proposed pharmacological PAH chaperone (3-amino-2-benzyl-7-nitro-4-(2-quinolyl)-1,2-dihydroisoquinolin-1-one) partly inhibit the self-association process. Our data indicate that the G46S mutation results in a N-terminal extension of α-helix 1 which perturbs the wild-type α-β sandwich motif in the R-domain and promotes new intermolecular contacts, self-association and non-amyloid fibril formation. The metastable conformational state of G46S as a MBP fusion protein, and its self-association propensity when released from MBP, may represent a model system for the study of other hPAH missense mutations characterized by misfolded proteins.
Collapse
Affiliation(s)
- João Leandro
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | | | | | |
Collapse
|
21
|
Ying M, Pey AL, Aarsaether N, Martinez A. Phenylalanine hydroxylase expression in primary rat hepatocytes is modulated by oxygen concentration. Mol Genet Metab 2010; 101:279-81. [PMID: 20638309 DOI: 10.1016/j.ymgme.2010.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 02/01/2023]
Abstract
In this work we have investigated the regulation of rat phenylalanine hydroxylase (rPAH) expression by oxygen in primary cultures of rat hepatocytes. We show that rPAH is negatively modulated at the mRNA, protein and activity levels by pO(2) of 16% (periportal hepatic levels) compared to 8% (perivenous hepatic levels). Our results suggest that PAH might be metabolically zonated in vivo, and preferentially found in perivenous hepatocytes with high glucose consumption and largely influenced by insulin levels.
Collapse
Affiliation(s)
- Ming Ying
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|
22
|
Zheng N, Pérez JDJ, Zhang Z, Domínguez E, Garcia JA, Xie Q. Specific and efficient cleavage of fusion proteins by recombinant plum pox virus NIa protease. Protein Expr Purif 2007; 57:153-62. [PMID: 18024078 PMCID: PMC7130002 DOI: 10.1016/j.pep.2007.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/26/2007] [Accepted: 10/12/2007] [Indexed: 11/23/2022]
Abstract
Site-specific proteases are the most popular kind of enzymes for removing the fusion tags from fused target proteins. Nuclear inclusion protein a (NIa) proteases obtained from the family Potyviridae have become promising due to their high activities and stringencies of sequences recognition. NIa proteases from tobacco etch virus (TEV) and tomato vein mottling virus (TVMV) have been shown to process recombinant proteins successfully in vitro. In this report, recombinant PPV (plum pox virus) NIa protease was employed to process fusion proteins with artificial cleavage site in vitro. Characteristics such as catalytic ability and affecting factors (salt, temperature, protease inhibitors, detergents, and denaturing reagents) were investigated. Recombinant PPV NIa protease expressed and purified from Escherichia coli demonstrated efficient and specific processing of recombinant GFP and SARS-CoV nucleocapsid protein, with site F (N V V V H Q▾A) for PPV NIa protease artificially inserted between the fusion tags and the target proteins. Its catalytic capability is similar to those of TVMV and TEV NIa protease. Recombinant PPV NIa protease reached its maximal proteolytic activity at approximately 30 °C. Salt concentration and only one of the tested protease inhibitors had minor influences on the proteolytic activity of PPV NIa protease. Recombinant PPV NIa protease was resistant to self-lysis for at least five days.
Collapse
Affiliation(s)
- Nuoyan Zheng
- State Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 Xinggang Road W, Guangzhou 510275, China
| | | | | | | | | | | |
Collapse
|
23
|
Miranda FF, Thórólfsson M, Teigen K, Sanchez-Ruiz JM, Martínez A. Structural and stability effects of phosphorylation: Localized structural changes in phenylalanine hydroxylase. Protein Sci 2004; 13:1219-26. [PMID: 15096628 PMCID: PMC2286772 DOI: 10.1110/ps.03595904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phosphorylation of phenylalanine hydroxylase (PAH) at Ser16 by cAMP-dependent protein kinase increases the basal activity of the enzyme and its resistance to tryptic proteolysis. The modeled structures of the full-length phosphorylated and unphosphorylated enzyme were subjected to molecular dynamics simulations, and we analyzed the energy of charge-charge interactions for individual ionizable residues in the final structures. These calculations showed that the conformational changes induced by incorporation of phosphate were localized and limited mostly to the region around the phosphoserine (Arg13-Asp17) and a region around the active site in the catalytic domain that includes residues involved in the binding of the iron and the substrate L-Phe (Arg270 and His285). The absence of a generalized conformational change was confirmed by differential scanning calorimetry, thermal-dependent circular dichroism, fluorescence spectroscopy, and limited chymotryptic proteolysis of the phosphorylated and unphosphorylated PAH. Our results explain the effect of phosphorylation of PAH on both the resistance to proteolysis specifically by trypsin-like enzymes and on the increase in catalytic efficiency.
Collapse
|
24
|
Thórólfsson M, Teigen K, Martínez A. Activation of phenylalanine hydroxylase: effect of substitutions at Arg68 and Cys237. Biochemistry 2003; 42:3419-28. [PMID: 12653545 DOI: 10.1021/bi034021s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenylalanine hydroxylase (PAH) is a multidomain tetrameric enzyme that displays positive cooperative substrate binding. This cooperative response is believed to be of physiological significance as a mechanism that controls L-Phe homeostasis in blood. The substrate induces an activating conformational change in the enzyme affecting the secondary, tertiary, and quaternary structures. Chemical modification and substitution with a negatively charged residue of Cys237 in human PAH (hPAH) also result in activation of the enzyme. As seen in the modeled structure of full-length hPAH, Cys237 is located in the catalytic domain close to residues in the oligomerization and regulatory domains of an adjacent subunit in the dimer, notably to Arg68. This residue is located in a prominent loop (68-75), which also has contacts with the dimerization motif from the same subunit. To investigate further the involvement of Cys237 and Arg68 in the activation of the enzyme, we have prepared mutants of hPAH at these positions, with substitutions of different charge and size. The mutations C237D, R68A, and C237A cause an increase of the basal activity and affinity for L-Phe, while the mutation C237R results in reduced affinity for the substrate and elimination of the positive cooperativity. The conformational changes induced by the mutations were studied by far-UV circular dichroism, fluorescence spectroscopy, and molecular dynamics simulations. All together, our results indicate that the activating mutations induce a series of conformational changes including both the displacement of the inhibitory N-terminal sequence (residues 19-33) that covers the active site and the domain movements around the hinge region Arg111-Thr117, in addition to the rearrangement of the loop 68-75. The same conformational changes appear to be involved in the activation of PAH induced by L-Phe.
Collapse
Affiliation(s)
- Matthías Thórólfsson
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, 5009-Bergen, Norway
| | | | | |
Collapse
|
25
|
Solstad T, Carvalho RN, Andersen OA, Waidelich D, Flatmark T. Deamidation of labile asparagine residues in the autoregulatory sequence of human phenylalanine hydroxylase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:929-38. [PMID: 12603326 DOI: 10.1046/j.1432-1033.2003.03455.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two dimensional electrophoresis has revealed a microheterogeneity in the recombinant human phenylalanine hydroxylase (hPAH) protomer, that is the result of spontaneous nonenzymatic deamidations of labile asparagine (Asn) residues [Solstad, T. and Flatmark, T. (2000) Eur. J. Biochem.267, 6302-6310]. Using of a computer algorithm, the relative deamidation rates of all Asn residues in hPAH have been predicted, and we here verify that Asn32, followed by a glycine residue, as well as Asn28 and Asn30 in a loop region of the N-terminal autoregulatory sequence (residues 19-33) of wt-hPAH, are among the susceptible residues. First, on MALDI-TOF mass spectrometry of the 24 h expressed enzyme, the E. coli 28-residue peptide, L15-K42 (containing three Asn residues), was recovered with four monoisotopic mass numbers (i.e., m/z of 3106.455, 3107.470, 3108.474 and 3109.476, of decreasing intensity) that differed by 1 Da. Secondly, by reverse-phase chromatography, isoaspartyl (isoAsp) was demonstrated in this 28-residue peptide by its methylation by protein-l-isoaspartic acid O-methyltransferase (PIMT; EC 2.1.1.77). Thirdly, on incubation at pH 7.0 and 37 degrees C of the phosphorylated form (at Ser16) of this 28-residue peptide, a time-dependent mobility shift from tR approximately 34 min to approximately 31 min (i.e., to a more hydrophilic position) was observed on reverse-phase chromatography, and the recovery of the tR approximately 34 min species decreased with a biphasic time-course with t0.5-values of 1.9 and 6.2 days. The fastest rate is compatible with the rate determined for the sequence-controlled deamidation of Asn32 (in a pentapeptide without 3D structural interference), i.e., a deamidation half-time of approximately 1.5 days in 150 mm Tris/HCl, pH 7.0 at 37 degrees C. Asn32 is located in a cluster of three Asn residues (Asn28, Asn30 and Asn32) of a loop structure stabilized by a hydrogen-bond network. Deamidation of Asn32 introduces a negative charge and a partial beta-isomerization (isoAsp), which is predicted to result in a change in the backbone conformation of the loop structure and a repositioning of the autoregulatory sequence and thus affect its regulatory properties. The functional implications of this deamidation was further studied by site-directed mutagenesis, and the mutant form (Asn32-->Asp) revealed a 1.7-fold increase in the catalytic efficiency, an increased affinity and positive cooperativity of L-Phe binding as well as substrate inhibition.
Collapse
Affiliation(s)
- Therese Solstad
- Department of Biochemistry and Molecular Biology, Proteomic Unit, University of Bergen, Arstadveien 19, N-5009 Bergen, Norway
| | | | | | | | | |
Collapse
|
26
|
Solstad T, Stokka AJ, Andersen OA, Flatmark T. Studies on the regulatory properties of the pterin cofactor and dopamine bound at the active site of human phenylalanine hydroxylase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:981-90. [PMID: 12603331 DOI: 10.1046/j.1432-1033.2003.03471.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The catalytic activity of phenylalanine hydroxylase (PAH, phenylalanine 4-monooxygenase EC 1.14.16.1) is regulated by three main mechanisms, i.e. substrate (l-phenylalanine, L-Phe) activation, pterin cofactor inhibition and phosphorylation of a single serine (Ser16) residue. To address the molecular basis for the inhibition by the natural cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin, its effects on the recombinant tetrameric human enzyme (wt-hPAH) was studied using three different conformational probes, i.e. the limited proteolysis by trypsin, the reversible global conformational transition (hysteresis) triggered by L-Phe binding, as measured in real time by surface plasmon resonance analysis, and the rate of phosphorylation of Ser16 by cAMP-dependent protein kinase. Comparison of the inhibitory properties of the natural cofactor with the available three-dimensional crystal structure information on the ligand-free, the binary and the ternary complexes, have provided important clues concerning the molecular mechanism for the negative modulatory effects. In the binary complex, the binding of the cofactor at the active site results in the formation of stabilizing hydrogen bonds between the dihydroxypropyl side-chain and the carbonyl oxygen of Ser23 in the autoregulatory sequence. L-Phe binding triggers local as well as global conformational changes of the protomer resulting in a displacement of the cofactor bound at the active site by 2.6 A (mean distance) in the direction of the iron and Glu286 which causes a loss of the stabilizing hydrogen bonds present in the binary complex and thereby a complete reversal of the pterin cofactor as a negative effector. The negative modulatory properties of the inhibitor dopamine, bound by bidentate coordination to the active site iron, is explained by a similar molecular mechanism including its reversal by substrate binding. Although the pterin cofactor and the substrate bind at distinctly different sites, the local conformational changes imposed by their binding at the active site have a mutual effect on their respective binding affinities.
Collapse
Affiliation(s)
- Therese Solstad
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|
27
|
Stokka AJ, Flatmark T. Substrate-induced conformational transition in human phenylalanine hydroxylase as studied by surface plasmon resonance analyses: the effect of terminal deletions, substrate analogues and phosphorylation. Biochem J 2003; 369:509-18. [PMID: 12379147 PMCID: PMC1223104 DOI: 10.1042/bj20021009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2002] [Revised: 10/09/2002] [Accepted: 10/15/2002] [Indexed: 11/17/2022]
Abstract
The optical biosensor technique, based on the surface plasmon resonance (SPR) phenomenon, was used for real-time measurements of the slow conformational transition (isomerization) which occurs in human phenylalanine hydroxylase (hPAH) on the binding/dissociation of L-phenylalanine (L-Phe). The binding to immobilized tetrameric wt-hPAH resulted in a time-dependent increase in the refractive index (up to approx. 3 min at 25 degrees C) with an end point of approx. 75 RU (resonance units)/(pmol subunit/mm(2)). By contrast, the contribution of binding the substrate (165 Da) to its catalytic core enzyme [DeltaN(1-102)/DeltaC(428-452)-hPAH] was only approx. 2 RU/(pmol subunit/mm(2)). The binding isotherm for tetrameric and dimeric wt-hPAH revealed a [S](0.5)-value of 98+/-7 microM (h =1.0) and 158+/-11 microM, respectively, i.e. for the tetramer it is slightly lower than the value (145+/-5 microM) obtained for the co-operative binding (h =1.6+/-0.4) of L-Phe as measured by the change in intrinsic tryptophan fluorescence. The responses obtained by SPR and intrinsic tryptophan fluorescence are both considered to be related to the slow reversible conformational transition which occurs in the enzyme upon L-Phe binding, i.e. by the transition from a low-activity state ('T-state') to a relaxed high-activity state ('R-state') characteristic of this hysteretic enzyme, however, the two methods reflect different elements of the transition. Studies on the N- and C-terminal truncated forms revealed that the N-terminal regulatory domain (residues 1-117) plus catalytic domain (residues 118-411) were required for the full signal amplitude of the SPR response. Both the on- and off-rates for the conformational transition were biphasic, which is interpreted in terms of a difference in the energy barrier and the rate by which the two domains (catalytic and regulatory) undergo a conformational change. The substrate analogue 3-(2-thienyl)-L-alanine revealed an SPR response comparable with that of L-Phe on binding to wild-type hPAH.
Collapse
Affiliation(s)
- Anne J Stokka
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, N-5009 Bergen, Norway
| | | |
Collapse
|
28
|
Miranda FF, Teigen K, Thórólfsson M, Svebak RM, Knappskog PM, Flatmark T, Martínez A. Phosphorylation and mutations of Ser(16) in human phenylalanine hydroxylase. Kinetic and structural effects. J Biol Chem 2002; 277:40937-43. [PMID: 12185072 DOI: 10.1074/jbc.m112197200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of phenylalanine hydroxylase (PAH) at Ser(16) by cyclic AMP-dependent protein kinase is a post-translational modification that increases its basal activity and facilitates its activation by the substrate l-Phe. So far there is no structural information on the flexible N-terminal tail (residues 1-18), including the phosphorylation site. To get further insight into the molecular basis for the effects of phosphorylation on the catalytic efficiency and enzyme stability, molecular modeling was performed using the crystal structure of the recombinant rat enzyme. The most probable conformation and orientation of the N-terminal tail thus obtained indicates that phosphorylation of Ser(16) induces a local conformational change as a result of an electrostatic interaction between the phosphate group and Arg(13) as well as a repulsion by Glu(280) in the loop at the entrance of the active site crevice structure. The modeled reorientation of the N-terminal tail residues (Met(1)-Leu(15)) on phosphorylation is in agreement with the observed conformational change and increased accessibility of the substrate to the active site, as indicated by circular dichroism spectroscopy and the enzyme kinetic data for the full-length phosphorylated and nonphosphorylated human PAH. To further validate the model we have prepared and characterized mutants substituting Ser(16) with a negatively charged residue and found that S16E largely mimics the effects of phosphorylation of human PAH. Both the phosphorylated enzyme and the mutants with acidic side chains instead of Ser(16) revealed an increased resistance toward limited tryptic proteolysis and, as indicated by circular dichroism spectroscopy, an increased content of alpha-helical structure. In agreement with the modeled structure, the formation of an Arg(13) to Ser(16) phosphate salt bridge and the conformational change of the N-terminal tail also explain the higher stability toward limited tryptic proteolysis of the phosphorylated enzyme. The results obtained with the mutant R13A and E381A further support the model proposed for the molecular mechanism for the activation of the enzyme by phosphorylation.
Collapse
Affiliation(s)
- Frederico Faria Miranda
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, 5009-Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
29
|
Erlandsen H, Kim JY, Patch MG, Han A, Volner A, Abu-Omar MM, Stevens RC. Structural comparison of bacterial and human iron-dependent phenylalanine hydroxylases: similar fold, different stability and reaction rates. J Mol Biol 2002; 320:645-61. [PMID: 12096915 DOI: 10.1016/s0022-2836(02)00496-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Structure determination of bacterial homologues of human disease-related proteins provides an efficient path to understanding the three-dimensional fold of proteins that are associated with human diseases. However, the precise locations of active-site residues are often quite different between bacterial and human versions of an enzyme, creating significant differences in the biological understanding of enzyme homologs. To study this hypothesis, phenylalanine hydroxylase from a bacterial source has been structurally characterized at high resolution and comparison is made to the human analog. The enzyme phenylalanine hydroxylase (PheOH) catalyzes the hydroxylation of l-phenylalanine into l-tyrosine utilizing the cofactors (6R)-l-erythro-5,6,7,8 tetrahydrobiopterin (BH(4)) and molecular oxygen. Previously determined X-ray structures of human and rat PheOH, with a sequence identity of more than 93%, show that these two structures are practically identical. It is thus of interest to compare the structure of the divergent Chromobacterium violaceum phenylalanine hydroxylase (CvPheOH) ( approximately 24% sequence identity overall) to the related human and rat PheOH structures. We have determined crystal structures of CvPheOH to high resolution in the apo-form (no Fe-added), Fe(III)-bound form, and 7,8-dihydro-l-biopterin (7,8-BH(2)) plus Fe(III)-bound form. The bacterial enzyme displays higher activity and thermal melting temperature, and structurally, differences are observed in the N and C termini, and in a loop close to the active-site iron atom.
Collapse
Affiliation(s)
- Heidi Erlandsen
- The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Jennings IG, Teh T, Kobe B. Essential role of the N-terminal autoregulatory sequence in the regulation of phenylalanine hydroxylase. FEBS Lett 2001; 488:196-200. [PMID: 11163771 DOI: 10.1016/s0014-5793(00)02426-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenylalanine hydroxylase (PAH) is activated by its substrate phenylalanine and inhibited by its cofactor tetrahydrobiopterin (BH(4)). The crystal structure of PAH revealed that the N-terminal sequence of the enzyme (residues 19-29) partially covered the enzyme active site, and suggested its involvement in regulation. We show that the protein lacking this N-terminal sequence does not require activation by phenylalanine, shows an altered structural response to phenylalanine, and is not inhibited by BH(4). Our data support the model where the N-terminal sequence of PAH acts as an intrasteric autoregulatory sequence, responsible for transmitting the effect of phenylalanine activation to the active site.
Collapse
Affiliation(s)
- I G Jennings
- Structural Biology Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia
| | | | | |
Collapse
|
31
|
Solstad T, Flatmark T. Microheterogeneity of recombinant human phenylalanine hydroxylase as a result of nonenzymatic deamidations of labile amide containing amino acids. Effects on catalytic and stability properties. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6302-10. [PMID: 11012685 DOI: 10.1046/j.1432-1327.2000.01715.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The microheterogeneity of recombinant human phenylalanine hydroxylase (hPAH) was investigated by isoelectric focusing and 2D electrophoresis. When expressed in Escherichia coli four main components (denoted hPAH I-IV) of approximately 50 kDa were observed on long-term induction at 28-37 degrees C with isopropyl thio-beta-D-galactoside (IPTG), differing in pI by about 0.1 pH unit. A similar type of microheterogeneity was observed when the enzyme was expressed (1 h at 37 degrees C) in an in vitro transcription-translation system, including both its nonphosphorylated and phosphorylated forms which were separated on the basis of a difference in mobility on SDS/PAGE. Experimental evidence is presented that the microheterogeneity is the result of nonenzymatic deamidations of labile amide containing amino acids. When expressed in E. coli at 28 degrees C, the percentage of the acidic forms of the enzyme subunit increased as a function of the induction time with IPTG, representing about 50% on 8 h induction. When the enzyme obtained after 2 h induction (containing mainly hPAH I) was incubated in vitro, its conversion to the acidic components (hPAH II-IV) revealed a pH and temperature dependence characteristic of a nonenzymatic deamidation of asparagine residues in proteins, with the release of ammonia. Comparing the microheterogeneity of the wild-type and a truncated form of the enzyme expressed in E. coli, it is concluded that the labile amide groups are located in the catalytic domain as defined by crystal structure analysis [Erlandsen, H., Fusetti, F., Martínez, A., Hough, E., Flatmark, T. & Stevens, R. C. (1997) Nat. Struct. Biol. 4, 995-1000]. It is further demonstrated that the progressive deamidations which occur in E. coli results in a threefold increase in the catalytic efficiency (Vmax/[S]0.5) of the enzyme and an increased susceptibility to limited tryptic proteolysis, characteristic of a partly activated enzyme. The results also suggest that deamidation may play a role in the long term regulation of the catalytic activity and the cellular turnover of this enzyme.
Collapse
Affiliation(s)
- T Solstad
- Department of Biochemistry and Molecular Biology, University of Bergen, N-5009, Bergen, Norway
| | | |
Collapse
|
32
|
Abstract
Phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase constitute a small family of monooxygenases that utilize tetrahydropterins as substrates. When from eukaryotic sources, these enzymes are composed of a homologous catalytic domain to which are attached discrete N-terminal regulatory domains and short C-terminal tetramerization domains, whereas the bacterial enzymes lack the N-terminal and C-terminal domains. Each enzyme contains a single ferrous iron atom bound to two histidines and a glutamate. Recent mechanistic studies have begun to provide insights into the mechanisms of oxygen activation and hydroxylation. Although the hydroxylating intermediate in these enzymes has not been identified, the iron is likely to be involved. Reversible phosphorylation of serine residues in the regulatory domains affects the activities of all three enzymes. In addition, phenylalanine hydroxylase is allosterically regulated by its substrates, phenylalanine and tetrahydrobiopterin.
Collapse
Affiliation(s)
- P F Fitzpatrick
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128, USA.
| |
Collapse
|
33
|
Waters PJ, Parniak MA, Nowacki P, Scriver CR. In vitro expression analysis of mutations in phenylalanine hydroxylase: linking genotype to phenotype and structure to function. Hum Mutat 2000; 11:4-17. [PMID: 9450897 DOI: 10.1002/(sici)1098-1004(1998)11:1<4::aid-humu2>3.0.co;2-l] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutations in the human phenylalanine hydroxylase gene (PAH) altering the expressed cDNA nucleotide sequence (GenBank U49897) can impair activity of the corresponding enzyme product (hepatic phenylalanine hydroxylase, PAH) and cause hyperphenylalaninemia (HPA), a metabolic phenotype for which the major disease form is phenylketonuria (PKU; OMIM 261600). In vitro expression analysis of inherited human mutations in eukaryotic, prokaryotic, and cell-free systems is informative about the mechanisms of mutation effects on enzymatic activity and their predicted effect on the metabolic phenotype. Corresponding analysis of site-directed mutations in rat Pah cDNA has assigned critical functional roles to individual amino acid residues within the best understood species of phenylalanine hydroxylase. Data on in vitro expression of 35 inherited human mutations and 22 created rat mutations are reviewed here. The core data are accessible at the PAH Mutation Analysis Consortium Web site (http://www.mcgill.ca/pahdb).
Collapse
Affiliation(s)
- P J Waters
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
34
|
Loer CM, Davidson B, Mckerrow J. A phenylalanine hydroxylase gene from the nematode C. elegans is expressed in the hypodermis. J Neurogenet 1999; 13:157-80. [PMID: 10928216 DOI: 10.3109/01677069909083472] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have identified an aromatic amino acid hydroxylase gene from the nematode C. elegans that likely encodes the worm phenylalanine hydroxylase (PheH). The predicted amino acid sequence is most similar to that of other PheH and TrpH proteins. Reporter gene fusions and staining with an antibody to mammalian PheH indicate the gene is expressed in hypodermal cells. A fusion protein expressed in bacteria can convert phenylalanine to tyrosine, and, to a lesser extent, tryptophan to 5-hydroxytryptophan. We hypothesize that the protein is necessary to produce additional tyrosine for protein cross-linking in the nematode cuticle.
Collapse
Affiliation(s)
- C M Loer
- Department of Biology, University of San Diego, CA 92110, USA.
| | | | | |
Collapse
|
35
|
Flatmark T, Stevens RC. Structural Insight into the Aromatic Amino Acid Hydroxylases and Their Disease-Related Mutant Forms. Chem Rev 1999; 99:2137-2160. [PMID: 11849022 DOI: 10.1021/cr980450y] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Torgeir Flatmark
- Department of Molecular Biology, Institute for Childhood and Neglected Diseases, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | | |
Collapse
|
36
|
Lichter-Konecki U, Hipke CM, Konecki DS. Human phenylalanine hydroxylase gene expression in kidney and other nonhepatic tissues. Mol Genet Metab 1999; 67:308-16. [PMID: 10444341 DOI: 10.1006/mgme.1999.2880] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenylalanine hydroxylase (PAH) is the key enzyme in phenylalanine metabolism. PAH deficiency results in hyperphenylalaninemia, leading to severe mental retardation in the classical form of the disease, phenylketonuria (PKU). Previously the expression of PAH could only unambiguously be demonstrated in human liver, whereas in rodents PAH expression has been established in kidney and liver. Reports concerning PAH activity in other human or rodent tissues were severely questioned by subsequent investigations such that they did not gain general recognition. Conducting Northern blot analyses, we detected the PAH transcript in RNA isolated from human liver, kidney, pancreas, and brain. PAH gene expression in human kidney was subsequently investigated by RNase protection assay analyses, RNA in situ hybridization, immunohistochemistry, enzyme assay, and cDNA isolation. These experiments allowed the conclusive verification of a functional PAH enzyme in human kidney. The primary structure of the kidney transcript corresponded to the structure of the liver transcript. Human kidney PAH may play a significant role in phenylalanine homeostasis of the organism, as impaired phenylalanine hydroxylation has been observed in renal failure and differences in the regulation of the kidney versus the liver enzyme have been indicated. These results provide new aspects to research into the basis for the heterogeneity of hyperphenylalaninemia phenotypes and establish that the expression of the human PAH gene is not limited to the liver.
Collapse
Affiliation(s)
- U Lichter-Konecki
- Molecular and Cellular Biology Laboratory, Marshfield Medical Research and Education Foundation, Marshfield, Wisconsin 54449, USA
| | | | | |
Collapse
|
37
|
Nakashima A, Mori K, Suzuki T, Kurita H, Otani M, Nagatsu T, Ota A. Dopamine inhibition of human tyrosine hydroxylase type 1 is controlled by the specific portion in the N-terminus of the enzyme. J Neurochem 1999; 72:2145-53. [PMID: 10217296 DOI: 10.1046/j.1471-4159.1999.0722145.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tyrosine hydroxylase (TH), which converts L-tyrosine to L-DOPA, is a rate-limiting enzyme in the biosynthesis of catecholamines; its activity is regulated by feedback inhibition by catecholamine products including dopamine. To investigate the specific portion of the N-terminus of TH that determines the efficiency of dopamine inhibition, wild-type and N-terminal 35-, 38-, and 44-amino acid-deleted mutants (del-35, del-38, and del-44, respectively) of human TH type 1 were expressed as a maltose binding protein fusion in Escherichia coli and purified as a tetrameric form by affinity and size-exclusion chromatography. The fused-form wild-type enzyme possessed almost the same specific enzymatic activity as the previously reported recombinant nonfused form. Although maximum velocities of all N-terminus-deleted forms were about one-fourth of the wild-type value, there was no difference in Michaelis constants for L-tyrosine or (6R)-(L-erythro-1',2'-dihydroxypropyl)-2-amino-4-hydroxy-5,6,7,8-tetrahy dropteridine (6RBPH4) among the four enzymes. The iron contents incorporated into the three N-terminus-deleted mutants were significantly lower than that of wild type. However, there was no substantial difference in incorporated iron contents among the three mutants. The deletion of up to no less than 38 amino acid residues in the N-terminus made the enzyme more resistant to dopamine inhibition than the wild-type or del-35 TH form. Dopamine bound to the del-38 more than to the del-35 TH form. However, when incubation with dopamine was followed by further inhibition with the cofactor 6RBPH4 dopamine was expelled more readily from the del-38 than from the del-35 TH form. These observations suggest that the amino acid sequence Gly36-Arg37-Arg38 plays a key role in determining the competition between dopamine and 6RBPH4 and affects the efficiency of dopamine inhibition of the catalytic activity.
Collapse
Affiliation(s)
- A Nakashima
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Olafsdottir S, Martínez A. The accessibility of iron at the active site of recombinant human phenylalanine hydroxylase to water as studied by 1H NMR paramagnetic relaxation. Effect of L-Phe and comparison with the rat enzyme. J Biol Chem 1999; 274:6280-4. [PMID: 10037716 DOI: 10.1074/jbc.274.10.6280] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high-spin (S = 5/2) Fe(III) ion at the active site of recombinant human phenylalanine hydroxylase (PAH) has a paramagnetic effect on the longitudinal relaxation rate of water protons. This effect is proportional to the concentration of enzyme, with a paramagnetic molar-relaxivity value at 400 MHz and 25 degrees C of 1. 3 (+/- 0.03) x 10(3) s-1 M-1. The value of the Arrhenius activation energy (Ea) for the relaxation rate was -14.4 +/- 1.1 kJ/mol for the resting enzyme, indicating a fast exchange of water protons in the paramagnetic environment. The frequency dependence of the relaxation rate also supported this hypothesis. Thus, the recombinant human PAH appears to have a more solvent-accessible catalytic iron than the rat enzyme, in which the water coordinated to the metal is slowly exchanging with the solvent. These findings may be related to the level of basal activity before activation for these enzymes, which is higher for human than for rat PAH. In the presence of saturating (5 mM) concentrations of the substrate L-Phe, the paramagnetic molar relaxivity for human PAH decreased to 0.72 (+/- 0.05) x 10(3) s-1 M-1 with no significant change in the Ea. Effective correlation times (tauC) of 1.8 (+/- 0.3) x 10(-10) and 1.25 (+/- 0.2) x 10(-10) s-1 were calculated for the enzyme and the enzyme-substrate complex, respectively, and most likely represent the electron spin relaxation rate (tauS) for Fe(III) in each case. Together with the paramagnetic molar-relaxivity values, the tauC values were used to estimate Fe(III)-water distances. It seems that at least one of the three water molecules coordinated to the iron in the resting rat and human enzymes is displaced from coordination on the binding of L-Phe at the active site.
Collapse
Affiliation(s)
- S Olafsdottir
- Department of Biochemistry, University of Bergen, Arstadveien 19, 5009 Bergen, Norway
| | | |
Collapse
|
39
|
Abstract
The neurotransmitter serotonin has been implicated in numerous physiological functions and pathophysiological disorders. The hydroxylation of the aromatic amino acid tryptophan is rate-limiting in the synthesis of serotonin. Tryptophan hydroxylase (TPH), as the rate-limiting enzyme, determines the concentrations of serotonin in vivo. Relative serotonin concentrations are clearly important in neural transmission, but serotonin has also been reported to function as a local antioxidant. Identification of the mechanisms regulating TPH activity has been hindered by its low levels in tissues and the instability of the enzyme. Several TPH expression systems have been developed to circumvent these problems. In addition, eukaryotic expressions systems are currently being developed and represent a new avenue of research for identifying TPH regulatory mechanisms. Recombinant DNA technology has enabled the synthesis of TPH deletions, chimeras, and point mutations that have served as tools for identifying structural and functional domains within TPH. Notably, the experiments have proven long-held hypotheses that TPH is organized into N-terminal regulatory and C-terminal catalytic domains, that serine-58 is a site for PKA-mediated phosphorylation, and that a C-terminal leucine zipper is involved in formation of the tetrameric holoenzyme. Several new findings have also emerged regarding regulation of TPH activity by posttranslational phosphorylation, kinetic inhibition, and covalent modification. Inhibition of TPH by L-DOPA may have implications for depression in Parkinson's disease (PD) patients. In addition, TPH inactivation by nitric oxide may be involved in amphetamine-induced toxicity. These regulatory concepts, in conjunction with new systems for studying TPH activity, are the focus of this article.
Collapse
Affiliation(s)
- S M Mockus
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA
| | | |
Collapse
|
40
|
Chehin R, Thorolfsson M, Knappskog PM, Martinez A, Flatmark T, Arrondo JL, Muga A. Domain structure and stability of human phenylalanine hydroxylase inferred from infrared spectroscopy. FEBS Lett 1998; 422:225-30. [PMID: 9490012 DOI: 10.1016/s0014-5793(97)01596-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have studied the conformation and thermal stability of recombinant human phenylalanine hydroxylase (hPAH) and selected truncated forms, corresponding to distinct functional domains, by infrared spectroscopy. The secondary structure of wild-type hPAH was estimated to be 48% alpha-helix, 28% extended structures, 12% beta-turns and 12% non-structured conformations. The catalytic C-terminal domain (residues 112-452) holds most of the regular secondary structure elements, whereas the regulatory N-terminal domain (residues 2-110) adopts mainly an extended and disordered, flexible conformation. Thermal stability studies of the enzyme forms indicate the existence of interactions between the two domains. Our results also demonstrate that the conformational events involved in the activation of hPAH by its substrate (L-Phe) are mainly related to changes in the tertiary/quaternary structure. The activating effect of phosphorylation, however, affects the secondary structure of the N-terminal domain of the protein.
Collapse
Affiliation(s)
- R Chehin
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Knappskog PM, Martínez A. Effect of mutations at Cys237 on the activation state and activity of human phenylalanine hydroxylase. FEBS Lett 1997; 409:7-11. [PMID: 9199493 DOI: 10.1016/s0014-5793(97)00465-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Wild-type recombinant human phenylalanine hydroxylase (wt-hPAH) is activated about 1.5-fold by exposure to alkaline pH (pH 8.5-9.0). In order to study whereas this activation might be related to the activation of the rat enzyme by N-ethylamaleimide-modification of Cys237 [Gibbs and Benkovic (1991) Biochemistry 30, 67951, mutant proteins of hPAH with Cys237 changed to Ser (S) or Glu (D) have been prepared. The mutant forms have high specific activity at pH 7.0 and high affinity for L-Phe, notably for hPAH-C237D, which shows a 3-fold higher activity than L-Phe-activated wt-hPAH and it is not further activated by pre-incubation with L-Phe. Moreover, the emission maximum of the intrinsic fluorescence of hPAH-C237D (lambda(maxem) = 347 nm) resembles that of activated forms of wt-hPAH. However, the activity of this mutant at neutral pH is further activated by exposure to alkaline pH, indicating that activation of wt-hPAH by alkaline pH is not restricted to ionization of Cys237.
Collapse
Affiliation(s)
- P M Knappskog
- Department of Biochemistry and Molecular Biology, University of Bergen, Haukeland Hospital, Norway
| | | |
Collapse
|
42
|
Kobe B, Jennings IG, House CM, Feil SC, Michell BJ, Tiganis T, Parker MW, Cotton RG, Kemp BE. Regulation and crystallization of phosphorylated and dephosphorylated forms of truncated dimeric phenylalanine hydroxylase. Protein Sci 1997; 6:1352-7. [PMID: 9194198 PMCID: PMC2143721 DOI: 10.1002/pro.5560060626] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phenylalanine hydroxylase is regulated in a complex manner, including activation by phosphorylation. It is normally found as an equilibrium of dimeric and tetrameric species, with the tetramer thought to be the active form. We converted the protein to the dimeric form by deleting the C-terminal 24 residues and show that the truncated protein remains active and regulated by phosphorylation. This indicates that changes in the tetrameric quaternary structure of phenylalanine hydroxylase are not required for enzyme activation. Truncation also facilitates crystallization of both phosphorylated and dephosphorylated forms of the enzyme.
Collapse
Affiliation(s)
- B Kobe
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Knappskog PM, Flatmark T, Aarden JM, Haavik J, Martínez A. Structure/function relationships in human phenylalanine hydroxylase. Effect of terminal deletions on the oligomerization, activation and cooperativity of substrate binding to the enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:813-21. [PMID: 9022714 DOI: 10.1111/j.1432-1033.1996.0813r.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amino-terminal and carboxy-terminal deletion mutagenesis have been used to identify structurally and functionally critical regions of recombinant wild-type human phenylalanine hydroxylase (wt-hPAH; Ser2-Lys452). The wild-type form consisted of dimeric and tetrameric forms in equilibrium, and only the isolated tetrameric form showed positive cooperativity of substrate (L-Phe) binding (Hill coefficient h = 2.2, S0.5 = 154 microM). The deletion mutants lacking the carboxy-terminal 24 amino acids hPAH (Ser2-Gln428) and hPAH(Gly103-Gln428) formed catalytically active dimers, and incubation with L-Phe did not promote the formation of tetramers, a characteristic property of dimeric wt-hPAH. The carboxyterminus thus seems to contain a motif required for dimer-dimer interaction in wt-hPAH. The deletion mutants hPAH(Asp112-Lys452), hPAH(Ser2-Gln428) and hPAH(Gly103-Gln428) were all activated by prior incubation with L-Phe, but did not reveal any positive cooperativity of substrate binding (h = 1.0). The activation by L-Phe was accompanied by a measurable conformational change (as probed by intrinsic fluorescence spectroscopy) only in the enzyme forms containing the amino-terminal sequence. i.e. wt-hPAH and the Ser2-Gln428 mutant. The amino-terminal deletion mutants hPAH(Asp112-Lys452) and hPAH(Gly103-Gln428) revealed high specific activity, increased apparent affinity for L-Phe (S0.5 = 60 microM) and a tryptophan fluorescence emission spectrum similar to that of the L-Phe-activated wt-hPAH. Moreover, prior incubation of the enzyme forms with lysophosphatidylcholine, a commonly used activator of the PAH, only increased the activity of those forms containing the wt-hPAH amino-terminal sequence. Our results are compatible with a model in which incubation of wt-hPAH with L-Phe induces both a conformational change (with cooperativity in the tetrameric enzyme) which relieves the inhibition imposed by the amino-terminal domain to the high-affinity binding of L-Phe, and an additional activation, as observed for the truncated forms lacking the amino-terminal.
Collapse
Affiliation(s)
- P M Knappskog
- Department of Biochemistry and Molecular Biology, University of Bergen, Norway
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- T. Joseph Kappock
- Department of Chemistry, Yale University, P.O. Box 208107 New Haven, Connecticut 06520-8107
| | | |
Collapse
|
45
|
Døskeland AP, Flatmark T. Recombinant human phenylalanine hydroxylase is a substrate for the ubiquitin-conjugating enzyme system. Biochem J 1996; 319 ( Pt 3):941-5. [PMID: 8921003 PMCID: PMC1217879 DOI: 10.1042/bj3190941] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian phenylalanine hydroxylase (PAH) catalyses the conversion of L-phenylalanine to L-tyrosine in the presence of dioxygen and tetrahydrobiopterin; it is a highly regulated enzyme. Little is known about the rates of synthesis and degradation of PAH in vivo. The enzyme has been reported to have a half-life of approx. 2 days in rat liver and 7-8 h in rat hepatoma cells, but the mechanism of its degradation is not known. In the present study it is shown that the tetrameric form of the recombinant wild-type human enzyme is a substrate for the ubiquitin-conjugating enzyme system in the cytosolic fraction of rat testis. Our findings support the conclusion that multi-/poly-ubiquitination of human PAH plays a key role in the turnover of this cytosolic liver enzyme and provides a mechanism for the increased turnover observed for a number of recombinant mutant forms of the enzyme related to the metabolic disorder phenylketonuria, when expressed in eukaryotic cells.
Collapse
Affiliation(s)
- A P Døskeland
- Department of Biochemistry and Molecular Biology, University of Bergen, Norway
| | | |
Collapse
|