1
|
Portet A, Galinier R, Lassalle D, Faille A, Gourbal B, Duval D. Hemocyte siRNA uptake is increased by 5' cholesterol-TEG addition in Biomphalaria glabrata, snail vector of schistosome. PeerJ 2021; 9:e10895. [PMID: 33665030 PMCID: PMC7908872 DOI: 10.7717/peerj.10895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
Biomphalaria glabrata is one of the snail intermediate hosts of Schistosoma mansoni, the causative agent of intestinal schistosomiasis disease. Numerous molecular studies using comparative approaches between susceptible and resistant snails to S. mansoni infection have helped identify numerous snail key candidates supporting such susceptible/resistant status. The functional approach using RNA interference (RNAi) remains crucial to validate the function of such candidates. CRISPR-Cas systems are still under development in many laboratories, and RNA interference remains the best tool to study B. glabrata snail genetics. Herein, we describe the use of modified small interfering RNA (siRNA) molecules to enhance cell delivery, especially into hemocytes, the snail immune cells. Modification of siRNA with 5′ Cholesteryl TriEthylene Glycol (Chol-TEG) promotes cellular uptake by hemocytes, nearly eightfold over that of unmodified siRNA. FACS analysis reveals that more than 50% of hemocytes have internalized Chol-TEG siRNA conjugated to Cy3 fluorophores, 2 hours only after in vivo injection into snails. Chol-TEG siRNA targeting BgTEP1 (ThioEster-containing Protein), a parasite binding protein, reduced BgTEP1 transcript expression by 70–80% compared to control. The level of BgTEP1 protein secreted in the hemolymph was also decreased. However, despite the BgTEP1 knock-down at both RNA and protein levels, snail compatibility with its sympatric parasite is not affected suggesting functional redundancy among the BgTEP genes family in snail-schistosoma interaction.
Collapse
Affiliation(s)
- Anaïs Portet
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France.,Department of Medicine, Molecular Immunity Unit, University of Cambridge, Cambridge, United Kingdom
| | - Richard Galinier
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| | - Damien Lassalle
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| | - Alexandre Faille
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Benjamin Gourbal
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| | - David Duval
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| |
Collapse
|
2
|
Castillo MG, Humphries JE, Mourão MM, Marquez J, Gonzalez A, Montelongo CE. Biomphalaria glabrata immunity: Post-genome advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103557. [PMID: 31759924 PMCID: PMC8995041 DOI: 10.1016/j.dci.2019.103557] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The freshwater snail, Biomphalaria glabrata, is an important intermediate host in the life cycle for the human parasite Schistosoma mansoni, the causative agent of schistosomiasis. Current treatment and prevention strategies have not led to a significant decrease in disease transmission. However, the genome of B. glabrata was recently sequenced to provide additional resources to further our understanding of snail biology. This review presents an overview of recently published, post-genome studies related to the topic of snail immunity. Many of these reports expand on findings originated from the genome characterization. These novel studies include a complementary gene linkage map, analysis of the genome of the B. glabrata embryonic (Bge) cell line, as well as transcriptomic and proteomic studies looking at snail-parasite interactions and innate immune memory responses towards schistosomes. Also included are biochemical investigations on snail pheromones, neuropeptides, and attractants, as well as studies investigating the frontiers of molluscan epigenetics and cell signaling were also included. Findings support the current hypotheses on snail-parasite strain compatibility, and that snail host resistance to schistosome infection is dependent not only on genetics and expression, but on the ability to form multimeric molecular complexes in a timely and tissue-specific manner. The relevance of cell immunity is reinforced, while the importance of humoral factors, especially for secondary infections, is supported. Overall, these studies reflect an improved understanding on the diversity, specificity, and complexity of molluscan immune systems.
Collapse
Affiliation(s)
- Maria G Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | - Marina M Mourão
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Brazil
| | - Joshua Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Adrian Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Cesar E Montelongo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
3
|
A New Assessment of Thioester-Containing Proteins Diversity of the Freshwater Snail Biomphalaria glabrata. Genes (Basel) 2020; 11:genes11010069. [PMID: 31936127 PMCID: PMC7016707 DOI: 10.3390/genes11010069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Thioester-containing proteins (TEPs) superfamily is known to play important innate immune functions in a wide range of animal phyla. TEPs are involved in recognition, and in the direct or mediated killing of several invading organisms or pathogens. While several TEPs have been identified in many invertebrates, only one TEP (named BgTEP) has been previously characterized in the freshwater snail, Biomphalaria glabrata. As the presence of a single member of that family is particularly intriguing, transcriptomic data and the recently published genome were used to explore the presence of other BgTEP related genes in B. glabrata. Ten other TEP members have been reported and classified into different subfamilies: Three complement-like factors (BgC3-1 to BgC3-3), one α-2-macroblobulin (BgA2M), two macroglobulin complement-related proteins (BgMCR1, BgMCR2), one CD109 (BgCD109), and three insect TEP (BgTEP2 to BgTEP4) in addition to the previously characterized BgTEP that we renamed BgTEP1. This is the first report on such a level of TEP diversity and of the presence of macroglobulin complement-related proteins (MCR) in mollusks. Gene structure analysis revealed alternative splicing in the highly variable region of three members (BgA2M, BgCD109, and BgTEP2) with a particularly unexpected diversity for BgTEP2. Finally, different gene expression profiles tend to indicate specific functions for such novel family members.
Collapse
|
4
|
Xue Q. Pathogen proteases and host protease inhibitors in molluscan infectious diseases. J Invertebr Pathol 2019; 166:107214. [PMID: 31348922 DOI: 10.1016/j.jip.2019.107214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/11/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
The development of infectious diseases represents an outcome of dynamic interactions between the disease-producing agent's pathogenicity and the host's self-defense mechanism. Proteases secreted by pathogenic microorganisms and protease inhibitors produced by host species play an important role in the process. This review aimed at summarizing major findings in research on pathogen proteases and host protease inhibitors that had been proposed to be related to the development of mollusk diseases. Metalloproteases and serine proteases respectively belonging to Family M4 and Family S8 of the MEROPS system are among the most studied proteases that may function as virulence factors in mollusk pathogens. On the other hand, a mollusk-specific family (Family I84) of novel serine protease inhibitors and homologues of the tissue inhibitor of metalloprotease have been studied for their potential in the molluscan host defense. In addition, research at the genomic and transcriptomic levels showed that more proteases of pathogens and protease inhibitor of hosts are likely involved in mollusk disease processes. Therefore, the pathological significance of interactions between pathogen proteases and host protease inhibitors in the development of molluscan infectious diseases deserves more research efforts.
Collapse
Affiliation(s)
- Qinggang Xue
- Zhejiang Key Lab of Aquatic Germplasm Resources, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
5
|
Portet A, Galinier R, Pinaud S, Portela J, Nowacki F, Gourbal B, Duval D. BgTEP: An Antiprotease Involved in Innate Immune Sensing in Biomphalaria glabrata. Front Immunol 2018; 9:1206. [PMID: 29899746 PMCID: PMC5989330 DOI: 10.3389/fimmu.2018.01206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Insect thioester-containing protein (iTEP) is the most recently defined group among the thioester-containing protein (TEP) superfamily. TEPs are key components of the immune system, and iTEPs from flies and mosquitoes were shown to be major immune weapons. Initially characterized from insects, TEP genes homologous to iTEP were further described from several other invertebrates including arthropods, cniderians, and mollusks albeit with few functional characterizations. In the freshwater snail Biomphalaria glabrata, a vector of the schistosomiasis disease, the presence of a TEP protein (BgTEP) was previously described in a well-defined immune complex involving snail lectins (fibrinogen-related proteins) and schistosome parasite mucins (SmPoMuc). To investigate the potential role of BgTEP in the immune response of the snail, we first characterized its genomic organization and its predicted protein structure. A phylogenetic analysis clustered BgTEP in a well-conserved subgroup of mollusk TEP. We then investigated the BgTEP expression profile in different snail tissues and followed immune challenges using different kinds of intruders during infection kinetics. Results revealed that BgTEP is particularly expressed in hemocytes, the immune-specialized cells in invertebrates, and is secreted into the hemolymph. Transcriptomic results further evidenced an intruder-dependent differential expression pattern of BgTEP, while interactome experiments showed that BgTEP is capable of binding to the surface of different microbes and parasite either in its full length form or in processed forms. An immunolocalization approach during snail infection by the Schistosoma mansoni parasite revealed that BgTEP is solely expressed by a subtype of hemocytes, the blast-like cells. This hemocyte subtype is present in the hemocytic capsule surrounding the parasite, suggesting a potential role in the parasite clearance by encapsulation. Through this work, we report the first characterization of a snail TEP. Our study also reveals that BgTEP may display an unexpected functional dual role. In addition to its previously characterized anti-protease activity, we demonstrate that BgTEP can bind to the intruder surface membrane, which supports a likely opsonin role.
Collapse
Affiliation(s)
- Anaïs Portet
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Richard Galinier
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Silvain Pinaud
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Julien Portela
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Fanny Nowacki
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Benjamin Gourbal
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - David Duval
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| |
Collapse
|
6
|
Goulas T, Garcia-Ferrer I, Marrero A, Marino-Puertas L, Duquerroy S, Gomis-Rüth FX. Structural and functional insight into pan-endopeptidase inhibition by α2-macroglobulins. Biol Chem 2017; 398:975-994. [PMID: 28253193 DOI: 10.1515/hsz-2016-0329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/18/2017] [Indexed: 12/30/2022]
Abstract
Peptidases must be exquisitely regulated to prevent erroneous cleavage and one control is provided by protein inhibitors. These are usually specific for particular peptidases or families and sterically block the active-site cleft of target enzymes using lock-and-key mechanisms. In contrast, members of the +1400-residue multi-domain α2-macroglobulin inhibitor family (α2Ms) are directed against a broad spectrum of endopeptidases of disparate specificities and catalytic types, and they inhibit their targets without disturbing their active sites. This is achieved by irreversible trap mechanisms resulting from large conformational rearrangement upon cleavage in a promiscuous bait region through the prey endopeptidase. After decades of research, high-resolution structural details of these mechanisms have begun to emerge for tetrameric and monomeric α2Ms, which use 'Venus-flytrap' and 'snap-trap' mechanisms, respectively. In the former, represented by archetypal human α2M, inhibition is exerted through physical entrapment in a large cage, in which preys are still active against small substrates and inhibitors that can enter the cage through several apertures. In the latter, represented by a bacterial α2M from Escherichia coli, covalent linkage and steric hindrance of the prey inhibit activity, but only against very large substrates.
Collapse
|
7
|
Abstract
α2-macroglobulins are broad-spectrum endopeptidase inhibitors, which have to date been characterised from metazoans (vertebrates and invertebrates) and Gram-negative bacteria. Their structural and biochemical properties reveal two related modes of action: the "Venus flytrap" and the "snap-trap" mechanisms. In both cases, peptidases trigger a massive conformational rearrangement of α2-macroglobulin after cutting in a highly flexible bait region, which results in their entrapment. In some homologs, a second action takes place that involves a highly reactive β-cysteinyl-γ-glutamyl thioester bond, which covalently binds cleaving peptidases and thus contributes to the further stabilization of the enzyme:inhibitor complex. Trapped peptidases are still active, but have restricted access to their substrates due to steric hindrance. In this way, the human α2-macroglobulin homolog regulates proteolysis in complex biological processes, such as nutrition, signalling, and tissue remodelling, but also defends the host organism against attacks by external toxins and other virulence factors during infection and envenomation. In parallel, it participates in several other biological functions by modifying the activity of cytokines and regulating hormones, growth factors, lipid factors and other proteins, which has a great impact on physiology. Likewise, bacterial α2-macroglobulins may participate in defence by protecting cell wall components from attacking peptidases, or in host-pathogen interactions through recognition of host peptidases and/or antimicrobial peptides. α2-macroglobulins are more widespread than initially thought and exert multifunctional roles in both eukaryotes and prokaryotes, therefore, their on-going study is essential.
Collapse
Affiliation(s)
- Irene Garcia-Ferrer
- Proteolysis Lab, Structural Biology Unit, "María de Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain
- Present address: EMBL Grenoble, 71 Avenue des Martyrs; 38042 CS 90181, Grenoble Cedex 9, France
| | - Aniebrys Marrero
- Proteolysis Lab, Structural Biology Unit, "María de Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain
- Present address: Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Structural Biology Unit, "María de Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain
| | - Theodoros Goulas
- Proteolysis Lab, Structural Biology Unit, "María de Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain.
| |
Collapse
|
8
|
Yazzie N, Salazar KA, Castillo MG. Identification, molecular characterization, and gene expression analysis of a CD109 molecule in the Hawaiian bobtail squid Euprymna scolopes. FISH & SHELLFISH IMMUNOLOGY 2015; 44:342-55. [PMID: 25742727 DOI: 10.1016/j.fsi.2015.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/21/2015] [Accepted: 02/22/2015] [Indexed: 05/16/2023]
Abstract
All organisms have unique immune systems that help them identify and eliminate invading microorganisms. A group of evolutionary ancient molecules, the thioester-containing proteins (TEP) superfamily, are known to play an important immune role by aiding animal hosts in the recognition, destruction, and elimination of hazardous microorganisms and their products. Our laboratory focuses on studying the role of the immune system in the mutualistic relationship between the sepiolid squid, Euprymna scolopes and its bioluminescent symbiont Vibrio fischeri. In the present study, we report the identification of a novel TEP-like transcript expressed in the light organ of squid. Characterization of the full-length coding sequence showed a molecule of 4218 nucleotides, corresponding to 1406 amino acids. Further sequence analysis revealed it contained structural characteristics of A2M molecules, including the thioester and receptor-binding domains. Analysis using the predicted amino acid sequence suggested this transcript was a homologue of CD109 molecules, thus we named it E. scolopes-CD109 (Es-CD109). In addition to the light organ, we were able to detect and amplify Es-CD109 in 12 out of 14 adult squid tissues tested. Quantification experiments showed that Es-CD109 expression levels were significantly lower in the light organ of symbiotic compared to aposymbiotic juveniles, suggesting a possible down-regulation of the host immune response in the presence of the bacterial symbiont.
Collapse
Affiliation(s)
- Natasha Yazzie
- Department of Biology, New Mexico State University, MSC 3AF, PO Box 30001, Las Cruces, NM, USA.
| | - Karla A Salazar
- Department of Biology, New Mexico State University, MSC 3AF, PO Box 30001, Las Cruces, NM, USA.
| | - Maria G Castillo
- Department of Biology, New Mexico State University, MSC 3AF, PO Box 30001, Las Cruces, NM, USA.
| |
Collapse
|
9
|
Moné Y, Gourbal B, Duval D, Du Pasquier L, Kieffer-Jaquinod S, Mitta G. A large repertoire of parasite epitopes matched by a large repertoire of host immune receptors in an invertebrate host/parasite model. PLoS Negl Trop Dis 2010; 4. [PMID: 20838648 PMCID: PMC2935394 DOI: 10.1371/journal.pntd.0000813] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/06/2010] [Indexed: 01/05/2023] Open
Abstract
For many decades, invertebrate immunity was believed to be non-adaptive, poorly specific, relying exclusively on sometimes multiple but germ-line encoded innate receptors and effectors. But recent studies performed in different invertebrate species have shaken this paradigm by providing evidence for various types of somatic adaptations at the level of putative immune receptors leading to an enlarged repertoire of recognition molecules. Fibrinogen Related Proteins (FREPs) from the mollusc Biomphalaria glabrata are an example of these putative immune receptors. They are known to be involved in reactions against trematode parasites. Following not yet well understood somatic mechanisms, the FREP repertoire varies considerably from one snail to another, showing a trend towards an individualization of the putative immune repertoire almost comparable to that described from vertebrate adaptive immune system. Nevertheless, their antigenic targets remain unknown. In this study, we show that a specific set of these highly variable FREPs from B. glabrata forms complexes with similarly highly polymorphic and individually variable mucin molecules from its specific trematode parasite S. mansoni (Schistosoma mansoni Polymorphic Mucins: SmPoMucs). This is the first evidence of the interaction between diversified immune receptors and antigenic variant in an invertebrate host/pathogen model. The same order of magnitude in the diversity of the parasite epitopes and the one of the FREP suggests co-evolutionary dynamics between host and parasite regarding this set of determinants that could explain population features like the compatibility polymorphism observed in B. glabrata/S. mansoni interaction. In addition, we identified a third partner associated with the FREPs/SmPoMucs in the immune complex: a Thioester containing Protein (TEP) belonging to a molecular category that plays a role in phagocytosis or encapsulation following recognition. The presence of this last partner in this immune complex argues in favor of the involvement of the formed complex in parasite recognition and elimination from the host.
Collapse
Affiliation(s)
- Yves Moné
- Parasitologie Fonctionnelle et Evolutive, UMR 5244, CNRS Université de Perpignan, Perpignan, France
| | - Benjamin Gourbal
- Parasitologie Fonctionnelle et Evolutive, UMR 5244, CNRS Université de Perpignan, Perpignan, France
| | - David Duval
- Parasitologie Fonctionnelle et Evolutive, UMR 5244, CNRS Université de Perpignan, Perpignan, France
| | - Louis Du Pasquier
- University of Basel, Institute of Zoology and Evolutionary Biology, Basel, Switzerland
| | | | - Guillaume Mitta
- Parasitologie Fonctionnelle et Evolutive, UMR 5244, CNRS Université de Perpignan, Perpignan, France
- * E-mail:
| |
Collapse
|
10
|
Hathaway JJM, Adema CM, Stout BA, Mobarak CD, Loker ES. Identification of protein components of egg masses indicates parental investment in immunoprotection of offspring by Biomphalaria glabrata (gastropoda, mollusca). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:425-35. [PMID: 19995576 PMCID: PMC2813990 DOI: 10.1016/j.dci.2009.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 05/21/2023]
Abstract
The macromolecules contributed by the freshwater gastropod Biomphalaria glabrata, intermediate host of Schistosoma mansoni, to developing offspring inside egg masses are poorly known. SDS-PAGE fractionated egg mass fluids (EMF) of M line and BB02 B. glabrata were analyzed by MALDI-TOF (MS and tandem MS). A MASCOT database was assembled with EST data from B. glabrata and other molluscs to aid in sequence characterization. Of approximately 20 major EMF polypeptides, 16 were identified as defense-related, including protease inhibitors, a hemocyanin-like factor and tyrosinase (each with possible phenoloxidase activity), extracellular Cu-Zn SOD, two categories of C-type lectins, Gram-negative bacteria-binding protein (GNBP), aplysianin/achacin-like protein, as well as versions of lipopolysaccharide binding protein/bacterial permeability-increasing proteins (LBP/BPI) that differed from those previously described from hemocytes. Along with two sequences that were encoded by "unknown" ESTs, EMF also yielded a compound containing a vWF domain that is likely involved in defense and a polypeptide with homology to the Aplysia pheromone temptin. Further study of B. glabrata pheromones is warranted as these could be useful in efforts to control these schistosome-transmitting snails. Several of the EMF polypeptides were contained in the albumen gland, the organ that produces most EMF. Thus, parental investment of B. glabrata in immunoprotection of its offspring is indicated to be considerable.
Collapse
Affiliation(s)
- Jennifer J M Hathaway
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, MSC03 2020, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
11
|
Perrigault M, Tanguy A, Allam B. Identification and expression of differentially expressed genes in the hard clam, Mercenaria mercenaria, in response to quahog parasite unknown (QPX). BMC Genomics 2009; 10:377. [PMID: 19682366 PMCID: PMC2752465 DOI: 10.1186/1471-2164-10-377] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 08/14/2009] [Indexed: 11/30/2022] Open
Abstract
Background The hard clam, Mercenaria mercenaria, has been affected by severe mortality episodes associated with the protistan parasite QPX (Quahog Parasite Unknown) for several years. Despite the commercial importance of hard clams in the United States, molecular bases of defense mechanisms in M. mercenaria, especially during QPX infection, remain unknown. Results Our study used suppression subtractive hybridization (SSH), as well as the construction of cDNA libraries from hemocytes to identify genes related to the defense of the hard clam against its parasite. Hard clams were experimentally infected with QPX and SSH was performed on mRNA samples extracted from mantle and gill tissues at different times post-challenge. A total of 298 clones from SSH libraries and 1352 clones from cDNA libraries were sequenced. Among these sequences, homologies with genes involved in different physiological processes related to signal transduction, stress response, immunity and protein synthesis were identified. Quantitative PCR revealed significant changes in the expression of several of these genes in response to QPX challenge and demonstrated significant correlations in terms of levels of gene expression between intermediates of signalling pathways and humoral defense factors, such as big defensin and lysozyme. Conclusion Results of this study allowed the detection of modifications caused by QPX at the transcriptional level providing insight into clam immune response to the infection. These investigations permitted the identification of candidate genes and pathways for further analyses of biological bases of clam resistance to QPX allowing for a better understanding of bivalve immunity in general.
Collapse
Affiliation(s)
- Mickael Perrigault
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA.
| | | | | |
Collapse
|
12
|
Myers J, Ittiprasert W, Raghavan N, Miller A, Knight M. Differences in cysteine protease activity in Schistosoma mansoni-resistant and -susceptible Biomphalaria glabrata and characterization of the hepatopancreas cathepsin B Full-length cDNA. J Parasitol 2008. [PMID: 18605796 DOI: 10.1645/ge-1410r.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Biomphalaria glabrata snails are known to display a wide range of susceptibility phenotypes to Schistosoma mansoni infection depending on the genetics of both the snail and the invading parasite. Evidence exists for a role of hydrolytic enzymes in the defense of molluscs against invading parasites. To elucidate the role of these enzymes in the outcome of infection in the snail, proteolysis was examined in parasite-resistant and -susceptible snails. Zymographs of extracts from the whole snail or hepatopancreas indicated higher proteolytic activity in resistant, compared with susceptible, snails. Lytic activity coincided with a high-molecular-weight smear (220 to 66 kDa) that was abrogated by the cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane. Quantitative flourimetric assays showed 3.5-fold higher activity in resistant than in susceptible snails. From a hepatopancreas cDNA library, several cysteine protease encoding expressed sequence tags including the full-length cDNA for cathepsin B were identified. Sequence analysis revealed that this cathepsin B belonged to the C1A family of peptidases characterized by the presence of the catalytic cysteine-histidine dyad, the "occluding loop," signal sequence, and cleavage sites for the prepro and propeptides. Quantitative real-time reverse transcriptase-polymerase chain reaction showed higher up-regulation of cathepsin B transcript in resistant than in the susceptible snail after parasite exposure.
Collapse
Affiliation(s)
- Jocelyn Myers
- Department of Biology, Howard University, NW, Washington, DC 20059, USA
| | | | | | | | | |
Collapse
|
13
|
Zahoor Z, Davies AJ, Kirk RS, Rollinson D, Walker AJ. Disruption of ERK signalling in Biomphalaria glabrata defence cells by Schistosoma mansoni: implications for parasite survival in the snail host. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1561-1571. [PMID: 18619674 DOI: 10.1016/j.dci.2008.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/20/2008] [Accepted: 05/20/2008] [Indexed: 05/26/2023]
Abstract
Biomphalaria glabrata is an intermediate snail host for the human blood fluke Schistosoma mansoni. To survive in B. glabrata, S. mansoni must suppress the snail's haemocyte-mediated defence response; the molecular mechanisms by which this is achieved remain largely unknown. We report here that S. mansoni excretory-secretory products (ESPs) attenuate phosphorylation of extracellular signal-regulated kinase (ERK) in haemocytes from a B. glabrata strain susceptible to S. mansoni. Whole S. mansoni sporocysts also impair ERK signalling in these cells. In striking contrast, ERK signalling in haemocytes from a B. glabrata strain refractory to schistosome infection is unaffected by ESPs or sporocysts. Effects of ESPs on ERK are similar in the presence or absence of snail plasma, thus ESPs seem to affect haemocytes directly. These findings reveal novel schistosome interference mechanisms; as ERK regulates various haemocyte defence reactions, we propose that disruption of ERK signalling in haemocytes facilitates S. mansoni survival within susceptible B. glabrata.
Collapse
Affiliation(s)
- Zahida Zahoor
- School of Life Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK
| | | | | | | | | |
Collapse
|
14
|
Padhi A, Buchheim MA, Verghese B. Dynamic evolutionary pattern of α2-macroglobulin in a model organism, the zebrafish (Danio rerio). Mol Immunol 2008; 45:3312-8. [DOI: 10.1016/j.molimm.2008.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
|
15
|
Myers J, Ittiprasert W, Raghavan N, Miller A, Knight M. Differences in Cysteine Protease Activity in Schistosoma mansoni-Resistant and -Susceptible Biomphalaria glabrata and Characterization of the Hepatopancreas Cathepsin B Full-length cDNA. J Parasitol 2008; 94:659-68. [DOI: 10.1645/ge-1410.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 11/02/2007] [Indexed: 11/10/2022] Open
|
16
|
Zhang H, Song L, Li C, Zhao J, Wang H, Gao Q, Xu W. Molecular cloning and characterization of a thioester-containing protein from Zhikong scallop Chlamys farreri. Mol Immunol 2007; 44:3492-500. [PMID: 17498803 DOI: 10.1016/j.molimm.2007.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/09/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
Thioester-containing proteins are a family of proteins characterized by the unique intrachain beta-cysteinyl-gamma-glutamyl thioester, which play important roles in innate immune responses. The cDNA of Zhikong scallop Chlamys farreri thioester-containing protein (designated as CfTEP) was cloned by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfTEP was of 4616 bp, consisting of a 5'-terminal untranslated region (UTR) of 30 bp and a 3'UTR of 140 bp with a polyadenylation signal sequence AATAAA and a poly(A) tail. The CfTEP cDNA encoded a polypeptide of 1481 amino acids with the theoretical isoelectric point of 5.98 and the predicted molecular weight of 161.4 kDa. The deduced amino acid sequence of CfTEP contained the canonical thioester motif GCGEQ, nine potential N-glycosylation sites and a C-terminal distinctive cysteine signature. It also contained a presumed catalytic histidine and proteolytic cleavage sites that were similar to C3 molecules. The high similarity of CfTEP with the thioester-containing proteins in other organisms, such as the TEPs from insects, the complement component C3, C4, C5 and the protease inhibitor alpha(2)-macroglobulin indicated that CfTEP should be a member of TEP family. The phylogenetic analysis revealed that CfTEP was closely related to TEPs from mollusc, nematodes and insects, and they formed a separate branch apart from the branches of complements factors and alpha(2)-macroglobulins. The spatial expression of CfTEP transcripts in healthy and bacterial challenged scallops was examined by semi-quantitative RT-PCR. The CfTEP transcripts were mainly detected in the tissues of hepatopancreas and gonad, and remarkably up-regulated by microbial challenge, which suggested that CfTEP was a constitutive and inducible acute-phase protein involved in immune defense. These results provided new insights into the role of CfTEP in scallop immune responses, as well as the evolutionary origin of this important, widespread and functionally diversified family of proteins.
Collapse
Affiliation(s)
- Huan Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
González Y, Tanaka AS, Hirata IY, del Rivero MA, Oliva MLV, Araujo MS, Chávez MA. Purification and partial characterization of human neutrophil elastase inhibitors from the marine snail Cenchritis muricatus (Mollusca). Comp Biochem Physiol A Mol Integr Physiol 2007; 146:506-13. [PMID: 16546427 DOI: 10.1016/j.cbpa.2006.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2005] [Revised: 12/23/2005] [Accepted: 01/16/2006] [Indexed: 11/21/2022]
Abstract
Human neutrophil elastase inhibition was detected in a crude extract of the marine snail Cenchritis muricatus (Gastropoda, Mollusca). This inhibitory activity remained after heating this extract at 60 degrees C for 30 min. From this extract, three human neutrophil elastase inhibitors (designated CmPI-I, CmPI-II and CmPI-III) were purified by affinity and reversed-phase chromatographies. Homogeneity of CmPI-I and CmPI-II was confirmed, while CmPI-III showed a single peak in reversed-phase chromatography, but heterogeneity in SDS-PAGE with preliminary molecular masses in the range of 18.4 to 22.0 kDa. In contrast, MALDI-TOF mass spectrometry of CmPI-I and CmPI-II showed that these inhibitors are molecules of low molecular mass, 5576 and 5469 Da, respectively. N-terminal amino acid sequences of CmPI-I (6 amino acids) and CmPI-II (20 amino acids) were determined. Homology to Kazal-type protease inhibitors was preliminarily detected for CmPI-II. Both inhibitors, CmPI-I and CmPI-II are able to inhibit human neutrophil elastase strongly, with equilibrium dissociation constant (Ki) values of 54.2 and 1.6 nM, respectively. In addition, trypsin and pancreatic elastase were also inhibited, but not plasma kallikrein or thrombin. CmPI-I and CmPI-II are the first human neutrophil elastase inhibitors described in a mollusk.
Collapse
Affiliation(s)
- Yamile González
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 No. 455 Plaza CP 10 400, Ciudad de La Habana, Cuba.
| | | | | | | | | | | | | |
Collapse
|
18
|
Lin YC, Vaseeharan B, Ko CF, Chiou TT, Chen JC. Molecular cloning and characterisation of a proteinase inhibitor, alpha 2-macroglobulin (α2-M) from the haemocytes of tiger shrimp Penaeus monodon. Mol Immunol 2007; 44:1065-74. [PMID: 16982096 DOI: 10.1016/j.molimm.2006.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/09/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
An alpha 2-macroglobulin (alpha2-M) gene was cloned from the haemocytes of tiger shrimp Penaeus monodon by RT-PCR, cloning and sequencing of overlapping PCR and rapid amplification of cDNA ends (RACE) method. Analysis of the nucleotide sequence revealed that the alpha2-M cDNA consists of 4876 bp with an open reading frame (ORF) of 4494 bp, a 52 bp 5'-untranslated region, and a 327 bp 3'-untranslated region containing a poly A signal. The open reading frame encodes a protein of 1498 amino acids with 18 residues signal sequence. The predicted molecular mass of the mature protein (1480 amino acids) is 167.7 kDa with an estimated pI of 5.30. The P. monodon alpha2-M sequence contains putative functional domains including a GCGEQNM thioester region, a bait region, and a receptor-binding domain which are present in other invertebrate and vertebrate alpha2-Ms. Sequence comparison showed that alpha2-M deduced amino acid sequence of P. monodon has an overall similarity of 85, 52 and 49% to that of kuruma shrimp Marsupenaeus japonicus, American horseshoe crab Limulus polyphemus and mud crab Scylla serrata, respectively. Alignment of the deduced amino acid sequence to other species alpha2-M showed that the overall structure is evolutionarily conserved and phylogenetic analysis revealed that P. monodon alpha2-M is closely related to other arthropod alpha2-M, and displays the highest similarity to M. japonicus alpha2-M. The alpha2-M was mainly expressed in haemocytes, but not in eyestalk, gill, muscle, hepatopancreas, and intestine. Quantitative real-time RT-PCR analysis showed that alpha2-M mRNA transcript in haemocytes of P. monodon increased significantly in 12, 24 and 48 h post-peptidoglycan (PG) injection, but returned to the original values in 72 h post-PG injection.
Collapse
Affiliation(s)
- Yong-Chin Lin
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | | | | | | | | |
Collapse
|
19
|
Lockyer AE, Spinks JN, Walker AJ, Kane RA, Noble LR, Rollinson D, Dias-Neto E, Jones CS. Biomphalaria glabrata transcriptome: identification of cell-signalling, transcriptional control and immune-related genes from open reading frame expressed sequence tags (ORESTES). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:763-82. [PMID: 17208299 PMCID: PMC1871615 DOI: 10.1016/j.dci.2006.11.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 11/06/2006] [Accepted: 11/08/2006] [Indexed: 05/13/2023]
Abstract
Biomphalaria glabrata is the major intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. Much remains to be discovered concerning specific molecules mediating the defence events in these intermediate hosts, triggered by invading schistosomes. An expressed sequence tag (EST) gene discovery strategy known as ORESTES has been employed to identify transcripts that might be involved in snail-schistosome interactions in order to examine gene expression patterns in infected B. glabrata. Over 3930 ESTs were sequenced from cDNA libraries made from both schistosome-exposed and unexposed snails using different tissue types, producing a database of 1843 non-redundant clones. The non-redundant set has been assessed for gene ontology and KEGG pathway assignments. This approach has revealed a number of signalling, antioxidant and immune-related gene homologues that, based on current understanding of molluscan and other comparative systems, might play an important role in the molluscan defence response towards infection.
Collapse
Affiliation(s)
- Anne E Lockyer
- Wolfson Wellcome Biomedical Laboratory, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Armstrong PB. Proteases and protease inhibitors: a balance of activities in host-pathogen interaction. Immunobiology 2006; 211:263-81. [PMID: 16697919 DOI: 10.1016/j.imbio.2006.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 01/12/2006] [Indexed: 12/30/2022]
Abstract
The immune system is the collection of effector molecules and cells of the host that act against invading parasites and their products. Secreted proteases serve important roles in parasitic metabolism and virulence and the several families of protein protease inhibitors of the plasma and blood cells play an important role in immunity by inactivating and clearing the protease virulence factors of parasites. The protease inhibitors are of two classes, the active-site inhibitors and the alpha2-macroglobulins. Inhibitors for the first class bind and inactivate the active site of the target protease. Proteins of the second class bind proteases by a unique molecular trap mechanism and deliver the bound protease to a receptor-mediated endocytic system for degradation in secondary lysosomes. Proteins of the alpha2-macroglobulin family are present in a variety of animal phyla, including the nematodes, arthropods, mollusks, echinoderms, urochordates, and vertebrates. A shared suite of unique functional characteristics have been documented for the alpha2-macroglobulins of vertebrates, arthropods, and mollusks. The alpha2-macroglobulins of nematodes, arthropods, mollusks, and vertebrates show significant sequence identity in key functional domains. Thus, the alpha2-macroglobulins comprise an evolutionarily conserved arm of the innate immune system with similar structure and function in animal phyla separated by 0.6 billion years of evolution.
Collapse
|
21
|
Li FL, Lu CP. Purification and characterization of alpha2-macroglobulin from grass carp Ctenopharyngodon idellus: cloning a segment of the corresponding gene. FISH & SHELLFISH IMMUNOLOGY 2006; 20:474-81. [PMID: 16139520 DOI: 10.1016/j.fsi.2005.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/12/2005] [Accepted: 06/16/2005] [Indexed: 05/04/2023]
Abstract
The plasma protein alpha2-macroglobulin (alpha2M) was purified by gel filtration and anion-exchange chromatography from grass carp plasma. The alpha2M consists of two different subunits of molecular weight 95 kDa and 80 kDa, respectively. The characteristics of grass carp alpha2M are similar to mammalian alpha2M, in that grass carp alpha2M exists in two forms: a fast-form and a slow-form. The former is complexed with protease. The sequence of grass carp alpha2M-conserved region and a region containing the bait region was determined by sequence analysis using polymerase chain reaction (PCR). The deduced amino acid sequence of the conserved region is similar to the alpha2M sequence of common carp, however, the bait region amino acid sequence is dramatically distinct from that of common carp. This may partially explain the differential ability of alpha2M of different species to inhibit different proteases. The alpha2M was able to inhibit Aeromonas hydrophila extracellular protease (AhECPase) and thus may play a role in resistance to infection by this pathogen.
Collapse
Affiliation(s)
- F L Li
- Key Laboratory of Animal Disease Diagnostic and Immunology Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | |
Collapse
|
22
|
|
23
|
Funkenstein B, Rebhan Y, Dyman A, Radaelli G. alpha2-Macroglobulin in the marine fish Sparus aurata. Comp Biochem Physiol A Mol Integr Physiol 2005; 141:440-9. [PMID: 16054852 DOI: 10.1016/j.cbpb.2005.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 06/02/2005] [Accepted: 06/04/2005] [Indexed: 11/25/2022]
Abstract
The alpha2-macroglobulin proteinase inhibitors (alpha2Ms) are a family of plasma proteins with the unique ability to inhibit a broad spectrum of proteinases, but are also known as binding proteins for many growth factors and cytokines, including growth hormone and members of the transforming growth factor-beta superfamily. A partial cDNA (475 amino acids) encoding the C-terminus of alpha2M was cloned from the liver of the marine teleostean fish Sparus aurata. The deduced amino acid sequence of the cloned fragment showed 58-60% similarity to carp alpha2Ms. Northern blot analysis of hepatic alpha2M revealed a transcript of about 5 kb. A transcript of a similar size was detected in 1-day larvae. Steady state levels of alpha2M in larvae increased gradually on subsequent days post-hatching. alpha2M expression in embryos was determined by RT-PCR and started in embryos aged 8 h post-fertilization, but not earlier. RT-PCR of muscle RNA detected alpha2M also in fish muscle, albeit with a lower expression than in the liver. Immunoreactive-alpha2M was found in yolk syncytial layer of 3-day larvae and in livers from larvae and adults. Immunoreactive-alpha2M was also identified in soluble total proteins from young larvae with a pattern resembling that of plasma. These data demonstrate that the alpha2M gene is expressed early in fish development. Moreover, in addition to its major expression in liver, alpha2M is expressed also in fish muscle.
Collapse
Affiliation(s)
- Bruria Funkenstein
- Department of Marine Biology and Biotechnology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel-Shikmona, Haifa 31080, Israel.
| | | | | | | |
Collapse
|
24
|
Ma H, Mai K, Xu W, Liufu Z. Molecular cloning of alpha2- macroglobulin in sea scallop Chlamys farreri (Bivalvia, Mollusca). FISH & SHELLFISH IMMUNOLOGY 2005; 18:345-349. [PMID: 15561564 DOI: 10.1016/j.fsi.2004.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Accepted: 08/11/2004] [Indexed: 05/24/2023]
Affiliation(s)
- Hongming Ma
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | | | | | | |
Collapse
|
25
|
Gollas-Galván T, Sotelo-Mundo RR, Yepiz-Plascencia G, Vargas-Requena C, Vargas-Albores F. Purification and characterization of alpha 2-macroglobulin from the white shrimp (Penaeus vannamei). Comp Biochem Physiol C Toxicol Pharmacol 2003; 134:431-8. [PMID: 12727292 DOI: 10.1016/s1532-0456(03)00002-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
alpha(2)-Macroglobulin (alpha(2)M) is a broad-spectrum protease-binding protein abundant in plasma from vertebrates and several invertebrate phyla. This protein was purified from cell-free hemolymph of the white shrimp, Penaeus vannamei, using Blue-Sepharose and Phenyl-Sepharose chromatography. The shrimp alpha(2)M is a 380 kDa protein, a homodimer of two apparently identical subunits of approximately 180 kDa linked by disulphide bridges. The amino acid sequence of the N-terminus is similar to the Limulus alpha(2)M counterpart. The shrimp alpha(2)M has a wide inhibition spectrum against different proteinase types including trypsin, leucine amino peptidase, chymotrypsin, elastase and papain. The secondary structure of shrimp alpha(2)M is mainly beta-sheet (36%), with a characteristic minimum elipticity at 217 nm. Evidence for a thiolester-mediated inhibition mechanism of proteases by alpha(2)M was provided by inactivation with methylamine.
Collapse
|
26
|
Idiris A, Ohtsubo KI, Yoza KI, Osada T, Nakamichi N, Matsumura T, Ikai A. Molecular cloning and structural characterization of the hagfish proteinase inhibitor of the alpha-2-macroglobulin family. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:89-98. [PMID: 12739901 DOI: 10.1023/a:1023076029496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The "most primitive" living vertebrate the hagfish has a dimeric proteinase inhibitor, a protein homologous to human alpha2-macroglobulin, in its plasma at high concentration. Although the hagfish proteinase inhibitor has been isolated and its function and quaternary structure studied, its primary structure, subunit composition and fragmentation process remain unclear. In this study, hagfish proteinase inhibitor cDNA was cloned, sequenced and cDNA-deduced amino acid sequence was analyzed. A large fraction of homosubunits in the dimeric structure of the protein has undergone a cleavage at a specific arginyl residue (Arg833) while the rest retained their chain integrity without being processed. Thus random combinations of processed and nonprocessed subunits in the dimeric structure of this protein result in different molecular conformers and generate a complicated multiband pattern in SDS-PAGE. It was further demonstrated by proteolytic analysis that the hagfish inhibitor has no susceptible arginyl residues within its bait region and thus incapable of trapping arginine specific proteinases. This implies that the specific subunit cleavage at Arg833 was caused by an unknown arginine specific proteinase which escaped from the entrapment by the hagfish inhibitor.
Collapse
Affiliation(s)
- Alimjan Idiris
- Laboratory of Biodynamics, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Samonte IE, Sato A, Mayer WE, Shintani S, Klein J. Linkage relationships of genes coding for alpha2-macroglobulin, C3 and C4 in the zebrafish: implications for the evolution of the complement and Mhc systems. Scand J Immunol 2002; 56:344-52. [PMID: 12234255 DOI: 10.1046/j.1365-3083.2002.01154.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The alpha2-macroglobulin (A2M) and the complement components C3 and C4 are related proteins derived from a common ancestor. Theoretically, this derivation could have occurred either by tandem duplications of their encoding genes or by polyploidization involving chromosomal segments, a chromosome or the whole genome. In tetrapods the A2M-, C3- and C4-encoding genes are generally each located on a different chromosome. This observation has been interpreted as supporting their origin by polyploidization. We identified and mapped (with the help of a radiation hybrid panel of cell lines) the A2M, C3 and C4 loci in the zebrafish, Danio rerio. Each of the three types of loci is present in the zebrafish in multiple copies, but all of the identified copies of a given type map to the same region in linkage groups 1 (C3) and 15 (A2M, C4). The A2M and C4 loci are mapped in the same region not linked to any of the class I or class II major histocompatibility complex (Mhc) loci. These observations are interpreted as supporting the origin of the A2M family of genes by tandem duplications, followed by the dispersal of the copies to different chromosomes. It is also argued that the association of C4 with the class I/II loci in tetrapods is accidental and without functional significance.
Collapse
Affiliation(s)
- I E Samonte
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Corrensstrasse 42, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
28
|
Armstrong PB, Quigley JP. A role for protease inhibitors in immunity of long-lived animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 484:141-60. [PMID: 11418980 DOI: 10.1007/978-1-4615-1291-2_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- P B Armstrong
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | | |
Collapse
|
29
|
Yigzaw Y, Gielens C, Préaux G. Isolation and characterization of an alpha-macroglobulin from the gastropod mollusc Helix pomatia with tetrameric structure and preserved activity after methylamine treatment. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1545:104-13. [PMID: 11342036 DOI: 10.1016/s0167-4838(00)00267-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A proteinase inhibitor with M(r) 697000 and 20.3% (w/w) carbohydrate was isolated from the haemolymph of the snail Helix pomatia and characterized. It was shown to have a tetrameric structure with subunits disulphide linked by two. It inhibited the activity of several types of proteinases against large substrates but not that of trypsin against N-alpha-benzoyl-DL-arginine-4-nitroanilide. This indicated a nonspecific and steric hindrance mode of inhibition. The ratio of trypsin molecules inactivated per inhibitor amounted to 1.5. This interaction led to a cleavage of the subunits into two equal fragments and to a slow to fast conformational change of the whole molecules. Experiments with 125I-labelled trypsin indicated that the proteinase had become covalently linked to one of the fragments. Heating of the inhibitor led to autolytic cleavage products but not when methylamine treated. Thiol titration after trypsin or methylamine treatment indicated the presence of one thiol ester bond per subunit. These facts are all indicative of an alpha-macroglobulin type of inhibitor. However, unlike for most of them the methylamine treatment did not induce a conformational change nor suppress its proteinase inhibitory activity. Moreover, invertebrate alpha-macroglobulins are mostly dimeric in structure but tetramers likewise do occur in Biomphalaria glabrata.
Collapse
Affiliation(s)
- Y Yigzaw
- Laboratorium voor Biochemie, Katholieke Universiteit Leuven, Celestijnenlaan 200 G, B-3001, Leuven-Heverlee, Belgium
| | | | | |
Collapse
|
30
|
Kopácek P, Weise C, Saravanan T, Vítová K, Grubhoffer L. Characterization of an alpha-macroglobulin-like glycoprotein isolated from the plasma of the soft tick Ornithodoros moubata. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:465-75. [PMID: 10632716 DOI: 10.1046/j.1432-1327.2000.01020.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the identification of the first representative of the alpha-2-macroglobulin family identified in terrestrial invertebrates. An abundant acidic glycoprotein was isolated from the plasma of the soft tick Ornithodoros moubata. Its molecular mass is about 420 kDa in the native state, whereas in SDS/PAGE it migrates as one band of 190 kDa under nonreducing conditions and a band of 92 kDa when reduced. Chemical deglycosylation reveals that it is composed of two different subunits, designated A and B. The N-terminal amino-acid sequence of subunit A is similar to the N-terminus of invertebrate alpha-2-macroglobulin. Sequence analysis of several internal peptides confirms that the tick protein belongs to the alpha-2-macroglobulin family, and the protein is therefore referred to as tick alpha-macroglobulin (TAM). Functional analyses strengthen this assignment. TAM inhibits trypsin and thermolysin cleavage of the high-molecular-weight substrate azocoll in a manner similar to that of bovine alpha-2-macroglobulin. This effect is abolished by pre-treatment of TAM with methylamine. In the presence of TAM, trypsin is protected against active-site inhibition by soybean trypsin inhibitor. We cloned and sequenced a PCR product containing sequences from both subunits and spanning the N-terminus of subunit B and the putative 'bait region' (a segment of alpha-2-macroglobulin which serves as target for various proteases). This indicates that the two subunits are generated from a precursor polypeptide by post-translational processing.
Collapse
Affiliation(s)
- P Kopácek
- Institute of Parasitology of the Czech Academy of Sciences, University of South Bohemia, Branisovská, Ceské Budĕjovice, Czech Republic.
| | | | | | | | | |
Collapse
|
31
|
Armstrong PB, Quigley JP. Alpha2-macroglobulin: an evolutionarily conserved arm of the innate immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1999; 23:375-390. [PMID: 10426429 DOI: 10.1016/s0145-305x(99)00018-x] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
All animals and plants have immune systems that protect them from the diversity of pathogens that would otherwise threaten their survival. The different components of the immune system may inactivate the pathogens themselves or promote the inactivation and clearance of toxic products produced by the pathogens. An important category of virulence factors of bacterial and prokaryotic pathogens are the proteases, which act to facilitate the invasion of the pathogens and to promote their destructive growth in the host organism. The present review concentrates on the comparative biology of an evolutionarily conserved arm of the immune system, the protein, alpha2-macroglobulin. alpha2-Macroglobulin is an abundant protein of the plasma of vertebrates and members of several invertebrate phyla and functions as a broad-spectrum protease-binding protein. Protease-conjugated alpha2-macroglobulin is selectively bound by cells contacting the body fluids and alpha2-macroglobulin and its protease cargo are then internalized and degraded in secondary lysosomes of those cells. In addition to this function as an agent for protease clearance, alpha2-macroglobulin binds a variety of other ligands, including several peptide growth factors and modulates the activity of a lectin-dependent cytolytic pathway in arthropods.
Collapse
Affiliation(s)
- P B Armstrong
- Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
32
|
Dodds AW, Law SK. The phylogeny and evolution of the thioester bond-containing proteins C3, C4 and alpha 2-macroglobulin. Immunol Rev 1998; 166:15-26. [PMID: 9914899 DOI: 10.1111/j.1600-065x.1998.tb01249.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The complement system is an effector of both the acquired and innate immune systems of the higher vertebrates. It has been traced back at least as far as the echinoderms and so predates the appearance of the antibodies, T-cell receptors and MHC molecules of adaptive immunity. Central to the function of complement is the reaction of the thioester bond located within the structure of complement components C3 and C4. The structural thioester first appeared in a protease inhibitor, alpha 2-macroglobulin, in which it is involved in the immobilisation and entrapment of proteases. An important development in the C3 molecule has been the acquisition of a catalytic His residue which greatly increases the rate of reaction of the thioester with hydroxyl groups and with water.
Collapse
Affiliation(s)
- A W Dodds
- University of Oxford, Department of Biochemistry, UK.
| | | |
Collapse
|
33
|
Faisal M, MacIntyre E, Adham K, Tall B, Kothary M, La Peyre J. Evidence for the presence of protease inhibitors in eastern (Crassostrea virginica) and Pacific (Crassostrea gigas) oysters. Comp Biochem Physiol B Biochem Mol Biol 1998. [DOI: 10.1016/s0305-0491(98)10084-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Affiliation(s)
- A L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|