1
|
Edwards K, Corocher T, Hersusianto Y, Campbell D, Subbarao K, Neil JA, Monagle P, Ho P. Heparin-mediated PCR interference in SARS-CoV-2 assays and subsequent reversal with heparinase I. J Virol Methods 2024; 327:114944. [PMID: 38649069 DOI: 10.1016/j.jviromet.2024.114944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Heparin is postulated to block the interaction of SARS-CoV-2 with highly glycosylated proteins which are critical for binding the angiotensin-converting enzyme 2 (ACE2), an essential mechanism for host-cell entry and viral replication. Intranasal heparin is under investigation for use as a SARS-CoV-2 preventative in the IntraNasal Heparin Trial (INHERIT, NCT05204550). Heparin directly interferes with real-time quantitative polymerase chain reaction (RT-qPCR), the gold standard for SARS-CoV-2 detection. This study aimed to investigate the magnitude of heparin interference across various clinical laboratory testing platforms, and the reversal of any interference by degradation of heparin using the heparinase I enzyme in nasopharyngeal swab (NP) samples for SARS-CoV-2 analysis by RT-qPCR. Heparin-mediated PCR interference was evident at heparin concentrations as low as 10 IU/mL across all platforms tested, with the exclusion of the Hologic Panther Aptima SARS-CoV-2 assay. Rates of false negative or invalid results increased with increasing heparin concentrations on all platforms, except the Hologic Panther Aptima and Roche Cobas LIAT. Heparinase I reversed heparin-mediated PCR inhibition across in all samples tested, except those with initial Ct values >35. Our study shows that the use of heparin-containing nasal sprays interferes with the detection of SARS-CoV-2 in NP swab samples by RT-qPCR, a phenomenon that is not well recognised in the literature. Furthermore, this study has also demonstrated that heparin-mediated PCR inhibition can be prevented through heparinase I treatment, demonstrating restoration of clinically significant results with Ct values <35.
Collapse
Affiliation(s)
- K Edwards
- Northern Pathology Victoria, Northern Health, Epping, VIC, Australia; NorthErn Clinical diagnostics and ThrombovAscular Research (NECTAR) Centre, Northern Health, Epping, VIC, Australia.
| | - T Corocher
- Northern Pathology Victoria, Northern Health, Epping, VIC, Australia; NorthErn Clinical diagnostics and ThrombovAscular Research (NECTAR) Centre, Northern Health, Epping, VIC, Australia; Infectious Diseases, Northern Health, Epping, VIC, Australia
| | - Y Hersusianto
- Northern Pathology Victoria, Northern Health, Epping, VIC, Australia; Infectious Diseases, Northern Health, Epping, VIC, Australia
| | - D Campbell
- Hospital without Walls, Northern Health, Epping, VIC, Australia; Department of Medicine - Southern Clinical School, Monash University, Clayton, VIC, Australia
| | - K Subbarao
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Vic, Australia
| | - J A Neil
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - P Monagle
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Haematology, Royal Children's Hospital, Parkville, VIC, Australia; Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - P Ho
- Northern Pathology Victoria, Northern Health, Epping, VIC, Australia; NorthErn Clinical diagnostics and ThrombovAscular Research (NECTAR) Centre, Northern Health, Epping, VIC, Australia; Department of Medicine - Northern Health, University of Melbourne, Epping, VIC, Australia
| |
Collapse
|
2
|
Pei JL, Wei W, Wang DR, Liu CY, Zhou HP, Xu CL, Zhang YW. Cloning, Expression, and Characterization of a Highly Stable Heparinase I from Bacteroides xylanisolvens. Polymers (Basel) 2023; 15:polym15071776. [PMID: 37050390 PMCID: PMC10097318 DOI: 10.3390/polym15071776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Heparinase I (Hep I), which specifically degrades heparin to oligosaccharide or unsaturated disaccharide, has an important role in the production of low molecular weight heparin (LMWH). However, low productivity and stability of heparinase I hinders its applications. Here, a novel heparinase I (BxHep-I) was cloned from Bacteroides xylanisolvens and overexpressed in soluble form in Escherichia coli. The expression conditions of BxHep-I were optimized for an activity of 7144 U/L. BxHep-I had a specific activity of 57.6 U/mg at the optimal temperature and pH of 30 °C and pH 7.5, with the Km and Vmax of 0.79 mg/mL and 124.58 U/mg, respectively. BxHep-I catalytic activity could be enhanced by Ca2+ and Mg2+, while strongly inhibited by Zn2+ and Co2+. Purified BxHep-I displayed an outstanding thermostability with half-lives of 597 and 158 min at 30 and 37 °C, respectively, which are the highest half-lives ever reported for heparinases I. After storage at 4 °C for one week, BxHep-I retained 73% of its initial activity. Molecular docking revealed that the amino acids Asn25, Gln27, Arg88, Lys116, His156, Arg161, Gln228, Tyr356, Lys358, and Tyr362 form 13 hydrogen bonds with the substrate heparin disaccharides in the substrate binding domain and are mainly involved in the substrate binding of BxHep-I. These results suggest that the BxHep-I with high stability could be a candidate catalyst for the industrial production of LMWH.
Collapse
Affiliation(s)
- Jia-Lu Pei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Wei Wei
- Zhongshiduqing Biotechnology Co., Ltd., Heze 274100, China
| | - Ding-Ran Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Cai-Yun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hua-Ping Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Chen-Lu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Production, characteristics and applications of microbial heparinases. Biochimie 2022; 198:109-140. [DOI: 10.1016/j.biochi.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
|
4
|
Clark GT, Yu Y, Urban CA, Fu G, Wang C, Zhang F, Linhardt RJ, Hurley JM. Circadian control of heparan sulfate levels times phagocytosis of amyloid beta aggregates. PLoS Genet 2022; 18:e1009994. [PMID: 35143487 PMCID: PMC8830681 DOI: 10.1371/journal.pgen.1009994] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's Disease (AD) is a neuroinflammatory disease characterized partly by the inability to clear, and subsequent build-up, of amyloid-beta (Aβ). AD has a bi-directional relationship with circadian disruption (CD) with sleep disturbances starting years before disease onset. However, the molecular mechanism underlying the relationship of CD and AD has not been elucidated. Myeloid-based phagocytosis, a key component in the metabolism of Aβ, is circadianly-regulated, presenting a potential link between CD and AD. In this work, we revealed that the phagocytosis of Aβ42 undergoes a daily circadian oscillation. We found the circadian timing of global heparan sulfate proteoglycan (HSPG) biosynthesis was the molecular timer for the clock-controlled phagocytosis of Aβ and that both HSPG binding and aggregation may play a role in this oscillation. These data highlight that circadian regulation in immune cells may play a role in the intricate relationship between the circadian clock and AD.
Collapse
Affiliation(s)
- Gretchen T. Clark
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
| | - Yanlei Yu
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
| | - Cooper A. Urban
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
| | - Guo Fu
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Now at the Innovation and Integration Center of New Laser Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chunyu Wang
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemical and Biological Engineering, Troy, New York, United States of America
| | - Robert J. Linhardt
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemical and Biological Engineering, Troy, New York, United States of America
| | - Jennifer M. Hurley
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| |
Collapse
|
5
|
Shriver Z, Sasisekharan R. Capillary Electrophoretic Analysis of Isolated Sulfated Polysaccharides to Characterize Pharmaceutical Products. Methods Mol Biol 2021; 2303:329-339. [PMID: 34626391 DOI: 10.1007/978-1-0716-1398-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Capillary electrophoresis is a powerful methodology for quantification and structural characterization of highly anionic polysaccharides. Separation of saccharides under conditions of electrophoretic flow, typically achieved under low pH (Ampofo et al., Anal Biochem 199: 249-255, 1991; Rhomberg et al., Proc Natl Acad Sci U S A 95: 4176-4181, 1998) is charge-based. Resolution of components is often superior to flow-based techniques, such as liquid chromatography. During the heparin contamination crisis, capillary electrophoresis was one of the key methodologies used to identify whether or not heparin lots were contaminated (Guerrini et al., Nat Biotechnol 26: 669-675, 2008; Ye et al., J Pharm Biomed Anal 85: 99-107, 2013; Volpi et al., Electrophoresis 33: 1531-1537, 2012).Here we describe a method for the isolation of sulfated heparin/heparan sulfate saccharides from urine, their digestion by deployment of heparinase enzymes (Ernst et al., Crit Rev Biochem Mol Biol 30: 387-444, 1995) resolution of species through use of orthogonal digestions, and analysis of the resulting disaccharides by capillary electrophoresis.
Collapse
Affiliation(s)
- Zachary Shriver
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ram Sasisekharan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Gao LW, Zhu HT, Liu CY, Lv ZX, Fan XM, Zhang YW. A highly active heparinase I from Bacteroides cellulosilyticus: Cloning, high level expression, and molecular characterization. PLoS One 2020; 15:e0240920. [PMID: 33079966 PMCID: PMC7575093 DOI: 10.1371/journal.pone.0240920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
As one of the most extensively studied glycosaminoglycan lyases, heparinase I has been used in producing low or ultra-low molecular weight heparin. Its' important applications are to neutralize the heparin in human blood and analyze heparin structure in the clinic. However, the low productivity and activity of the enzyme have greatly hindered its applications. In this study, a novel Hep-I from Bacteroides cellulosilyticus (BcHep-I) was successfully cloned and heterologously expressed in E. coli BL21 (DE3) as a soluble protein. The molecular mass and isoelectric point (pI) of the enzyme are 44.42 kDa and 9.02, respectively. And the characterization of BcHep-I after purified with Ni-NTA affinity chromatography suggested that it is a mesophilic enzyme. BcHep-I can be activated by 1 mM Ca2+, Mg2+, and Mn2+, while severely inhibited by Zn2+, Co2+, and EDTA. The specific activity of the enzyme was 738.3 U·mg-1 which is the highest activity ever reported. The Km and Vmax were calculated as 0.17 mg·mL-1 and 740.58 U·mg-1, respectively. Besides, the half-life of 300 min at 30°C showed BcHep-I has practical applications. Homology modeling and substrate docking revealed that Gln15, Lys74, Arg76, Lys104, Arg149, Gln208, Tyr336, Tyr342, and Lys338 were mainly involved in the substrate binding of Hep-I, and 11 hydrogen bonds were formed between heparin and the enzyme. These results indicated that BcHep-I with high activity has great potential applications in the industrial production of heparin, especially in the clinic to neutralize heparin.
Collapse
Affiliation(s)
- Li-Wei Gao
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, China
| | - Hong-Tao Zhu
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, China
| | - Cai-Yun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Zhi-Xiang Lv
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, China
| | - Xiao-Man Fan
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
- * E-mail:
| |
Collapse
|
7
|
Liu CY, Su WB, Guo LB, Zhang YW. Cloning, expression, and characterization of a novel heparinase I from Bacteroides eggerthii. Prep Biochem Biotechnol 2020; 50:477-485. [PMID: 31900079 DOI: 10.1080/10826068.2019.1709977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Heparinase I (Hep I) specifically degrades heparin to oligosaccharide or unsaturated disaccharide and has been widely used in preparation of low molecular weight heparin (LMWH). In this work, a novel Hep I from Bacteroides eggerthii VPI T5-42B-1 was cloned and overexpressed in Escherichia coli BL21 (DE3). The enzyme has specific activity of 480 IU·mg-1 at the optimal temperature and pH of 30 °C and pH 7.5, and the Km and Vmax were 3.6 mg·mL-1 and 647.93 U·mg-1, respectively. The Hep I has good stability with t1/2 values of 350 and 60 min at 30 and 37 °C, respectively. And it showed a residual relative activity of 70.8% after 21 days incubation at 4 °C. Substrate docking study revealed that Lys99, Arg101, Gln241, Lys270, Asn275, and Lys292 were mainly involved in the substrate binding of Hep I. The shorter hydrogen bonds formed between heparin and these residues suggested the higher specific activity of BeHep I. And the minimum conformational entropy value of 756 J·K-1 provides an evidence for the improved stability of this enzyme. This Hep I could be of interest in the industrial preparation of LMWH for its high specific activity and good stability.
Collapse
Affiliation(s)
- Cai-Yun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Wen-Bin Su
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Li-Bin Guo
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
8
|
Zhang C, Tang F, Zhang J, Cao J, Li H, Liu C. Uncovering the detailed mode of cleavage of heparinase I toward structurally defined heparin oligosaccharides. Int J Biol Macromol 2019; 141:756-764. [PMID: 31479666 DOI: 10.1016/j.ijbiomac.2019.08.260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
For a more insightful investigation into the specificity of bacterial heparinase I, a series of structurally well-defined heparin oligosaccharides was synthesized using a highly efficient chemoenzymatic strategy. Apart from the primary cleavage site, five glycosidic linkages of oligosaccharides with varying modifications to obtain secondary cleavage sites were degraded by a high concentration of heparinase I. The reactivity of linkages toward heparinase I was not entirely dependent on the 2-O-sulfated iduronic acid being cleaved or the neighboring 6-O-sulfated glucosamine residues, but it was dependent on higher degrees of sulfation of oligosaccharides and indispensable N-substituted glucosamine adjacent to the cleavable linkage. Moreover, the enzyme demonstrated less preferential cleavage toward glycosidic linkages containing glucuronic acid than those containing iduronic acid of the counterpart oligosaccharides. Biolayer interferometry revealed differences in reactivity that are not completely consistent with different affinities of substrates to enzyme. Our study presented accurate information on the cleavage promiscuity of heparinase I that is crucial for heparin depolymerization.
Collapse
Affiliation(s)
- Chengying Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China
| | - Fengyan Tang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China
| | - Jingjing Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China
| | - Jichao Cao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China
| | - Huijuan Li
- Department of Bioengineering, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China
| | - Chunhui Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China; National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, PR China.
| |
Collapse
|
9
|
Zhang C, Yang BC, Liu WT, Li ZY, Song YJ, Zhang TC, Luo XG. Structure-based engineering of heparinase I with improved specific activity for degrading heparin. BMC Biotechnol 2019; 19:59. [PMID: 31399136 PMCID: PMC6688311 DOI: 10.1186/s12896-019-0553-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/31/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Heparinase I from Pedobacter heparinus (Ph-HepI), which specifically cleaves heparin and heparan sulfate, is one of the most extensively studied glycosaminoglycan lyases. Enzymatic degradation of heparin by heparin lyases not only largely facilitates heparin structural analysis but also showed great potential to produce low-molecular-weight heparin (LMWH) in an environmentally friendly way. However, industrial applications of Ph-HepI have been limited by their poor yield and enzyme activity. In this work, we improve the specific enzyme activity of Ph-HepI based on homology modeling, multiple sequence alignment, molecular docking and site-directed mutagenesis. RESULTS Three mutations (S169D, A259D, S169D/A259D) exhibited a 50.18, 40.43, and 122.05% increase in the specific enzyme activity and a 91.67, 108.33, and 75% increase in the yield, respectively. The catalytic efficiencies (kcat/Km) of the mutanted enzymes S169D, A259D, and S169D/A259D were higher than those of the wild-type enzyme by 275, 164, and 406%, respectively. Mass spectrometry and activity detection showed the enzyme degradation products were in line with the standards of the European Pharmacopoeia. Protein structure analysis showed that hydrogen bonds and ionic bonds were important factors for improving specific enzyme activity and yield. CONCLUSIONS We found that the mutant S169D/A259D had more industrial application value than the wild-type enzyme due to molecular modifications. Our results provide a new strategy to increase the catalytic efficiency of other heparinases.
Collapse
Affiliation(s)
- Chuan Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China
| | - Bao-Cheng Yang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China
| | - Wen-Ting Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China
| | - Zhong-Yuan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China
| | - Ya-Jian Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China. .,State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China.
| |
Collapse
|
10
|
Gupta R, Ponnusamy MP. Analysis of sulfates on low molecular weight heparin using mass spectrometry: structural characterization of enoxaparin. Expert Rev Proteomics 2018; 15:503-513. [PMID: 29782806 PMCID: PMC10134193 DOI: 10.1080/14789450.2018.1480110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Structural characterization of low molecular weight heparin (LMWH) is critical to meet biosimilarity standards. In this context, the review focuses on structural analysis of labile sulfates attached to the side-groups of LMWH using mass spectrometry. A comprehensive review of this topic will help readers to identify key strategies for tackling the problem related to sulfate loss. At the same time, various mass spectrometry techniques are presented to facilitate compositional analysis of LMWH, mainly enoxaparin. Areas covered: This review summarizes findings on mass spectrometry application for LMWH, including modulation of sulfates, using enzymology and sample preparation approaches. Furthermore, popular open-source software packages for automated spectral data interpretation are also discussed. Successful use of LC/MS can decipher structural composition for LMWH and help evaluate their sameness or biosimilarity with the innovator molecule. Overall, the literature has been searched using PubMed by typing various search queries such as 'enoxaparin', 'mass spectrometry', 'low molecular weight heparin', 'structural characterization', etc. Expert commentary: This section highlights clinically relevant areas that need improvement to achieve satisfactory commercialization of LMWHs. It also primarily emphasizes the advancements in instrumentation related to mass spectrometry, and discusses building automated software for data interpretation and analysis.
Collapse
Affiliation(s)
- Rohitesh Gupta
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , Nebraska , USA
| | - Moorthy P Ponnusamy
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , Nebraska , USA.,b Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center , University of Nebraska Medical Center , Omaha , Nebraska , USA
| |
Collapse
|
11
|
Abstract
Heparin and heparan sulfate glycosaminoglycans are long, linear polysaccharides that are made up of alternating dissacharide sequences of sulfated uronic acid and amino sugars. Unlike heparin, which is only found in mast cells, heparan sulfate is ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These negatively-charged glycans play essential roles in important cellular functions such as cell growth, adhesion, angiogenesis, and blood coagulation. These biomolecules are also involved in pathophysiological conditions such as pathogen infection and human disease. This review discusses past and current methods for targeting these complex biomolecules as a novel therapeutic strategy to treating disorders such as cancer, neurodegenerative diseases, and infection.
Collapse
Affiliation(s)
- Ryan J Weiss
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
12
|
Heparin depolymerization by immobilized heparinase: A review. Int J Biol Macromol 2017; 99:721-730. [DOI: 10.1016/j.ijbiomac.2017.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/19/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022]
|
13
|
Yu P, Jia T, Chen Y, Wu Y, Zhang Y. Improving the activity of heparinase I by the directed evolution, its enzymatic properties and optimal conditions for heparin degrading by recombinant cells. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Shriver Z, Sasisekharan R. Capillary electrophoretic analysis of isolated sulfated polysaccharides to characterize pharmaceutical products. Methods Mol Biol 2015; 1229:161-71. [PMID: 25325952 PMCID: PMC5460761 DOI: 10.1007/978-1-4939-1714-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Capillary electrophoresis is a powerful methodology for quantification and structural characterization of highly anionic polysaccharides. Separation of saccharides under conditions of electrophoretic flow, typically achieved under low pH (Ampofo et al., Anal Biochem 199:249-255, 1991; Rhomberg et al., Proc Natl Acad Sci U S A 95:4176-4181, 1998), is charge-based. Resolution of components is often superior to flow-based techniques, such as liquid chromatography. During the heparin contamination crisis, capillary electrophoresis was one of the key methodologies used to identify whether or not heparin lots were contaminated (Guerrini et al., Nat Biotechnol 26:669-675, 2008). Here we describe a method for isolation of sulfated heparin/heparan sulfate saccharides from urine, their digestion by deployment of heparinase enzymes (Ernst et al., Crit Rev Biochem Mol Biol 30:387-444, 1995), resolution of species through use of orthogonal digestions, and analysis of the resulting disaccharides by capillary electrophoresis.
Collapse
Affiliation(s)
- Z Shriver
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - R Sasisekharan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
15
|
Wu J, Zhou L, Zhang H, Guo J, Mei X, Zhang C, Yuan J, Xing XH. Direct affinity immobilization of recombinant heparinase I fused to maltose binding protein on maltose-coated magnetic nanoparticles. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Yu P, Wu Y. Expression of the heparinase gene from Flavobacterium heparinum in Escherichia coli and its enzymatic properties. Carbohydr Polym 2012; 90:348-52. [DOI: 10.1016/j.carbpol.2012.05.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
17
|
Hyun YJ, Jung IH, Kim DH. Expression of heparinase I of Bacteroides stercoris HJ-15 and its degradation tendency toward heparin-like glycosaminoglycans. Carbohydr Res 2012; 359:37-43. [PMID: 22925762 DOI: 10.1016/j.carres.2012.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/22/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
Abstract
Recombinant heparinase I was cloned from Bacteroides stercoris HJ-15 (BSrhepI), overexpressed in Escherichia coli, and intensively characterized. The complete gene of BSrhepI was identified by Southern blotting, and was overexpressed as an inclusion body. The inclusion body was solubilized with 4 M guanidine-HCl, and the denatured BSrhepI was easily purified using Ni(2+)-affinity column chromatography. The purified but denatured enzyme was then successfully refolded by dialysis against 50 mM Tris-HCl (pH 7.0) containing 1mM DTT and CaCl(2). BSrhepI was most active in 50mM Tris-HCl buffer containing 300 mM NaCl, 10 mM CaCl(2), and 1 mM DTT (pH 7.0) at 37°C. This enzyme digested not only heparin, but also heparan sulfate. Through comparative HPLC-analysis of each degraded product of heparin and heparan sulfate by digestion with BSrhepI or flavobacterial heparinase I, we verified that BSrhepI has a broader spectrum of substrate specificities than other reported heparinases.
Collapse
Affiliation(s)
- Yang-Jin Hyun
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-ku, Seoul 130-701, Republic of Korea
| | | | | |
Collapse
|
18
|
Combination of site-directed mutagenesis and calcium ion addition for enhanced production of thermostable MBP-fused heparinase I in recombinant Escherichia coli. Appl Microbiol Biotechnol 2012; 97:2907-16. [PMID: 22588503 DOI: 10.1007/s00253-012-4145-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/13/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Heparinase I (HepI), which specifically cleaves heparin and heparan sulfate, is one of the most extensively studied glycosaminoglycan lyases. Low productivity of HepI has largely hindered its industrial and pharmaceutical applications. Loss of bacterial HepI enzyme activity through poor thermostability during its expression and purification process in production can be an important issue. In this study, using a thermostabilization strategy combining site-directed mutagenesis and calcium ion addition during its production markedly improved the yield of maltose-binding protein-fused HepI (MBP-HepI) from recombinant Escherichia coli. Substitution of Cys297 to serine in MBP-HepI offered a 30.6% increase in the recovered total enzyme activity due to a mutation-induced thermostabilizing effect. Furthermore, upon addition of Ca2+ as a stabilizer at optimized concentrations throughout its expression, extraction, and purification process, purified mutant MBP-HepI showed a specific activity of 56.3 IU/mg, 206% higher than that of the wild type obtained without Ca2+ addition, along with a 177% increase in the recovered total enzyme activity. The enzyme obtained through this novel approach also exhibited significantly enhanced thermostability, as indicated by both experimental data and the kinetic modeling. High-yield production of thermostable MBP-HepI using the present system will facilitate its applications in laboratory-scale heparin analysis as well as industrial-scale production of low molecular weight heparin as an improved anticoagulant substitute.
Collapse
|
19
|
Huang J, Cao L, Guo W, Yuan R, Jia Z, Huang K. Enhanced soluble expression of recombinant Flavobacterium heparinum heparinase I in Escherichia coli by fusing it with various soluble partners. Protein Expr Purif 2012; 83:169-76. [PMID: 22503820 DOI: 10.1016/j.pep.2012.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/01/2022]
Abstract
Heparinase I (HepA) was originally isolated from Flavobacterium heparinum (F. heparinum) and specifically cleaves heparin/heparan sulfate in a site-dependent manner, showing great promise for producing low molecular weight heparin (LMWH). However, expressing recombinant HepA is extremely difficult in Escherichia coli because it suffers from low yields, insufficient purity and insolubility. In this paper, we systematically cloned and fused the HepA gene to the C-terminus of five soluble partners, including translation initiation factor 2 domain I (IF2), glutathione S-transferase (GST), maltose-binding protein (MBP), small ubiquitin modifying protein (SUMO) and N-utilization substance A (NusA), to screen for their abilities to improve the solubility of recombinant HepA when expressed in E. coli. A convenient two-step immobilized metal affinity chromatography (IMAC) method was utilized to purify these fused HepA hybrids. We show that, except for NusA, the fusion partners dramatically improved the soluble expression of recombinant HepA, with IF2-HepA and SUMO-HepA creating almost completely soluble HepA (98% and 94% of expressed HepA fusions are soluble, respectively), which is the highest yield rate published to the best of our knowledge. Moreover, all of the fusion proteins show comparable biological activity to their unfused counterparts and could be used directly without removing the fusion tags. Together, our results provide a viable option to produce large amounts of soluble and active recombinant HepA for manufacturing.
Collapse
Affiliation(s)
- Jing Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | |
Collapse
|
20
|
Zhou L, Wu J, Zhang H, Kang Y, Guo J, Zhang C, Yuan J, Xing X. Magnetic nanoparticles for the affinity adsorption of maltose binding protein (MBP) fusion enzymes. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16778f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Aich U, Shriver Z, Tharakaraman K, Raman R, Sasisekharan R. Competitive inhibition of heparinase by persulfonated glycosaminoglycans: a tool to detect heparin contamination. Anal Chem 2011; 83:7815-22. [PMID: 21863856 DOI: 10.1021/ac201498a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heparin and the low molecular weight heparins are extensively used as medicinal products to prevent and treat the formation of venous and arterial thrombi. In early 2008, administration of some heparin lots was associated with the advent of severe adverse effects, indicative of an anaphylactoid-like response. Application of orthogonal analytical tools enabled detection and identification of the contaminant as oversulfated chondroitin sulfate (OSCS) was reported in our earlier report. Herein, we investigate whether enzymatic depolymerization using the bacterially derived heparinases, given the structural understanding of their substrate specificity, can be used to identify the presence of OSCS in heparin. We also extend this analysis to examine the effect of other persulfonated glycosaminoglycans (GAGs) on the action of the heparinases. We find that all persulfonated GAGs examined were effective inhibitors of heparinase I, with IC(50) values ranging from approximately 0.5-2 μg/mL. Finally, using this biochemical understanding, we develop a rapid, simple assay to assess the purity of heparin using heparinase digestion followed by size-exclusion HPLC analysis to identify and quantify digestion products. In the context of the assay, we demonstrate that less than 0.1% (w/w) of OSCS (and other persulfonated polysaccharides) can routinely be detected in heparin.
Collapse
Affiliation(s)
- Udayanath Aich
- Harvard-MIT Division of Health Sciences and Technology, the Koch Institute for Integrative, Cancer Research and the Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
22
|
Chen S, Ye F, Chen Y, Chen Y, Zhao H, Yatsunami R, Nakamura S, Arisaka F, Xing XH. Biochemical analysis and kinetic modeling of the thermal inactivation of MBP-fused heparinase I: Implications for a comprehensive thermostabilization strategy. Biotechnol Bioeng 2011; 108:1841-51. [DOI: 10.1002/bit.23144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/07/2011] [Accepted: 03/14/2011] [Indexed: 11/12/2022]
|
23
|
Huang YC, Hsu SH, Chen MT, Hsieh CH, Kuo WC, Cheng H, Huang YY. Controlled release of chondroitinase ABC in chitosan-based scaffolds and PDLLA microspheres. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Ernst S, Garro OA, Winkler S, Venkataraman G, Langer R, Cooney CL, Sasisekharan R. Process simulation for recombinant protein production: cost estimation and sensitivity analysis for heparinase I expressed in Escherichia coli. Biotechnol Bioeng 2009; 53:575-82. [PMID: 18634058 DOI: 10.1002/(sici)1097-0290(19970320)53:6<575::aid-bit5>3.0.co;2-j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heparinase I from flavobacterium heparinum has several potential clinical applications; the resulting high demands on protein purity and quantity can be met by recombinant expression in Escherichia coli. Based on laboratory scale experiments with insoluble heparinase I expression followed by renaturation, a process for production of 3 kg/year of heparinase I was designed. We present a comparative analysis of the production costs of soluble and insoluble heparinase I expression, as well as a generalized approach to sensitivity analysis, based on perturbation around a base case design scenario. This may assist focusing further development on process steps for which improvements both are feasible and result in significant cost saving.
Collapse
Affiliation(s)
- S Ernst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Myette JR, Soundararajan V, Shriver Z, Raman R, Sasisekharan R. Heparin/heparan sulfate 6-O-sulfatase from Flavobacterium heparinum: integrated structural and biochemical investigation of enzyme active site and substrate specificity. J Biol Chem 2009; 284:35177-88. [PMID: 19726671 DOI: 10.1074/jbc.m109.053801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.
Collapse
Affiliation(s)
- James R Myette
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
26
|
Myette JR, Soundararajan V, Behr J, Shriver Z, Raman R, Sasisekharan R. Heparin/heparan sulfate N-sulfamidase from Flavobacterium heparinum: structural and biochemical investigation of catalytic nitrogen-sulfur bond cleavage. J Biol Chem 2009; 284:35189-200. [PMID: 19726673 DOI: 10.1074/jbc.m109.053835] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfated polysaccharides such as heparin and heparan sulfate glycosaminoglycans (HSGAGs) are chemically and structurally heterogeneous biopolymers that that function as key regulators of numerous biological functions. The elucidation of HSGAG fine structure is fundamental to understanding their functional diversity, and this is facilitated by the use of select degrading enzymes of defined substrate specificity. Our previous studies have reported the cloning, characterization, recombinant expression, and structure-function analysis in Escherichia coli of the Flavobacterium heparinum 2-O-sulfatase and 6-O-sulfatase enzymes that cleave O-sulfate groups from specific locations of the HSGAG polymer. Building on these preceding studies, we report here the molecular cloning and recombinant expression in Escherichia coli of an N-sulfamidase, specific for HSGAGs. In addition, we examine the basic enzymology of this enzyme through molecular modeling studies and structure-function analysis of substrate specificity and basic biochemistry. We use the results from these studies to propose a novel mechanism for nitrogen-sulfur bond cleavage by the N-sulfamidase. Taken together, our structural and biochemical studies indicate that N-sulfamidase is a predominantly exolytic enzyme that specifically acts on N-sulfated and 6-O-desulfated glucosamines present as monosaccharides or at the nonreducing end of odd-numbered oligosaccharide substrates. In conjunction with the previously reported specificities for the F. heparinum 2-O-sulfatase, 6-O-sulfatase, and unsaturated glucuronyl hydrolase, we are able to now reconstruct in vitro the defined exolytic sequence for the heparin and heparan sulfate degradation pathway of F. heparinum and apply these enzymes in tandem toward the exo-sequencing of heparin-derived oligosaccharides.
Collapse
Affiliation(s)
- James R Myette
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
27
|
Michaud P, Da Costa A, Courtois B, Courtois J. Polysaccharide Lyases: Recent Developments as Biotechnological Tools. Crit Rev Biotechnol 2008; 23:233-66. [PMID: 15224891 DOI: 10.1080/07388550390447043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polysaccharide lyases, which are polysaccharide cleavage enzymes, act mainly on anionic polysaccharides. Produced by prokaryote and eukaryote organisms, these enzymes degrade (1,4) glycosidic bond by a beta elimination mechanism and have unsaturated oligosaccharides as major products. New polysaccharides are cleaved only by their specific polysaccharide lyases. From anionic polysaccharides controlled degradations, various biotechnological applications were investigated. This review catalogues the degradation of bacterial, plant and animal polysaccharides (neutral and anionic) by this family of carbohydrate acting enzymes.
Collapse
Affiliation(s)
- P Michaud
- Laboratoire des Glucides--LPMV, IUT/Génie Biologique, Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, 80025 Amiens Cedex, France.
| | | | | | | |
Collapse
|
28
|
Chen Y, Xing XH, Ye F, Kuang Y, Luo M. Production of MBP–HepA fusion protein in recombinant Escherichia coli by optimization of culture medium. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2006.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Luo Y, Huang X, McKeehan WL. High yield, purity and activity of soluble recombinant Bacteroides thetaiotaomicron GST-heparinase I from Escherichia coli. Arch Biochem Biophys 2007; 460:17-24. [PMID: 17346663 PMCID: PMC1993911 DOI: 10.1016/j.abb.2007.01.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 01/24/2007] [Accepted: 01/25/2007] [Indexed: 11/18/2022]
Abstract
Heparinase I from Flavobacterium heparinum, a source of diverse polysaccharidases, suffers from low yields, insufficient purity for structural studies and insolubility when expressed as a recombinant product in Escherichia coli that is devoid of glycosaminoglycan polysaccharidases. In this study, cDNA coding for the orthologue of F. heparinum heparinase I was constructed from genomic information from the mammalian gut symbiont Bacteroides thetaiotaomicron and expressed in E. coli as a fusion protein with GST at the N-terminus. This resulted in high yield (30 mg/g dry bacteria) of soluble product and facilitated one-step affinity purification to homogeneity. Purified heparinase I bearing the GST fusion exhibited a K(m) of 2.3 microM and V(max) of 42.7 micromol/min with a specific activity of 164 U/mg with heparin (average 12,000 Da) as substrate. The results indicate a 2-fold improvement in yield, specific activity and affinity for heparin as substrate over previous reports. The data suggest that the heparinase I from the gut symbiont exhibits a higher intrinsic affinity for heparin than that from F. heparinum. The purified GST fusion enzyme exhibited a requirement for Ca(2+) and a pH optimum between 6.7 and 7.3 that was similar to the enzyme freed of the N-terminal GST portion. Our study revealed that catalytic activity of heparinase I requires a reducing environment. The GST facilitated immobilization of heparinase I in solid phase either for clinical purposes or for structural studies in absence of interference by contaminating polysaccharidases.
Collapse
Affiliation(s)
- Yongde Luo
- Center for Cancer and Stem Cell Biology (formerly Cancer Biology and Nutrition), Texas A&M University, Institute of Biosciences and Technology (IBT), The Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas 77030-3303, USA
| | - Xinqiang Huang
- Center for Cancer and Stem Cell Biology (formerly Cancer Biology and Nutrition), Texas A&M University, Institute of Biosciences and Technology (IBT), The Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas 77030-3303, USA
| | - Wallace L. McKeehan
- Center for Cancer and Stem Cell Biology (formerly Cancer Biology and Nutrition), Texas A&M University, Institute of Biosciences and Technology (IBT), The Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas 77030-3303, USA
- Department of Biochemistry and Biophysics, Texas A&M University, Institute of Biosciences and Technology (IBT), The Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas 77030-3303, USA
- *Corresponding author: Phone: 713-677-7522; Fax: 713-677-7512;
| |
Collapse
|
30
|
Yin CHEN, Xinhui XING, Fengchun YE, Ying KUANG. Soluble Expression and Rapid Quantification of GFP-hepA Fusion Protein in Recombinant Escherichia coli. Chin J Chem Eng 2007. [DOI: 10.1016/s1004-9541(07)60044-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Ameer GA, Grovender EA, Obradovic B, Cooney CL, Langer R. RTD analysis of a novel Taylor-Couette flow device for blood detoxification. AIChE J 2006. [DOI: 10.1002/aic.690450320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Roy M, Reiland J, Murry BP, Chouljenko V, Kousoulas KG, Marchetti D. Antisense-mediated suppression of Heparanase gene inhibits melanoma cell invasion. Neoplasia 2005; 7:253-62. [PMID: 15799825 PMCID: PMC1501137 DOI: 10.1593/neo.04493] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cancer metastasis, is a frequent manifestation of malignant melanoma progression. Successful invasion into distant organs by tumor cells must include attachment to microvessel endothelial cells, and degradation of basement membranes and extracellular matrix (ECM). Heparan sulfate proteoglycans (HSPG) are essential and ubiquitous macromolecules associated with the cell surface and ECM of a wide range of cells and tissues. Heparanase (HPSE-1) is an ECM degradative enzyme, which degrades the heparan sulfate (HS) chains of HSPG at specific intrachain sites. To investigate effects of changes in heparanase gene expression in metastatic melanoma cells, we constructed adenoviral vectors containing the full-length human HPSE-1 cDNA in both sense (Ad-S/hep) and antisense orientations (Ad-AS/hep). We found increased HPSE-1 expression and activity in melanoma cell lines following Ad-S/hep infection by Western blot analyses and specific HPSE-1 activity assay. Conversely, HPSE-1 content was significantly inhibited following infection with Ad-AS/Hep. Importantly, HPSE-1 modulation by these adenoviral constructs correlated with invasive cellular properties in vitro and in vivo. Our results suggest that HPSE-1 not only contributes to the invasive phenotype of melanoma cells, but also that the Ad-AS/hep-mediated inhibition of its enzymatic activity can be efficacious in the prevention and treatment of melanoma metastasis.
Collapse
Affiliation(s)
- Madhuchhanda Roy
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University at Baton Rouge, Baton Rouge, LA 70803, USA
| | - Jane Reiland
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University at Baton Rouge, Baton Rouge, LA 70803, USA
| | - Brian P Murry
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University at Baton Rouge, Baton Rouge, LA 70803, USA
| | - Vladimir Chouljenko
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University at Baton Rouge, Baton Rouge, LA 70803, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University at Baton Rouge, Baton Rouge, LA 70803, USA
| | - Dario Marchetti
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University at Baton Rouge, Baton Rouge, LA 70803, USA
| |
Collapse
|
33
|
Chen Y, Xing XH, Lou K. Construction of recombinant Escherichia coli for over-production of soluble heparinase I by fusion to maltose-binding protein. Biochem Eng J 2005. [DOI: 10.1016/j.bej.2004.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Reiland J, Sanderson RD, Waguespack M, Barker SA, Long R, Carson DD, Marchetti D. Heparanase Degrades Syndecan-1 and Perlecan Heparan Sulfate. J Biol Chem 2004; 279:8047-55. [PMID: 14630925 DOI: 10.1074/jbc.m304872200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparanase (HPSE-1) is involved in the degradation of both cell-surface and extracellular matrix (ECM) heparan sulfate (HS) in normal and neoplastic tissues. Degradation of heparan sulfate proteoglycans (HSPG) in mammalian cells is dependent upon the enzymatic activity of HPSE-1, an endo-beta-d-glucuronidase, which cleaves HS using a specific endoglycosidic hydrolysis rather than an eliminase type of action. Elevated HPSE-1 levels are associated with metastatic cancers, directly implicating HPSE-1 in tumor progression. The mechanism of HPSE-1 action to promote tumor progression may involve multiple substrates because HS is present on both cell-surface and ECM proteoglycans. However, the specific targets of HPSE-1 action are not known. Of particular interest is the relationship between HPSE-1 and HSPG, known for their involvement in tumor progression. Syndecan-1, an HSPG, is ubiquitously expressed at the cell surface, and its role in cancer progression may depend upon its degradation. Conversely, another HSPG, perlecan, is an important component of basement membranes and ECM, which can promote invasive behavior. Down-regulation of perlecan expression suppresses the invasive behavior of neoplastic cells in vitro and inhibits tumor growth and angiogenesis in vivo. In this work we demonstrate the following. 1) HPSE-1 cleaves HS present on the cell surface of metastatic melanoma cells. 2) HPSE-1 specifically degrades HS chains of purified syndecan-1 or perlecan HS. 3) Syndecan-1 does not directly inhibit HPSE-1 enzymatic activity. 4) The presence of exogenous syndecan-1 inhibits HPSE-1-mediated invasive behavior of melanoma cells by in vitro chemoinvasion assays. 5) Inhibition of HPSE-1-induced invasion requires syndecan-1 HS chains. These results demonstrate that cell-surface syndecan-1 and ECM perlecan are degradative targets of HPSE-1, and syndecan-1 regulates HPSE-1 biological activity. This suggest that expression of syndecan-1 on the melanoma cell surface and its degradation by HPSE-1 are important determinants in the control of tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Jane Reiland
- Department of Comparative Biomedical Sciences-SVM, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Modeling of the induced expression for high-level production of a foreign protein by recombinant E. coli under the control of the T7 phage promoter. Process Biochem 2003. [DOI: 10.1016/s0032-9592(03)00077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Myette JR, Shriver Z, Claycamp C, McLean MW, Venkataraman G, Sasisekharan R. The heparin/heparan sulfate 2-O-sulfatase from Flavobacterium heparinum. Molecular cloning, recombinant expression, and biochemical characterization. J Biol Chem 2003; 278:12157-66. [PMID: 12519775 DOI: 10.1074/jbc.m211420200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate glycosaminoglycans are structurally complex polysaccharides critically engaged in a wide range of cell and tissue functions. Any structure-based approach to study their respective biological functions is facilitated by the use of select heparan sulfate glycosaminoglycan-degrading enzymes with unique substrate specificities. We recently reported of one such enzyme, the Delta4,5-glycuronidase cloned from Flavobacterium heparinum and recombinantly expressed in Escherichia coli (Myette, J. R., Shriver, Z., Kiziltepe, T., McLean, M. W., Venkataraman, G., and Sasisekharan, R. (2002) Biochemistry 41, 7424-7434). In this study, we likewise report the molecular cloning of the 2-O-sulfatase from the same bacterium and its recombinant expression as a soluble, highly active enzyme. At the protein level, the flavobacterial 2-O-sulfatase possesses considerable sequence homology to other members of a large sulfatase family, especially within its amino terminus, where the highly conserved sulfatase domain is located. Within this domain, we have identified by sequence homology the critical active site cysteine predicted to be chemically modified as a formylglycine in vivo. We also present a characterization of the biochemical properties of the enzyme as it relates to optimal in vitro reaction conditions and a kinetic description of its substrate specificity. In particular, we demonstrate that in addition to the fact that the enzyme exclusively hydrolyzes the sulfate at the 2-O-position of the uronic acid, it also exhibits a kinetic preference for highly sulfated glucosamines within each disaccharide unit, especially those possessing a 6-O-sulfate. The sulfatase also displays a clear kinetic preference for disaccharides with beta1-->4 linkages but is able, nevertheless, to hydrolyze unsaturated, 2-O-sulfated chondroitin disaccharides. Finally, we describe the substrate-product relationship of the 2-O-sulfatase to the Delta4,5-glycuronidase and the analytical value of using both of these enzymes in tandem for elucidating heparin/heparan sulfate composition.
Collapse
Affiliation(s)
- James R Myette
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
37
|
Sundaram M, Qi Y, Shriver Z, Liu D, Zhao G, Venkataraman G, Langer R, Sasisekharan R. Rational design of low-molecular weight heparins with improved in vivo activity. Proc Natl Acad Sci U S A 2003; 100:651-6. [PMID: 12525684 PMCID: PMC141051 DOI: 10.1073/pnas.252643299] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heparin and low-molecular weight heparins (LMWHs), complex, sulfated polysaccharides isolated from endogenous sources, are potent modulators of hemostasis. Heparin and LMWHs interact with multiple components of the coagulation cascade to inhibit the clotting process. Pharmaceutical preparations of these complex polysaccharides, typically isolated from porcine intestinal mucosa, are heterogeneous in length and composition and, hence, highly polydisperse. Because of the structural heterogeneity of heparin and LMWHs, correlating their activity with a particular structure or structural motif has been a challenging task. Herein, we demonstrate a practical analytical method that enables the measurement of a structural correlate to in vivo anticoagulant function. With this understanding we have developed LMWHs with increased anticoagulant activity and decreased polydispersity. In addition to the pronounced anti-Xa and anti-IIa activity of these LMWHs, we also demonstrate that they possess desirable in vivo pharmacokinetic properties, the ability to cause the release of tissue factor pathway inhibitor (TFPI) from the endothelium, complete bioavailability through s.c. delivery, and the ability to inhibit both venous and arterial thromboses. Importantly, from a clinical safety point of view, unlike LMWHs presently used in the clinic, we show that these LMWHs are rapidly and completely neutralized by protamine. Together, the findings presented herein demonstrate a facile approach for the creation of designer LMWHs with optimal activity profiles.
Collapse
Affiliation(s)
- Mallik Sundaram
- Biological Engineering Division and Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yoshida E, Arakawa S, Matsunaga T, Toriumi S, Tokuyama S, Morikawa K, Tahara Y. Cloning, sequencing, and expression of the gene from bacillus circulans that codes for a heparinase that degrades both heparin and heparan sulfate. Biosci Biotechnol Biochem 2002; 66:1873-9. [PMID: 12400686 DOI: 10.1271/bbb.66.1873] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The gene, designated hep, coding for a heparinase that degrades both heparin and heparan sulfate, was cloned from Bacillus circulans HpT298. Nucleotide sequence analysis showed that the open reading frame of the hep gene consists of 3,150 bp, encoding a precursor protein of 1,050 amino acids with a molecular mass of 116.5 kDa. A homology search found that the deduced amino acid sequence has partial similarity with enzymes belonging to the family of acidic polysaccharide lyases that degrade chondroitin sulfate and hyaluronic acid. Recombinant mature heparinase (111.2 kDa) was produced by the addition of IPTG from Escherichia coli harboring pETHEP with an open reading frame of the mature hep gene and was purified to homogeneity by SDS-polyacrylamide gel electrophoresis. Analyses of substrate specificity and degraded disaccharides indicated that the recombinant enzyme acts on both heparin and HS, as does heparinase purified from the wild-type strain.
Collapse
Affiliation(s)
- Eiichi Yoshida
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Casu B, Lindahl U. Structure and biological interactions of heparin and heparan sulfate. Adv Carbohydr Chem Biochem 2002; 57:159-206. [PMID: 11836942 DOI: 10.1016/s0065-2318(01)57017-1] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- B Casu
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | | |
Collapse
|
40
|
|
41
|
Abstract
Heparin, a sulfated polysaccharide belonging to the family of glycosaminoglycans, has numerous important biological activities, associated with its interaction with diverse proteins. Heparin is widely used as an anticoagulant drug based on its ability to accelerate the rate at which antithrombin inhibits serine proteases in the blood coagulation cascade. Heparin and the structurally related heparan sulfate are complex linear polymers comprised of a mixture of chains of different length, having variable sequences. Heparan sulfate is ubiquitously distributed on the surfaces of animal cells and in the extracellular matrix. It also mediates various physiologic and pathophysiologic processes. Difficulties in evaluating the role of heparin and heparan sulfate in vivo may be partly ascribed to ignorance of the detailed structure and sequence of these polysaccharides. In addition, the understanding of carbohydrate-protein interactions has lagged behind that of the more thoroughly studied protein-protein and protein-nucleic acid interactions. The recent extensive studies on the structural, kinetic, and thermodynamic aspects of the protein binding of heparin and heparan sulfate have led to an improved understanding of heparin-protein interactions. A high degree of specificity could be identified in many of these interactions. An understanding of these interactions at the molecular level is of fundamental importance in the design of new highly specific therapeutic agents. This review focuses on aspects of heparin structure and conformation, which are important for its interactions with proteins. It also describes the interaction of heparin and heparan sulfate with selected families of heparin-binding proteins.
Collapse
Affiliation(s)
- Ishan Capila
- S328 College of Pharmacy, University of Iowa, 115 S. Grand Avenue, Iowa City 52242, USA
| | | |
Collapse
|
42
|
|
43
|
|
44
|
Liu D, Shriver Z, Venkataraman G, El Shabrawi Y, Sasisekharan R. Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis. Proc Natl Acad Sci U S A 2002; 99:568-73. [PMID: 11805315 PMCID: PMC117346 DOI: 10.1073/pnas.012578299] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heparan sulfate glycosaminoglycans, present at the cell surface and in the extracellular matrix that surrounds cells, are important mediators of complex biological processes. Furthermore, it is now apparent that cells dynamically regulate the structure of their heparan sulfate "coat" to differentially regulate extracellular signals. In the present study, the importance of sequence information contained within tumor cell-surface heparan sulfate was investigated. Herein, we demonstrate that the heparan sulfate glycosaminoglycan coat present on tumor cells contains bioactive sequences that impinge on tumor-cell growth and metastasis. Importantly, we find that growth promoting as well as growth inhibiting sequences are contained within the polysaccharide coat. Furthermore, we find that the dynamic balance between these distinct polysaccharide populations regulates specific intracellular signal-transduction pathways. This study not only provides a framework for the development of polysaccharide-based anti-cancer molecules but also underscores the importance of understanding a cell's polysaccharide array in addition to its protein complement, to understand how genotype translates to phenotype in this post-genomic age.
Collapse
Affiliation(s)
- Dongfang Liu
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
45
|
Pojasek K, Shriver Z, Kiley P, Venkataraman G, Sasisekharan R. Recombinant expression, purification, and kinetic characterization of chondroitinase AC and chondroitinase B from Flavobacterium heparinum. Biochem Biophys Res Commun 2001; 286:343-51. [PMID: 11500043 DOI: 10.1006/bbrc.2001.5380] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycosaminoglycans (GAGs) are a family of complex polysaccharides involved in a diversity of biological processes, ranging from cell signaling to blood coagulation. Chondroitin sulfate (CS) and dermatan sulfate (DS) comprise a biologically important subset of GAGs. Two of the important lyases that degrade CS/DS, chondroitinase AC (EC 4.2.2.5) and chondroitinase B (no EC number), have been isolated and cloned from Flavobacterium heparinum. In this study, we outline an improved methodology for the recombinant expression and purification of these chondroitinases, thus enabling the functional characterization of the recombinant form of the enzymes for the first time. Utilizing an N-terminal 6x histidine tag, the recombinant chondroitinases were produced by two unique expression systems, each of which can be purified to homogeneity in a single chromatographic step. The products of exhaustive digestion of chondroitin-4SO(4) and chondroitin-6SO(4) with chondroitinase AC and dermatan sulfate with chondroitinase B were analyzed by strong-anion exchange chromatography and a novel reverse-polarity capillary electrophoretic technique. In addition, the Michaelis-Menten parameters were determined for these enzymes. With chondroitin-4SO(4) as the substrate, the recombinantly expressed chondroitinase AC has a K(m) of 0.8 microM and a k(cat) of 234 s(-1). This is the first report of kinetic parameters for chondroitinase AC with this substrate. With chondroitin-6SO(4) as the substrate, the enzyme has a K(m) of 0.6 microM and a k(cat) of 480 s(-1). Recombinantly expressed chondroitinase B has a K(m) of 4.6 microM and a k(cat) of 190 s(-1) for dermatan sulfate as its substrate. Efficient recombinant expression of the chondroitinases will facilitate the structure-function characterization of these enzymes and allow for the development of the chondroitinases as enzymatic tools for the fine characterization and sequencing of CS/DS.
Collapse
Affiliation(s)
- K Pojasek
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
46
|
Kwan CP, Venkataraman G, Shriver Z, Raman R, Liu D, Qi Y, Varticovski L, Sasisekharan R. Probing fibroblast growth factor dimerization and role of heparin-like glycosaminoglycans in modulating dimerization and signaling. J Biol Chem 2001; 276:23421-9. [PMID: 11292822 DOI: 10.1074/jbc.m010786200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For a number of growth factors and cytokines, ligand dimerization is believed to be central to the formation of an active signaling complex. In the case of fibroblast growth factor-2 (FGF2) signaling, heparin/heparan sulfate-like glycosaminoglycans (HLGAGs) are involved through interaction with both FGF2 and its receptors (FGFRs) in assembling a tertiary complex and modulating FGF2 activity. Biochemical data have suggested different modes of HLGAG-induced FGF2 dimerization involving specific protein-protein contacts. In addition, several recent x-ray crystallography studies of FGF.FGFR and FGF.FGFR.HLGAG complexes have revealed other modes of molecular assemblage, with no FGF-FGF contacts. All these different biochemical and structural findings have clarified less and in fact raised more questions as to which mode of FGF2 dimerization, if any, is essential for signaling. In this study, we address the issue of FGF2 dimerization in signaling using a combination of biochemical, biophysical, and site-directed mutagenesis approaches. Our findings presented here provide direct evidence of FGF2 dimerization in mediating FGF2 signaling.
Collapse
Affiliation(s)
- C P Kwan
- Division of Bioengineering and Environmental Health, the Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pojasek K, Shriver Z, Hu Y, Sasisekharan R. Histidine 295 and histidine 510 are crucial for the enzymatic degradation of heparan sulfate by heparinase III. Biochemistry 2000; 39:4012-9. [PMID: 10747789 DOI: 10.1021/bi992514k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heparinases from Flavobacterium heparinum are powerful tools in understanding how heparin-like glycosaminoglycans function biologically. Heparinase III is the unique member of the heparinase family of heparin-degrading lyases that recognizes the ubiquitous cell-surface heparan sulfate proteoglycans as its primary substrate. Given that both heparinase I and heparinase II contain catalytically critical histidines, we examined the role of histidine in heparinase III. Through a series of diethyl pyrocarbonate modification experiments, it was found that surface-exposed histidines are modified in a concentration-dependent fashion and that this modification results in inactivation of the enzyme (k(inact) = 0.20 +/- 0.04 min(-)(1) mM(-)(1)). The DEPC modification was pH dependent and reversible by hydroxylamine, indicating that histidines are the sole residue being modified. As previously observed for heparinases I and II, substrate protection experiments slowed the inactivation kinetics, suggesting that the modified residue(s) was (were) in or proximal to the active site of the enzyme. Proteolytic mapping experiments, taken together with site-directed mutagenesis studies, confirm the chemical modification experiments and point to two histidines, histidine 295 and histidine 510, as being essential for heparinase III enzymatic activity.
Collapse
Affiliation(s)
- K Pojasek
- Division of Bioengineering & Environmental Health, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
48
|
Shpigel E, Goldlust A, Efroni G, Avraham A, Eshel A, Dekel M, Shoseyov O. Immobilization of recombinant heparinase I fused to cellulose-binding domain. Biotechnol Bioeng 1999; 65:17-23. [PMID: 10440667 DOI: 10.1002/(sici)1097-0290(19991005)65:1<17::aid-bit3>3.0.co;2-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Immobilization of biologically active proteins is of great importance to research and industry. Cellulose is an attractive matrix and cellulose-binding domain (CBD) an excellent affinity tag protein for the purification and immobilization of many of these proteins. We constructed two vectors to enable the cloning and expression of proteins fused to the N- or C-terminus of CBD. Their usefulness was demonstrated by fusing the heparin-degrading protein heparinase I to CBD (CBD-HepI and HepI-CBD). The fusion proteins were over-expressed in Escherichia coli under the control of a T7 promoter and found to accumulate in inclusion bodies. The inclusion bodies were recovered by centrifugation, the proteins were refolded and recovered on a cellulose column. The bifunctional fusion protein retained its abilities to bind to cellulose and degrade heparin. C-terminal fusion of heparinase I to CBD was somewhat superior to N-terminal fusion: Although specific activities in solution were comparable, the latter exhibited impaired binding capacity to cellulose. CBD-HepI-cellulose bioreactor was operated continuously and degraded heparin for over 40 h without any significant loss of activity. By varying the flow rate, the mean molecular weight of the heparin oligosaccharide produced could be controlled. The molecular weight distribution profiles, obtained from heparin depolymerization by free heparinase I, free CBD-HepI, and cellulose-immobilized CBD-HepI, were compared. The profiles obtained by free heparinase I and CBD-HepI were indistinguishable, however, immobilized CBD-HepI produced much lower molecular weight fragments at the same percentage of depolymerization. Thus, CBD can be used for the efficient production of bioreactors, combining purification and immobilization into essentially a single step.
Collapse
Affiliation(s)
- E Shpigel
- The Kennedy Leigh Centre for Horticultural Research and The Otto Warburg Center for Agricultural Biotechnology, The Faculty of Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
49
|
Rechter M, Lider O, Cahalon L, Baharav E, Dekel M, Seigel D, Vlodavsky I, Aingorn H, Cohen IR, Shoseyov O. A cellulose-binding domain-fused recombinant human T cell connective tissue-activating peptide-III manifests heparanase activity. Biochem Biophys Res Commun 1999; 255:657-62. [PMID: 10049766 DOI: 10.1006/bbrc.1999.0181] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chemokine connective tissue-activating peptide (CTAP)-III, which belongs to the leukocyte-derived growth factor family of mediators, was previously shown to be mitogenic for fibroblasts. However, it has recently been shown that CTAP-III, released from platelets, can act like a heparanase enzyme and degrade heparan sulfate. This suggests that CTAP-III may also function as a proinflammatory mediator. We have successfully cloned CTAP-III from a lambdagt11 cDNA library of PHA-activated human CD4(+) T cells and produced recombinant CTAP-III as a fusion protein with a cellulose-binding domain moiety. This recombinant CTAP-III exhibited heparanase activity and released degradation products from metabolically labeled, naturally produced extracellular matrix. We have also developed polyclonal and monoclonal antibodies, and these antibodies against the recombinant CTAP-III detected the CTAP-III molecule in human T cells, polymorphonuclear leukocytes, and placental extracts. Thus, our study provides tools to examine further immune cell behavior in inflamed sites rich with extracellular moieties and proinflammatory mediators.
Collapse
Affiliation(s)
- M Rechter
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu D, Shriver Z, Godavarti R, Venkataraman G, Sasisekharan R. The calcium-binding sites of heparinase I from Flavobacterium heparinum are essential for enzymatic activity. J Biol Chem 1999; 274:4089-95. [PMID: 9933602 DOI: 10.1074/jbc.274.7.4089] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the accompanying paper (Shriver, Z., Liu, D., Hu, Y., and Sasisekharan, R. (1999) J. Biol. Chem. 274, 4082-4088), we have shown that calcium binds specifically to heparinase I and have identified two major calcium-binding sites (CB-1 and CB-2) that partly conform to the EF-hand calcium-binding motif. In this study, through systematic site-directed mutagenesis, we have confirmed the accompanying biochemical studies and have shown that both CB-1 and CB-2 are involved in calcium binding and enzymatic activity. More specifically, we identified critical residues (viz. Asp210, Asp212, Gly213, and Thr216 in CB-1 and Asn375, Tyr379, and Glu381 in CB-2) that are important for calcium binding and heparinase I enzymatic activity. Mutations in CB-1 resulted in a lower kcat, but did not change the product profile of heparinase I action on heparin; conversely, mutations in CB-2 not only altered the kcat for heparinase I, but also resulted in incomplete degradation, leading to longer saccharides. Fluorescence competition experiments along with heparin affinity chromatography suggested that mutations in CB-1 alter heparinase I activity primarily through decreasing the enzyme's affinity for its calcium cofactor without altering heparin binding to heparinase I. Compared with CB-1 mutations, mutations in CB-2 affected calcium binding to a lesser extent, but they had a more pronounced effect on heparinase I activity, suggesting a different role for CB-2 in the enzymatic action of heparinase I. These results, taken together with our accompanying study, led us to propose a model for calcium binding to heparinase I that includes both CB-1 and CB-2 providing critical interactions, albeit via a different mechanism. Through binding to CB-1 and/or CB-2, we propose that calcium may play a role in the catalytic mechanism and/or in the exolytic processive mechanism of heparin-like glycosaminoglycan depolymerization by heparinase I.
Collapse
Affiliation(s)
- D Liu
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|