1
|
Nguyen ATN, Baltos JA, Thomas T, Nguyen TD, Muñoz LL, Gregory KJ, White PJ, Sexton PM, Christopoulos A, May LT. Extracellular Loop 2 of the Adenosine A1 Receptor Has a Key Role in Orthosteric Ligand Affinity and Agonist Efficacy. Mol Pharmacol 2016; 90:703-714. [PMID: 27683014 DOI: 10.1124/mol.116.105007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
The adenosine A1 G protein-coupled receptor (A1AR) is an important therapeutic target implicated in a wide range of cardiovascular and neuronal disorders. Although it is well established that the A1AR orthosteric site is located within the receptor's transmembrane (TM) bundle, prior studies have implicated extracellular loop 2 (ECL2) as having a significant role in contributing to orthosteric ligand affinity and signaling for various G protein-coupled receptors (GPCRs). We thus performed extensive alanine scanning mutagenesis of A1AR-ECL2 to explore the role of this domain on A1AR orthosteric ligand pharmacology. Using quantitative analytical approaches and molecular modeling, we identified ECL2 residues that interact either directly or indirectly with orthosteric agonists and antagonists. Discrete mutations proximal to a conserved ECL2-TM3 disulfide bond selectively affected orthosteric ligand affinity, whereas a cluster of five residues near the TM4-ECL2 juncture influenced orthosteric agonist efficacy. A combination of ligand docking, molecular dynamics simulations, and mutagenesis results suggested that the orthosteric agonist 5'-N-ethylcarboxamidoadenosine binds transiently to an extracellular vestibule formed by ECL2 and the top of TM5 and TM7, prior to entry into the canonical TM bundle orthosteric site. Collectively, this study highlights a key role for ECL2 in A1AR orthosteric ligand binding and receptor activation.
Collapse
Affiliation(s)
- Anh T N Nguyen
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Jo-Anne Baltos
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Trayder Thomas
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Toan D Nguyen
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Laura López Muñoz
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Karen J Gregory
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Paul J White
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Patrick M Sexton
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Stewart MJ, Harding BI, Adamson KJ, Wang T, Storey KB, Cummins SF. Characterisation of two conopressin precursor isoforms in the land snail, Theba pisana. Peptides 2016; 80:32-39. [PMID: 26752717 DOI: 10.1016/j.peptides.2015.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/22/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022]
Abstract
Increased understanding of the molecular components involved in mollusc reproduction may assist in understanding the evolutionary adaptations used by animals, including hermaphrodites, to produce offspring. The neuropeptide conopressin, a member of the vasopressin/oxytocin-like peptide family, can modulate various reproductive activities in invertebrates. In this study, we used the hermaphroditic land snail, Theba pisana, to investigate the presence and tissue-specific distribution of a conopressin gene. Our transcriptomic analysis of T. pisana CNS sheath tissue has revealed two conopressin gene transcripts (Tpi-conopressin-1 and Tpi-conopressin-2), each encoding for precursors containing an identical conopressin nonapeptide and a variable neurophysin. T. pisana conopressins share high identity with other land snails and slugs, as well as other mollusc and vertebrate vasopressin/oxytocin, supported by phylogenetic analysis. Conserved residues in the T. pisana neurophysin are important for peptide binding, and we present molecular dynamic models demonstrating the most likely stable structure of the Tpi-conopressin-1 peptide when associated with neurophysin. RT-PCR shows that Tpi-conopressin-1 is additionally expressed in reproductive tissues, including the dart sac, where abundant spatial expression throughout the sac region is found; this implies a role in 'love' dart synthesis or dart injection during mating. The presence of a conopressin receptor in the CNS sheath indicates CNS neural excitation. In summary, this study represents a detailed molecular analysis of conopressin in a land snail.
Collapse
Affiliation(s)
- M J Stewart
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - B I Harding
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - K J Adamson
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - T Wang
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - K B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1 S 5B6, Canada
| | - S F Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| |
Collapse
|
3
|
Gerbier R, Leroux V, Couvineau P, Alvear-Perez R, Maigret B, Llorens-Cortes C, Iturrioz X. New structural insights into the apelin receptor: identification of key residues for apelin binding. FASEB J 2014; 29:314-22. [PMID: 25359495 DOI: 10.1096/fj.14-256339] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Apelin is the endogenous ligand of the orphan 7-transmembrane domain GPCR APJ, now named the apelin receptor (ApelinR). Apelin plays a prominent role in body fluid and cardiovascular homeostasis. To better understand the structural organization of the ApelinR, we built 3 homology 3-dimensional (3D) models of the human ApelinR using the validated cholecystokinin receptor-1 3D model or the X-ray structures of the β2-adrenergic and CXCR4 receptors as templates. Docking of the pyroglutamyl form of apelin 13 (pE13F) into these models revealed the conservation at the bottom of the binding site of a hydrophobic cavity in which the C-terminal Phe of pE13F was embedded. In contrast, at the top of the binding site, depending on the model, different interactions were visualized between acidic residues of the ApelinR and the basic residues of pE13F. Using site-directed mutagenesis, we showed that Asp 92, Glu 172, and Asp 282 of rat ApelinR are key residues in apelin binding by interacting with Lys 8, Arg 2, and Arg 4 of pE13F, respectively. These residues are only seen in the CXCR4-based ApelinR 3D model, further validating this model. These findings bring new insights into the structural organization of the ApelinR and the mode of apelin binding.
Collapse
Affiliation(s)
- Romain Gerbier
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; CNRS, UMR 7241, Paris, France; and INSERM, U1050, Paris, France
| | - Vincent Leroux
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; CNRS, UMR 7241, Paris, France; and INSERM, U1050, Paris, France
| | - Pierre Couvineau
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; CNRS, UMR 7241, Paris, France; and INSERM, U1050, Paris, France
| | - Rodrigo Alvear-Perez
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; CNRS, UMR 7241, Paris, France; and INSERM, U1050, Paris, France
| | - Bernard Maigret
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; CNRS, UMR 7241, Paris, France; and INSERM, U1050, Paris, France
| | - Catherine Llorens-Cortes
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; CNRS, UMR 7241, Paris, France; and INSERM, U1050, Paris, France
| | - Xavier Iturrioz
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; CNRS, UMR 7241, Paris, France; and INSERM, U1050, Paris, France
| |
Collapse
|
4
|
Jones S, Lukanowska M, Suhorutsenko J, Oxenham S, Barratt C, Publicover S, Copolovici DM, Langel Ü, Howl J. Intracellular translocation and differential accumulation of cell-penetrating peptides in bovine spermatozoa: evaluation of efficient delivery vectors that do not compromise human sperm motility. Hum Reprod 2013; 28:1874-89. [PMID: 23585561 DOI: 10.1093/humrep/det064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION Do cell penetrating peptides (CPPs) translocate into spermatozoa and, if so, could they be utilized to deliver a much larger protein cargo? SUMMARY ANSWER Chemically diverse polycationic CPPs rapidly and efficiently translocate into spermatozoa. They exhibit differential accumulation within intracellular compartments without detrimental influences upon cellular viability or motility but they are relatively ineffective in transporting larger proteins. WHAT IS ALREADY KNOWN Endocytosis, the prevalent route of protein internalization into eukaryotic cells, is severely compromised in mature spermatozoa. Thus, the translocation of many bioactive agents into sperm is relatively inefficient. However, the delivery of bioactive moieties into mature spermatozoa could be significantly improved by the identification and utility of an efficient and inert vectorial delivery technology. STUDY DESIGN CPP translocation efficacies, their subsequent differential intracellular distribution and the influence of peptides upon viability were determined in bovine spermatozoa. Temporal analyses of sperm motility in the presence of exogenously CPPs utilized normozoospermic human donor samples. MATERIALS AND METHODS CPPs were prepared by manual, automated and microwave-enhanced solid phase synthesis. Confocal fluorescence microscopy determined the intracellular distribution of rhodamine-conjugated CPPs in spermatozoa. Quantitative uptake and kinetic analyses compared the translocation efficacies of chemically diverse CPPs and conjugates of biotinylated CPPs and avidin. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) conversion assays were employed to analyse the influence of CPPs upon sperm cell viability and sperm class assays determined the impact of CPPs on motility in capacitated and non-capacitated human samples. MAIN RESULTS Chemically heterogeneous CPPs readily translocated into sperm to accumulate within discrete intracellular compartments. Mitoparan (INLKKLAKL(Aib)KKIL), for example, specifically accumulated within the mitochondria located in the sperm midpiece. The unique plasma membrane composition of sperm is a critical factor that directly influences the uptake efficacy of structurally diverse CPPs. No correlations in efficacies were observed when comparing CPP uptake into sperm with either uptake into fibroblasts or direct translocation across a phosphatidylcholine membrane. These comparative investigations identified C105Y (CSIPPEVKFNKPFVYLI) as a most efficient pharmacokinetic modifier for general applications in sperm biology. Significantly, CPP uptake induced no detrimental influence upon either bovine sperm viability or the motility of human sperm. As a consequence of the lack of endocytotic machinery, the CPP-mediated delivery of much larger protein complexes into sperm is relatively inefficient when compared with the similar process in fibroblasts. LIMITATIONS, REASONS FOR CAUTION It is possible that some CPPs could directly influence aspects of sperm biology and physiology that were not analysed in this study. WIDER IMPLICATIONS OF THE FINDINGS CPP technologies have significant potential to deliver selected bioactive moieties and so could modulate the biology and physiology of human sperm biology both prior- and post-fertilization.
Collapse
Affiliation(s)
- Sarah Jones
- Molecular Pharmacology Research Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wheatley M, Wootten D, Conner MT, Simms J, Kendrick R, Logan RT, Poyner DR, Barwell J. Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol 2012; 165:1688-1703. [PMID: 21864311 DOI: 10.1111/j.1476-5381.2011.01629.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
GPCRs exhibit a common architecture of seven transmembrane helices (TMs) linked by intracellular loops and extracellular loops (ECLs). Given their peripheral location to the site of G-protein interaction, it might be assumed that ECL segments merely link the important TMs within the helical bundle of the receptor. However, compelling evidence has emerged in recent years revealing a critical role for ECLs in many fundamental aspects of GPCR function, which supported by recent GPCR crystal structures has provided mechanistic insights. This review will present current understanding of the key roles of ECLs in ligand binding, activation and regulation of both family A and family B GPCRs.
Collapse
Affiliation(s)
- M Wheatley
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - D Wootten
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - M T Conner
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - J Simms
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - R Kendrick
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - R T Logan
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - D R Poyner
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - J Barwell
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| |
Collapse
|
6
|
Phichith D, Bun S, Padiolleau-Lefevre S, Guellier A, Banh S, Galleni M, Frere JM, Thomas D, Friboulet A, Avalle B. Novel peptide inhibiting both TEM-1 β-lactamase and penicillin-binding proteins. FEBS J 2010; 277:4965-72. [DOI: 10.1111/j.1742-4658.2010.07906.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Cho HJ, Moon MJ, Kwon HB, Hwang JI, Seong JY. Extracellular loop 3 (ECL3) and ECL3-proximal transmembrane domains VI and VII of the mesotocin and vasotocin receptors confer differential ligand selectivity and signaling activity. Gen Comp Endocrinol 2008; 156:71-82. [PMID: 18158152 DOI: 10.1016/j.ygcen.2007.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/07/2007] [Accepted: 11/12/2007] [Indexed: 11/15/2022]
Abstract
Mesotocin (MT) and vasotocin (VT) are the nonmammalian orthologs of mammalian oxytocin (OT) and arginine vasopressin (AVP), respectively. The OT/AVP family of peptides has arisen from gene duplication but has evolved to possess high selectivity toward their cognate receptors. The process of molecular evolution of receptors to confer high selectivity to their cognate ligands, however, is poorly understood. We constructed a series of reciprocal chimeras using a pair of bullfrog MT receptor (MTR) and VT1 receptor (VT1R) DNA fragments. Among the MTR/VT1R chimeras, the MTR chimera containing a region from transmembrane domain (TMD) VI to the carboxyl-terminal tail (C-tail) of VT1R showed an increased sensitivity to VT, while a chimeric VT1R containing TMD VI to C-tail of MTR showed an increased sensitivity to MT. Further dissection of domains using additional chimeras demonstrated that the receptor with the fragment containing extracellular loop 3 (ECL3) and ECL3-proximal TMDs VI and VII of MTR increased MT selectivity. This fragment is also important for receptor conformation that permits the signaling ability of the receptor. Particularly, the amino acids Val/Ile(6.54) in TMD VI and Pro/Glu(7.29) in ECL3 appear to be involved in this activity, since double mutation of these amino acids completely blocked signaling activity while maintaining ligand binding activity. Mutations at these residues in human OT and AVP 1a receptors markedly decreased receptor signaling activity. This study provides clues for understanding molecular coevolution of the OT/AVP peptides and their receptors with regard to receptor-ligand binding and receptor signaling activity.
Collapse
Affiliation(s)
- Hyun Ju Cho
- Graduate School of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | | | | | | | | |
Collapse
|
8
|
Conner M, Hawtin SR, Simms J, Wootten D, Lawson Z, Conner AC, Parslow RA, Wheatley M. Systematic analysis of the entire second extracellular loop of the V(1a) vasopressin receptor: key residues, conserved throughout a G-protein-coupled receptor family, identified. J Biol Chem 2007; 282:17405-12. [PMID: 17403667 DOI: 10.1074/jbc.m702151200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of extracellular residues of G-protein-coupled receptors (GPCRs) are not well defined compared with residues in transmembrane helices. Nevertheless, it has been established that extracellular domains of both peptide-GPCRs and amine-GPCRs incorporate functionally important residues. Extracellular loop 2 (ECL2) has attracted particular interest, because the x-ray structure of bovine rhodopsin revealed that ECL2 projects into the binding crevice within the transmembrane bundle. Our study provides the first comprehensive investigation into the role of the individual residues comprising the entire ECL2 domain of a small peptide-GPCR. Using the V(1a) vasopressin receptor, systematic substitution of all of the ECL2 residues by Ala generated 30 mutant receptors that were characterized pharmacologically. The majority of these mutant receptor constructs (24 in total) had essentially wild-type ligand binding and intracellular signaling characteristics, indicating that these residues are not critical for normal receptor function. However, four aromatic residues Phe(189), Trp(206), Phe(209), and Tyr(218) are important for agonist binding and receptor activation and are highly conserved throughout the neurohypophysial hormone subfamily of peptide-GPCRs. Located in the middle of ECL2, juxtaposed to the highly conserved disulfide bond, Trp(206) and Phe(209) project into the binding crevice. Indeed, Phe(209) is part of the Cys-X-X-X-Ar (where Ar is an aromatic residue) motif, which is well conserved in both peptide-GPCRs and amine-GPCRs. In contrast, Phe(189) and Tyr(218), located at the extreme ends of ECL2, may be important for determining the position of the ECL2 cap over the binding crevice. This study provides mechanistic insight into the roles of highly conserved ECL2 residues.
Collapse
Affiliation(s)
- Matthew Conner
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hawtin SR, Simms J, Conner M, Lawson Z, Parslow RA, Trim J, Sheppard A, Wheatley M. Charged extracellular residues, conserved throughout a G-protein-coupled receptor family, are required for ligand binding, receptor activation, and cell-surface expression. J Biol Chem 2006; 281:38478-88. [PMID: 16990262 DOI: 10.1074/jbc.m607639200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For G-protein-coupled receptors (GPCRs) in general, the roles of extracellular residues are not well defined compared with residues in transmembrane helices (TMs). Nevertheless, extracellular residues are important for various functions in both peptide-GPCRs and amine-GPCRs. In this study, the V(1a) vasopressin receptor was used to systematically investigate the role of extracellular charged residues that are highly conserved throughout a subfamily of peptide-GPCRs, using a combination of mutagenesis and molecular modeling. Of the 13 conserved charged residues identified in the extracellular loops (ECLs), Arg(116) (ECL1), Arg(125) (top of TMIII), and Asp(204) (ECL2) are important for agonist binding and/or receptor activation. Molecular modeling revealed that Arg(125) (and Lys(125)) stabilizes TMIII by interacting with lipid head groups. Charge reversal (Asp(125)) caused re-ordering of the lipids, altered helical packing, and increased solvent penetration of the TM bundle. Interestingly, a negative charge is excluded at this locus in peptide-GPCRs, whereas a positive charge is excluded in amine-GPCRs. This contrasting conserved charge may reflect differences in GPCR binding modes between peptides and amines, with amines needing to access a binding site crevice within the receptor TM bundle, whereas the binding site of peptide-GPCRs includes more extracellular domains. A conserved negative charge at residue 204 (ECL2), juxtaposed to the highly conserved disulfide bond, was essential for agonist binding and signaling. Asp(204) (and Glu(204)) establishes TMIII contacts required for maintaining the beta-hairpin fold of ECL2, which if broken (Ala(204) or Arg(204)) resulted in ECL2 unfolding and receptor dysfunction. This study provides mechanistic insight into the roles of conserved extracellular residues.
Collapse
Affiliation(s)
- Stuart R Hawtin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Selz KA, Mandell AJ, Shlesinger MF, Arcuragi V, Owens MJ. Designing human m1 muscarinic receptor-targeted hydrophobic eigenmode matched peptides as functional modulators. Biophys J 2004; 86:1308-31. [PMID: 14990463 PMCID: PMC1303971 DOI: 10.1016/s0006-3495(04)74204-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Accepted: 10/23/2003] [Indexed: 11/24/2022] Open
Abstract
A new proprietary de novo peptide design technique generated ten 15-residue peptides targeting and containing the leading nontransmembrane hydrophobic autocorrelation wavelengths, "modes", of the human m(1) muscarinic cholinergic receptor, m(1)AChR. These modes were also shared by the m(4)AChR subtype (but not the m(2), m(3), or m(5) subtypes) and the three-finger snake toxins that pseudoirreversibly bind m(1)AChR. The linear decomposition of the hydrophobically transformed m(1)AChR amino acid sequence yielded ordered eigenvectors of orthogonal hydrophobic variational patterns. The weighted sum of two eigenvectors formed the peptide design template. Amino acids were iteratively assigned to template positions randomly, within hydrophobic groups. One peptide demonstrated significant functional indirect agonist activity, and five produced significant positive allosteric modulation of atropine-reversible, direct-agonist-induced cellular activation in stably m(1)AChR-transfected Chinese hamster ovary cells, reflected in integrated extracellular acidification responses. The peptide positive allosteric ligands produced left-shifts and peptide concentration-response augmentation in integrated extracellular acidification response asymptotic sigmoidal functions and concentration-response behavior in Hill number indices of positive cooperativity. Peptide mode specificity was suggested by negative crossover experiments with human m(2)ACh and D(2) dopamine receptors. Morlet wavelet transformation of the leading eigenvector-derived, m(1)AChR eigenfunctions locates seven hydrophobic transmembrane segments and suggests possible extracellular loop locations for the peptide-receptor mode-matched, modulatory hydrophobic aggregation sites.
Collapse
Affiliation(s)
- Karen A Selz
- Cielo Institute, Asheville, North Carolina 28804, USA.
| | | | | | | | | |
Collapse
|
11
|
Mandell AJ, Selz KA, Owens MJ, Kinkead B, Shlesinger MF, Gutman DA, Arguragi V. Cellular and behavioral effects of D2 dopamine receptor hydrophobic eigenmode-targeted peptide ligands. Neuropsychopharmacology 2003; 28 Suppl 1:S98-107. [PMID: 12827150 DOI: 10.1038/sj.npp.1300134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Patterns in G-protein-coupled receptors' hydrophobically transformed amino-acid sequences can be computationally characterized as hierarchies of autocorrelation waves, "hydrophobic eigenmodes", using autocovariance matrix decomposition and all poles power spectral and wavelet transformations. L- or D-amino acid (retro-inverso) 12-18 residue peptides targeting these modes can be designed using eigenvector templates derived from these computations. In all, 12 human long-form D(2) dopamine receptor eigenmode-targeted 15 mer peptides were designed, synthesized, and shown to modulate and/or indirectly activate the extracellular acidification response, EAR, in stably receptor-transfected CHO and LtK cells, with an 83% hit rate. Representative L- and D-amino-acid retro-inverso peptides injected bilaterally in the nucleus accumbens demonstrated changes in rat exploratory behavior and prepulse inhibition similar to those observed following parenteral amphetamine. In contrast with geometric models used for ligand design, such as pharmacophores, the hydrophobic eigenmode approach to lead modulatory peptide design targets hydrophobic eigenmode-bearing subsequences, including those not visible from X-ray and NMR studies such as extracellular segments and loops.
Collapse
Affiliation(s)
- Arnold J Mandell
- Cielo Institute, 486 Sunset Drive, Asheville, NC 28804-3727, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
René P, de Keyzer Y. The vasopressin receptor of corticotroph pituitary cells. PROGRESS IN BRAIN RESEARCH 2002; 139:345-57. [PMID: 12436948 DOI: 10.1016/s0079-6123(02)39029-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Patricia René
- CNRS UPR 1524, Institut Cochin de Génétique Moléculaire, 75014 Paris, France.
| | | |
Collapse
|
13
|
Farquhar M, Soomets U, Bates RL, Martin A, Langel U, Howl J. Novel mastoparan analogs induce differential secretion from mast cells. CHEMISTRY & BIOLOGY 2002; 9:63-70. [PMID: 11841939 DOI: 10.1016/s1074-5521(01)00098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cationic amphiphilic peptides stimulate secretion via a receptor-independent action upon G proteins. We have previously utilized chimeric analogs of mastoparan (MP), including galparan (galanin(1-13)-MP ), as molecular probes of secretion. Here, we further resolve the structure-activity relationship of peptidyl secretagogs, including rationally designed chimeric MP analogs. The secretory efficacies of 10 MP analogs were significantly higher than 45 unrelated basic peptides. Comparative studies identified MP analogs that are differential secretagogs for 5-hydroxytryptamine (5-HT) and beta-hexosaminidase. Peptide-induced activation of phospholipase D (PLD), an enzyme intimately involved in regulated exocytosis [5], correlated with the secretion of beta-hexosaminidase but not 5-HT. Thus, these data indicate that different mechanisms are responsible for the exocytosis of 5-HT and beta-hexosaminidase, respectively. Moreover, mastoparan analogs are novel tools for probing the molecular details of exocytosis and other biological phenomena.
Collapse
Affiliation(s)
- Michelle Farquhar
- Molecular Pharmacology Group, School of Health Sciences, University of Wolverhampton, 62-68 Lichfield Street, WV1 1DJ, Wolverhampton, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Hawtin SR, Tobin AB, Patel S, Wheatley M. Palmitoylation of the vasopressin V1a receptor reveals different conformational requirements for signaling, agonist-induced receptor phosphorylation, and sequestration. J Biol Chem 2001; 276:38139-46. [PMID: 11466323 DOI: 10.1074/jbc.m106142200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we establish that the V1a vasopressin receptor (V1aR) is palmitoylated, and we show that this modification has an important functional role. Palmitoylation of the V1aR occurs within the Cys371/Cys372 couplet located in the proximal C-terminal tail domain. Substitution of these residues in a [C371G/C372G]V1aR construct effectively disrupted receptor palmitoylation. Our data also indicate an additional palmitoylation site at another locus in the receptor, as yet undefined. [3H]Palmitate incorporation was agonist-sensitive and increased following exposure to [Arg8]vasopressin (AVP). Given the hydrophobic nature of the acyl chain, palmitoylation of the C terminus of G-protein-coupled receptors has been proposed to form an additional intracellular loop. Consequently, palmitoylation/depalmitoylation will have a profound effect on the local conformation of this domain. The V1aR palmitoylation status regulated both phosphorylation and sequestration of the receptor, and furthermore, palmitoylation, phosphorylation, and sequestration were all regulated by AVP. The palmitoylation-defective construct [C371G/C372G]V1aR exhibited decreased phosphorylation compared to wild-type V1aR, under both basal and AVP-stimulated conditions, and was sequestered at a faster rate. In contrast, the binding of four different classes of ligand and intracellular signaling were not affected by palmitoylation. This study therefore establishes that there are different conformational requirements for signaling, agonist-induced phosphorylation, and sequestration of the V1aR.
Collapse
Affiliation(s)
- S R Hawtin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
15
|
Lee KH, Ahn JI, Yu DH, Jeong HS, Lee SH, Kim KS, Chung IY, Kim JH, Lee YS. Effect of N-glycosylation on ligand binding affinity of rat V1a vasopressin receptor. Biochem Biophys Res Commun 2001; 286:707-13. [PMID: 11520055 DOI: 10.1006/bbrc.2001.5456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A rat Vla vasopressin (rVla) receptor has two putative N-glycosylation sites at 14th and 27th amino acid asparagine in the extracellular N-terminus. In the present study, we examined the possible roles of N-glycosylation of the N-terminus in the receptor function. Three point mutants for deglycosylated rVla receptor were generated in which the 14th and/or the 27th asparagine was replaced with glutamine, namely N14Q, N27Q, and N14:27Q, each tagged with an enhanced green fluorescent protein (EGFP) at their C-termini, and transfected to COS-7 or HEK292 cells. The two single mutants and a double mutant have progressively smaller molecular mass compared to the wild-type receptor as determined by immunoblot analysis, indicating that the two sites are effectively glycosylated in vivo. The maximal ligand binding capacities of three mutant receptors were comparable to that of wild-type (17.02 +/- 1.32 pmol/g protein) with modest changes in ligand binding affinities: N27Q and N14:27Q had decreased binding affinities compared to N14Q and wild-type receptors. The reduced binding affinities of the deglycosylated mutants are not likely due to the impaired intracellular transport since their traffickings were indistinguishable from one another. Taken together, these results suggest that the N-glycosylation at the two sites of the N-terminus of rV1a receptor minimally affects the surface expression and trafficking of the receptor.
Collapse
Affiliation(s)
- K H Lee
- Department of Biochemistry, College of Medicine, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hawtin SR, Davies AR, Matthews G, Wheatley M. Identification of the glycosylation sites utilized on the V1a vasopressin receptor and assessment of their role in receptor signalling and expression. Biochem J 2001; 357:73-81. [PMID: 11415438 PMCID: PMC1221930 DOI: 10.1042/0264-6021:3570073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most of the large family of G-protein-coupled receptors (GPCRs) possess putative N-glycosylation sites within their N-termini. However, for the vast majority of GPCRs, it has not been determined which, if any, of the consensus glycosylation sites are actually utilized or what the functional ramifications are of modification by oligosaccharide. The occurrence and function of glycosylation of the V(1a) vasopressin receptor (V(1a)R) has been investigated in this study. Using a combination of translation systems that are either glycosylation-competent or do not support glycosylation, we established that of the four putative N-glycosylation sites at Asn(14), Asn(27), Asn(198) and Asn(333) only the first three sites are actually modified by carbohydrate. This was confirmed by disruption of consensus sites by site-directed mutagenesis, individually and in combination. The V(1a)R is not O-glycosylated. The functionality of a series of glycosylation-defective V(1a)R constructs was characterized after expression in HEK 293T cells. It was found that carbohydrate moieties are not required for the receptor to bind any of the four classes of ligand available, or for intracellular signalling. The glycosylation status of the V(1a)R did, however, regulate the level of total receptor expression and also the abundance of receptor at the cell surface. Furthermore, the nature of this regulation (increased or decreased expression) was dictated by the locus of the oligosaccharide modification. Modification of any one of the consensus sites alone, however, was sufficient for wild-type expression, indicating a redundancy within the glycosylation sites. A role for the carbohydrate in the correct folding or stabilization of the V(1a)R is indicated. Glycosylation is not required, however, for efficient trafficking of the receptor to the cell surface. This study establishes the functional importance of N-glycosylation of the V(1a)R.
Collapse
Affiliation(s)
- S R Hawtin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
17
|
Hawtin SR, Wesley VJ, Parslow RA, Patel S, Wheatley M. Critical role of a subdomain of the N-terminus of the V1a vasopressin receptor for binding agonists but not antagonists; functional rescue by the oxytocin receptor N-terminus. Biochemistry 2000; 39:13524-33. [PMID: 11063589 DOI: 10.1021/bi0013400] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A fundamental issue in molecular pharmacology is to define how agonist:receptor interaction differs from that of antagonist:receptor. The V(1a) receptor (V(1a)R) is a member of a family of related G-protein-coupled receptors that are activated by the neurohypophysial peptide hormone arginine-vasopressin (AVP). Here we define a short subdomain of the N-terminus of the V(1a)R from Glu(37) to Asn(47) that is an absolute requirement for binding AVP and other agonists. In marked contrast to the situation for agonists, deleting this segment has little or no effect on the binding of either peptide or non-peptide antagonists. In addition, we established that this subdomain was crucial for receptor activation and second messenger generation. The oxytocin receptor (OTR) also binds AVP with high affinity but exhibits a different pharmacological profile to the V(1a)R. Substitution of the N-terminus of the V(1a)R with the corresponding sequence from the OTR generated a chimeric receptor (OTR(N)-V(1a)R). The presence of the OTR N-terminus recovered high affinity agonist binding such that the OTR(N)-V(1a)R possessed almost wild-type V(1a)R pharmacology and signaling. Consequently, a domain within the N-terminus is required for agonist binding but it does not provide the molecular discriminator for subtype-selective agonist recognition. Cotransfection and peptide mimetic studies demonstrated that this N-terminal subdomain had to be contiguous with the receptor polypeptide to be functional. This study establishes that a segment of the V(1a)R N-terminus has a pivotal role in the mechanism of agonist binding and provides molecular insight into key differences between the interaction of agonists and antagonists with a peptide receptor family.
Collapse
Affiliation(s)
- S R Hawtin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | | | | | | | | |
Collapse
|
18
|
Sahu A, Soulika AM, Morikis D, Spruce L, Moore WT, Lambris JD. Binding kinetics, structure-activity relationship, and biotransformation of the complement inhibitor compstatin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2491-9. [PMID: 10946275 DOI: 10.4049/jimmunol.165.5.2491] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have previously identified a 13-residue cyclic peptide, Compstatin, that binds to complement component C3 and inhibits complement activation. Herein, we describe the binding kinetics, structure-activity relationship, and biotransformation of Compstatin. Biomolecular interaction analysis using surface-plasmon resonance showed that Compstatin bound to native C3 and its fragments C3b and C3c, but not C3d. While binding of Compstatin to native C3 was biphasic, binding to C3b and C3c followed the 1:1 Langmuir binding model; the affinities of Compstatin for C3b and C3c were 22- and 74-fold lower, respectively, than that of native C3. Analysis of Compstatin analogs synthesized for structure-function studies indicated that 1) the 11-membered ring between disulfide-linked Cys2-Cys12 constitutes a minimal structure required for optimal activity; 2) retro-inverso isomerization results in loss of inhibitory activity; and 3) some residues of the type I beta-turn segment also interact with C3. In vitro studies of Compstatin in human blood indicated that a major pathway of biotransformation was the removal of Ile1, which could be blocked by N-acetylation of the peptide. These findings indicate that acetylated Compstatin is stable against enzymatic degradation and that the type I beta-turn segment is not only critical for preservation of the conformational stability, but also involved in intermolecular recognition.
Collapse
Affiliation(s)
- A Sahu
- Protein Chemistry Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
19
|
Howl J, Prochazka Z, Wheatley M, Slaninová J. Novel strategies for the design of receptor-selective vasopressin analogues: Aib-substitution and retro-inverso transformation. Br J Pharmacol 1999; 128:647-52. [PMID: 10516644 PMCID: PMC1571696 DOI: 10.1038/sj.bjp.0702857] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. We determined the pharmacological profile of novel backbone-modified peptides designed as protease-resistant, selective analogues of AVP. Binding affinities of peptides were determined at both V1A and V2 subtypes of vasopressin receptor (VPR). Biological potencies of selected peptides were tested in pressor and antidiuretic bioassays. 2. Substitution of the achiral alpha-aminoisobutyric acid (Aib) at position 4 or 7 of AVP produced peptides that selectively bound the V2 VPR. Both [Aib4]AVP (140 IU mg-1) and [Aib7]AVP (36 IU mg-1) are selective antidiuretic agonists with little or no activity in uterotonic and pressor assays. 3. [Aib4] and [Aib7] derivatives of the linear V1A-selective antagonist [PhaaDTyr(Et)2Arg6Tyr(NH2)9]AVP bound selectively and with high affinity (Kd 0.51 and 4.1 nM respectively) to the V1A VPR. Bioassays confirmed that these peptides were potent antivasopressor agents (pA2 8.10 and 8.36 respectively). 4. A total retro-inverso strategy was used to prepare protease-resistant mimetics of both AVP and linear V1A-selective antagonists. Cyclic retro-inverso mimetics of AVP did not bind either V1A or V2 VPRs. In contrast, rationally designed retro-inverso mimetics of linear V1A-selective antagonists selectively bound the V1A VPR. 5. Our findings indicate novel methods to improve the pharmacodynamic and pharmacokinetic parameters of neurohypophysial hormone analogues which could be equally applicable to other peptide-receptor systems.
Collapse
Affiliation(s)
- J Howl
- Molecular Pharmacology Group, School of Health Sciences, University of Wolverhampton, Wolverhampton WV1 1DJ, UK
| | | | | | | |
Collapse
|
20
|
Stillman BA, Breyer MD, Breyer RM. Importance of the extracellular domain for prostaglandin EP(2) receptor function. Mol Pharmacol 1999; 56:545-51. [PMID: 10462542 DOI: 10.1124/mol.56.3.545] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ligand binding pocket of biogenic amine G protein-coupled receptors is embedded in the membrane-spanning regions of these receptors, whereas the extracellular domains of the peptidergic receptors play a key role in the structure and function of this class of receptors. To examine the role of the extracellular sequences in prostaglandin receptor-ligand interaction, chimeras were constructed with the two G(s)-coupled E-prostanoid (EP) receptors, replacing each of the extracellular sequences of the human EP(2) receptor with the corresponding human EP(4) receptor residues. Replacement of the third extracellular loop (ECIII) yielded a receptor that binds [(3)H]prostaglandin E(2) (PGE(2); K(d) = 6.3 nM) with similar affinity as the EP(2) wild-type receptor (K(d) = 12.9 nM). Similarly, replacement of the nonconserved carboxyl-terminal portion of ECII resulted in a receptor that maintains [(3)H]PGE(2) binding (K(d) = 8.8 nM). In contrast, replacement of the amino terminus, ECI, the entire ECII region, or the residues within the highly conserved motif of the amino-terminal half of ECII yielded chimeras that displayed neither detectable [(3)H]PGE(2) binding nor receptor-evoked cAMP generation. Immunoprecipitation demonstrated that each chimera is expressed at levels near that of wild-type receptors; however, enzyme-linked immunosorbent assay revealed that inactive chimeras have reduced cell surface expression. Similarly, chimeras that exchange the multiple extracellular loop sequences N/ECI, ECII/ECIII, or all four sequences lacked detectable binding and signal transduction, and although expressed, were not detected on the cell surface. These data suggest that the extracellular sequences of the EP(2) receptor are critical determinants of receptor structure and/or function, unlike other G protein-coupled receptors that bind small molecules.
Collapse
Affiliation(s)
- B A Stillman
- Division of Nephrology, Department of Pharmacology and Vanderbilt Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | |
Collapse
|
21
|
Affiliation(s)
- T Kimura
- Department of Obstetrics and Gynecology, Osaka University Medical School, Japan
| | | |
Collapse
|
22
|
Wheatley M, Hawtin SR, Yarwood NJ. Structure/function studies on receptors for vasopressin and oxytocin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 449:363-5. [PMID: 10026826 DOI: 10.1007/978-1-4615-4871-3_46] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- M Wheatley
- School of Biochemistry, University of Birmingham, Edgbaston, United Kingdom
| | | | | |
Collapse
|
23
|
Howl J, Wheatley M. Biochemical pharmacology of total retro-inverso analogues of bradykinin and angiotensin II: Molecular recognition by G-protein-coupled receptors and angiotensin converting enzyme. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/bf02443538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Mendre C, Dufour MN, Le Roux S, Seyer R, Guillou L, Calas B, Guillon G. Synthetic rat V1a vasopressin receptor fragments interfere with vasopressin binding via specific interaction with the receptor. J Biol Chem 1997; 272:21027-36. [PMID: 9261104 DOI: 10.1074/jbc.272.34.21027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To study the vasopressin receptor domains involved in the hormonal binding, we synthesized natural and modified fragments of V1a vasopressin receptor and tested their abilities to affect hormone-receptor interactions. Natural fragments mimicking the external loops one, two, and three were able to inhibit specific vasopressin binding to V1a receptor. In contrast, the natural N-terminal part of the V1a vasopressin receptor was found inactive. One fragment, derived from the external second loop and containing an additional C-terminal cysteine amide, was able to fully inhibit the specific binding of both labeled vasopressin agonist and antagonist to rat liver V1a vasopressin receptor and the vasopressin-sensitive phospholipase C of WRK1 cells. The peptide-mediated inhibition involved specific interactions between the V1a receptor and synthetic V1a vasopressin receptor fragment since 1) it was dependent upon the vasopressin receptor subtype tested (Ki(app) for the peptide: 3.7, 14.6, and 64.5 microM for displacing [3H]vasopressin from rat V1a, V1b, and V2 receptors, respectively; 2) it was specific and did not affect sarcosin 1-angiotensin II binding to rat liver membranes; 3) it was not mimicked by vasopressin receptor unrelated peptides exhibiting putative detergent properties; and 4) no direct interaction between [3H]vasopressin and synthetic peptide linked to an affinity chromatography column could be observed. Such an inhibition affected both the maximal binding capacity of the V1a vasopressin receptor and its affinity for the labeled hormone, depending upon the dose of synthetic peptide used and was partially irreversible. Structure-activity studies using a serie of synthetic fragments revealed the importance of their size and cysteinyl composition. These data indicate that some peptides mimicking extracellular loops of the V1a vasopressin receptor may interact with the vasopressin receptor itself and modify its coupling with phospholipase C.
Collapse
Affiliation(s)
- C Mendre
- INSERM U469, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Peptidomimetics are one set of probes used in the transition pathway of small molecule drug design. Cyclization of the peptide backbone and its modification with aromatic residues constitutes an effective approach to mimetic drug design and circumvents obstacles associated with delivery and formulation of peptides and peptidomimetics. In the past year, examples of mimicking beta-turn structures has led to combining design strategies with molecular libraries, demonstrating that peptidomimetics can provide valuable clues about receptor similarities not revealed by their endogenous ligands. This information can lead to the development of dual inhibitors. In addition, this work suggests that the use of libraries and rational design need not be mutually exclusive approaches to lead discovery.
Collapse
Affiliation(s)
- T Kieber-Emmons
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|