1
|
Morita Y, Ohno M, Nishi K, Hiraoka Y, Saijo S, Matsuda S, Kita T, Kimura T, Nishi E. Genome-wide profiling of nardilysin target genes reveals its role in epigenetic regulation and cell cycle progression. Sci Rep 2017; 7:14801. [PMID: 29093577 PMCID: PMC5665917 DOI: 10.1038/s41598-017-14942-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/18/2017] [Indexed: 11/28/2022] Open
Abstract
Post-translational histone modifications, such as acetylation and methylation, are prerequisites for transcriptional regulation. The metalloendopeptidase nardilysin (Nrdc) is a H3K4me2-binding protein that controls thermoregulation and β-cell functions through its transcriptional coregulator function. We herein combined high-throughput ChIP-seq and RNA-seq to achieve the first genome-wide identification of Nrdc target genes. A ChIP-seq analysis of immortalized mouse embryo fibroblasts (iMEF) identified 4053 Nrdc-binding sites, most of which were located in proximal promoter sites (2587 Nrdc-binding genes). Global H3K4me2 levels at Nrdc-binding promoters slightly increased, while H3K9ac levels decreased in the absence of Nrdc. Among Nrdc-binding genes, a comparative RNA-seq analysis identified 448 candidates for Nrdc target genes, among which cell cycle-related genes were significantly enriched. We confirmed decreased mRNA and H3K9ac levels at the promoters of individual genes in Nrdc-deficient iMEF, which were restored by the ectopic introduction of Nrdc. Reduced mRNA levels, but not H3K9ac levels were fully restored by the reintroduction of the peptidase-dead mutant of Nrdc. Furthermore, Nrdc promoted cell cycle progression at multiple stages, which enhanced cell proliferation in vivo. Collectively, our integrative studies emphasize the importance of Nrdc for maintaining a proper epigenetic status and cell growth.
Collapse
Affiliation(s)
- Yusuke Morita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshinori Hiraoka
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, 650-8586, Japan
| | - Sayaka Saijo
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shintaro Matsuda
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toru Kita
- Kobe Home Medical and Nursing Care Promotion Foundation, 14-1 Naka Ichiriyama, Kami Aza, Shimotani, Yamada-cho, Kita-ku, Kobe, 651-1102, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan.
| |
Collapse
|
2
|
Segretain D, Gilleron J, Bacro JN, Di Marco M, Carette D, Pointis G. Ultrastructural localization and distribution of Nardilysin in mammalian male germ cells. Basic Clin Androl 2016; 26:5. [PMID: 27051521 PMCID: PMC4820967 DOI: 10.1186/s12610-016-0032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/10/2016] [Indexed: 11/16/2022] Open
Abstract
Background NRD convertase, also termed Nardilysin, is a Zn++ metalloendopeptidase that specifically cleaves the N-terminus of arginine and lysine residues into dibasic moieties. Although this enzyme was found located within the testis, its function in male reproduction is largely unknown. In addition, the precise distribution of this enzyme within germ cells remains to be determined. Methods To answer these questions, we developed an immuno-gold electron microscopy analysis to detect Nardilysin at ultrastructural level in mice. In addition, we performed a quantitative analysis of these gold particles to statistically estimate the distribution of Nardilysin in the different subcellular compartments of differentiating late spermatids/spermatozoa. Results Expression of Nardilysin in wild-type mice was restricted to germ cells and markedly increased during the last steps of spermiogenesis. In elongated spermatids, we found the enzyme mainly localized in the cytoplasm, more precisely associated with two microtubular structures, the manchette and the axoneme. No labelling was detected over the membranous organelles of the spermatids. To test whether this localization is dependent of the functional microtubules organization of the flagella, we analysed the localization into a specific mouse mutant ebo/ebo (ébouriffé) known to be sterile due to an impairment of the final organization of the flagellum. In the ebo/ebo, the enzyme was still localized over the microtubules of the axoneme and over the isolated cytoplasmic microtubules doublets. Quantification of gold particles in wild-type and mutant flagella revealed the specific association of the enzyme within the microtubular area of the axoneme. Conclusions The strong and specific accumulation of Nardilysin in the manchette and axoneme suggests that the enzyme probably contributes either to the establishment of these specific microtubular structures and/or to their functional properties.
Collapse
Affiliation(s)
- D Segretain
- UMR S 1147 Université Paris Descartes, 45 rue des Saint-Pères, 75006 Paris, France ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, 78000 France
| | - J Gilleron
- INSERM U 1065, Université Nice Sophia-Antipolis, 151 route Saint-Antoine de Ginestière BP 2 3194, 06204, Nice, cedex 3 France
| | - J N Bacro
- Institut de Mathématiques et de Modélisation de Montpellier (I3M), UMR CNRS 5149 Université Montpellier, CC 51; 4 place Eugène Bataillon 34095, Montpellier, cedex 5 France
| | - M Di Marco
- UMR S 1147 Université Paris Descartes, 45 rue des Saint-Pères, 75006 Paris, France ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, 78000 France
| | - D Carette
- UMR S 1147 Université Paris Descartes, 45 rue des Saint-Pères, 75006 Paris, France ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, 78000 France
| | - G Pointis
- INSERM U 1065, Université Nice Sophia-Antipolis, 151 route Saint-Antoine de Ginestière BP 2 3194, 06204, Nice, cedex 3 France
| |
Collapse
|
3
|
Bernstein HG, Stricker R, Dobrowolny H, Steiner J, Bogerts B, Trübner K, Reiser G. Nardilysin in human brain diseases: both friend and foe. Amino Acids 2013; 45:269-78. [PMID: 23604405 DOI: 10.1007/s00726-013-1499-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
Abstract
Nardilysin is a metalloprotease that cleaves peptides, such as dynorphin-A, α-neoendorphin, and glucagon, at the N-terminus of arginine and lysine residues in dibasic moieties. It has various functionally important molecular interaction partners (heparin-binding epidermal growth factor-like growth factor, tumour necrosis factor-α-converting enzyme, neuregulin 1, beta-secretase 1, malate dehydrogenase, P42(IP4)/centaurin-α1, the histone H3 dimethyl Lys4, and others) and is involved in a plethora of normal brain functions. Less is known about possible implications of nardilysin for brain diseases. This review, which includes some of our own recent findings, attempts to summarize the current knowledge on possible roles of nardilysin in Alzheimer disease, Down syndrome, schizophrenia, mood disorders, alcohol abuse, heroin addiction, and cancer. We herein show that nardilysin is a Janus-faced enzyme with regard to brain pathology, being probably neuropathogenic in some diseases, but neuroprotective in others.
Collapse
Affiliation(s)
- H-G Bernstein
- Department of Psychiatry, Otto-v.-Guericke University Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
4
|
Decreased expression of nardilysin in SH-SY5Y cells under ethanol stress and reduced density of nardilysin-expressing neurons in brains of alcoholics. J Psychiatr Res 2013; 47:343-9. [PMID: 23219461 DOI: 10.1016/j.jpsychires.2012.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/05/2012] [Accepted: 11/09/2012] [Indexed: 11/23/2022]
Abstract
There is evidence for a genetic link between the metalloendopeptidase nardilysin and alcohol dependence, but the functional implication of the enzyme in alcoholism is unknown. Interestingly, some of the enzyme's substrates and interaction partners are altered in neural and non-neural tissues under the influence of ethanol consumption. To learn more about putative roles of nardilysin in alcohol dependence we studied the expression of the enzyme protein in human neuroblastoma cells under chronic ethanol exposure as well as in four brain regions of alcoholics and matched controls. Cultured SH-SY5Y cells were exposed for 96 h to two different concentrations of ethanol (50 and 200 mM). Nardilysin expression was determined using Western blotting with densitometric analysis. Furthermore, we morphometrically studied the cellular expression of nardilysin in postmortem brains of eight chronic alcoholics and nine controls by counting the number of nardilysin-immunopositive neurons in left frontal limbic area, Nuc. basalis of Meynert, paraventricular and supraoptic hypothalamic nuclei and calculating numerical cell densities. Nardilysin expression was significantly reduced after 96 h of SH-SY5Y cells exposure to 200 mM ethanol. In human brains nardilysin protein was localized to multiple neurons. In heavy drinkers there was a significantly reduced density of nardilysin immunoreactive neurons in Nuc. basalis of Meynert, paraventricular, and supraoptic nuclei. The alcohol-dependent reduction of nardilysin in cell culture and nervous tissue points to an implication of the enzyme in the pathophysiology of alcoholism.
Collapse
|
5
|
Borrmann C, Stricker R, Reiser G. Retinoic acid-induced upregulation of the metalloendopeptidase nardilysin is accelerated by co-expression of the brain-specific protein p42(IP4) (centaurin α 1; ADAP1) in neuroblastoma cells. Neurochem Int 2011; 59:936-44. [PMID: 21801775 DOI: 10.1016/j.neuint.2011.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/02/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022]
Abstract
The mainly neuronally expressed protein p42(IP4) (centaurin α1; ADAP1), which interacts with the metalloendopeptidase nardilysin (NRD) was found to be localized in neuritic plaques in Alzheimer disease (AD) brains. NRD was shown to enhance the cleavage of the amyloid precursor protein (APP) by α-secretases, thereby increasing the release of neuroprotective sAPPα. We here investigated in vitro the biochemical interaction of p42(IP4) and NRD and studied the physiological interaction in SH-SY5Y cells. NRD is a member of the M16 family of metalloendopeptidases. Some members of this M16 family act bi-functionally, as protease and as non-enzymatic scaffold protein. Here, we show that p42(IP4) enhances the enzymatic activity of NRD 3-4 times. However, p42(IP4) is not a substrate for NRD. Furthermore, we report that differentiation of SH-SY5Y cells by stimulation with 10μM retinoic acid (RA) results in upregulation of NRD protein levels, with a 6-fold rise after 15 days. NRD is expressed in the neurites of RA-stimulated SH-SY5Y cells, and localized in vesicular structures. Since p42(IP4) is not expressed in untreated SH-SY5Y cells, we could use this cell system as a model to find out, whether there is a functional interaction. Interestingly, SH-SY5Y cells, which we stably transfected with GFP-tagged-p42(IP4) showed an enhanced NRD protein expression already at an earlier time point after RA stimulation.
Collapse
Affiliation(s)
- Claudia Borrmann
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
6
|
Nygaard S, Zhang G, Schiøtt M, Li C, Wurm Y, Hu H, Zhou J, Ji L, Qiu F, Rasmussen M, Pan H, Hauser F, Krogh A, Grimmelikhuijzen CJP, Wang J, Boomsma JJ. The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Res 2011; 21:1339-48. [PMID: 21719571 DOI: 10.1101/gr.121392.111] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We present a high-quality (>100× depth) Illumina genome sequence of the leaf-cutting ant Acromyrmex echinatior, a model species for symbiosis and reproductive conflict studies. We compare this genome with three previously sequenced genomes of ants from different subfamilies and focus our analyses on aspects of the genome likely to be associated with known evolutionary changes. The first is the specialized fungal diet of A. echinatior, where we find gene loss in the ant's arginine synthesis pathway, loss of detoxification genes, and expansion of a group of peptidase proteins. One of these is a unique ant-derived contribution to the fecal fluid, which otherwise consists of "garden manuring" fungal enzymes that are unaffected by ant digestion. The second is multiple mating of queens and ejaculate competition, which may be associated with a greatly expanded nardilysin-like peptidase gene family. The third is sex determination, where we could identify only a single homolog of the feminizer gene. As other ants and the honeybee have duplications of this gene, we hypothesize that this may partly explain the frequent production of diploid male larvae in A. echinatior. The fourth is the evolution of eusociality, where we find a highly conserved ant-specific profile of neuropeptide genes that may be related to caste determination. These first analyses of the A. echinatior genome indicate that considerable genetic changes are likely to have accompanied the transition from hunter-gathering to agricultural food production 50 million years ago, and the transition from single to multiple queen mating 10 million years ago.
Collapse
Affiliation(s)
- Sanne Nygaard
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
M. C. Gye, C. Kim, H. S. Ahn, Y. S.. POSTNATAL CHANGES IN THE CALCIUM BINDING PROTEINS OF MOUSE TESTIS. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/01485010120970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Bernstein HG, Stricker R, Dobrowolny H, Trübner K, Bogerts B, Reiser G. Histochemical evidence for wide expression of the metalloendopeptidase nardilysin in human brain neurons. Neuroscience 2007; 146:1513-23. [PMID: 17442499 DOI: 10.1016/j.neuroscience.2007.02.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/22/2007] [Accepted: 02/22/2007] [Indexed: 11/17/2022]
Abstract
Nardilysin is a metalloendopeptidase that in vitro cleaves peptides such as dynorphin-A, somatostatin-28, alpha-neoendorphin and glucagon at the N-terminus of arginine and lysine residues in dibasic moieties. The enzyme is highly expressed in many endocrine tissues. Nardilysin has also been found in the brain. Previously, we have detected that nardilysin interacts with brain-specific proteins, i.e. p42(IP4)/centaurin-alpha1 [Stricker R, Chow KM, Walther D, Hanck T, Hersh LB, Reiser G (2006) Interaction of the brain specific protein p42(IP4)/centaurin-alpha1 with the peptidase nardilysin is regulated by the cognate ligands of p42(IP4), PtdIns(3,4,5)P(3) and Ins(1,3,4,5)P(4), with stereospecificity. J Neurochem 98:343-354]. However, very little is known about the distribution of nardilysin in the brain. The aim of the present study was to reveal its regional distribution and cellular localization in developing and adult human brain. Using immunohistochemistry and Western blot analysis we demonstrate that the enzyme is widely, but unevenly, expressed in the human brain. We found high staining intensity in the hypothalamus, neocortex and brain stem nuclei. The cellular localization is almost exclusively confined to neurons. In pre- and perinatal human brain cortex, most neurons express the enzyme. In cortical neurons nardilysin protein was found to be partially co-localized with parvalbumin but not calretinin. No co-expression was seen with somatostatin-28 immunoreactivity. A considerable overlap was revealed between p42(IP4) and nardilysin. Our data support the hypothesis that nardilysin might possibly play a role in brain development, whereas its putative function in brain peptide metabolism remains to be clarified further.
Collapse
Affiliation(s)
- H-G Bernstein
- Department of Psychiatry, Medical Faculty of University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Stricker R, Chow KM, Walther D, Hanck T, Hersh LB, Reiser G. Interaction of the brain-specific protein p42IP4/centaurin-alpha1 with the peptidase nardilysin is regulated by the cognate ligands of p42IP4, PtdIns(3,4,5)P3 and Ins(1,3,4,5)P4, with stereospecificity. J Neurochem 2006; 98:343-54. [PMID: 16805830 DOI: 10.1111/j.1471-4159.2006.03869.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The brain-specific protein p42IP4, also called centaurin-alpha1, specifically binds phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. Here, we investigate the interaction of p42IP4/centaurin-alpha1 with nardilysin (NRDc), a member of the M16 family of zinc metalloendopeptidases. Members of this peptidase family exhibit enzymatic activity and also act as receptors for other proteins. We found that p42IP4/centaurin-alpha1 binds specifically to NRDc from rat brain. We further detected that centaurin-alpha2, a protein that is highly homologous to p42IP4/centaurin-alpha1 and expressed ubiquitously, also binds to NRDc. In vivo interaction was demonstrated by co-immunoprecipitation of p42IP4/centaurin-alpha1 with NRDc from rat brain. The acidic domain of NRDc (NRDc-AD), which does not participate in catalysis, is sufficient for the protein interaction with p42IP4. Interestingly, preincubation of p42IP4 with its cognate ligands D-Ins(1,3,4,5)P4 and the lipid diC8PtdIns(3,4,5)P3 negatively modulates the interaction between the two proteins. D-Ins(1,3,4,5)P4 and diC8PtdIns(3,4,5)P3 suppress the interaction with virtually identical concentration dependencies. This inhibition is highly ligand specific. The enantiomer L-Ins(1,3,4,5)P4 is not effective. Similarly, the phosphoinositides diC8PtdIns(3,4)P2, diC8PtdIns(3,5)P2 and diC8PtdIns(4,5)P2 all have no influence on the interaction. Further experiments revealed that endogenous p42IP4 from rat brain binds to glutathione-S-transferase (GST)-NRDc-AD. The proteins dissociate from each other when incubated with D-Ins(1,3,4,5)P4, but not with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. In summary, we demonstrate that p42IP4 binds to NRDc via the NRDc-AD, and that this interaction is controlled by the cognate cellular ligands of p42IP4/centaurin-alpha1. Thus, specific ligands of p42IP4 can modulate the recruitment of proteins, which are docked to p42IP4, to specific cellular compartments.
Collapse
Affiliation(s)
- Rolf Stricker
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Dabonné S, Moallic C, Sine JP, Niamké S, Dion M, Colas B. Cloning, expression and characterization of a 46.5-kDa metallopeptidase from Bacillus halodurans H4 sharing properties with the pitrilysin family. Biochim Biophys Acta Gen Subj 2005; 1725:136-43. [PMID: 15866516 DOI: 10.1016/j.bbagen.2005.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/25/2005] [Accepted: 03/25/2005] [Indexed: 11/28/2022]
Abstract
A 1242 base pair DNA fragment from Bacillus halodurans H4 isolated from alkaline sediments of Lake Bogoria (Kenya) coding for a potential protease was cloned and sequenced. The hexa-histidine-tagged enzyme was overexpressed in Escherichia coli and was purified in one step by immobilized-metal affinity chromatography (IMAC) on Ni-NTA resin. The protease (ppBH4) presents an inverted zincin motif, HXXEH, which defines the inverzincin family. It shares several biochemical and molecular properties with the clan ME family M16 metallopeptidases (pitrilysins), as well as with database hypothetical proteins that are potential M16 family enzymes. Thus, like insulysin and nardilysin, but contrary to bacterial pitrilysin, ppBH4 is inactivated by sulfhydryl alkylating agents. On the other hand, like bacterial pitrilysin, ppBH4 is sensitive to reducing agents. The enzymatic activity of ppBH4 is limited to substrates smaller than proteins. In contrast to insulin, dynorphin and insulin B-chain are very good substrates for ppBH4 and several cleavage sites are common with those observed with well-characterized pitrilysins. As deduced from amino acid sequence, as well as determined by gel-filtration and SDS-polyacrylamide gel electrophoresis, ppBH4 is an active monomer of 46.5 kDa. This feature distinguishes ppBH4 from all other enzymes of the pitrilysin family so far described whose molecular masses range from 100 to 140 kDa.
Collapse
Affiliation(s)
- Soumaila Dabonné
- Unité de Biotechnologie, Biocatalyse et Biorégulation, CNRS-UMR 6204, Laboratoire de Biochimie, F44322 Nantes Cedex 3, France
| | | | | | | | | | | |
Collapse
|
11
|
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806. [PMID: 15466940 DOI: 10.1210/er.2003-0022] [Citation(s) in RCA: 614] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
12
|
Hospital V, Nishi E, Klagsbrun M, Cohen P, Seidah NG, Prat A. The metalloendopeptidase nardilysin (NRDc) is potently inhibited by heparin-binding epidermal growth factor-like growth factor (HB-EGF). Biochem J 2002; 367:229-38. [PMID: 12095415 PMCID: PMC1222870 DOI: 10.1042/bj20020822] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Revised: 06/27/2002] [Accepted: 07/03/2002] [Indexed: 11/17/2022]
Abstract
Nardilysin (N-arginine dibasic convertase, or NRDc) is a cytosolic and cell-surface metalloendopeptidase that, in vitro, cleaves substrates upstream of Arg or Lys in basic pairs. NRDc differs from most of the other members of the M16 family of metalloendopeptidases by a 90 amino acid acidic domain (DAC) inserted close to its active site. At the cell surface, NRDc binds heparin-binding epidermal growth factor-like growth factor (HB-EGF) and enhances HB-EGF-induced cell migration. An active-site mutant of NRDc fulfills this function as well as wild-type NRDc, indicating that the enzyme activity is not required for this process. We now demonstrate that NRDc starts at Met(49). Furthermore, we show that HB-EGF not only binds to NRDc but also potently inhibits its enzymic activity. NRDc-HB-EGF interaction involves the 21 amino acid heparin-binding domain (P21) of the growth factor, the DAC of NRDc and most probably its active site. Only disulphide-bonded P21 dimers are inhibitory. We also show that Ca(2+), via the DAC, regulates both NRDc activity and HB-EGF binding. We conclude that the DAC is thus a key regulatory element for the two distinct functions that NRDc fulfills, i.e. as an HB-EGF modulator and a peptidase.
Collapse
Affiliation(s)
- Véronique Hospital
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Nishi E, Prat A, Hospital V, Elenius K, Klagsbrun M. N-arginine dibasic convertase is a specific receptor for heparin-binding EGF-like growth factor that mediates cell migration. EMBO J 2001; 20:3342-50. [PMID: 11432822 PMCID: PMC125525 DOI: 10.1093/emboj/20.13.3342] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a mitogen and chemotactic factor, binds to two receptor tyrosine kinases, erbB1 and erbB4. Now we demonstrate that HB-EGF also binds to a novel 140 kDa receptor on MDA-MB 453 cells. Purification of this receptor showed it to be identical to N-arginine dibasic convertase (NRDc), a metalloendopeptidase of the M16 family. Binding to cell surface NRDc and NRDc in solution was highly specific for HB-EGF among EGF family members. When overexpressed in cells, NRDc enhanced their migration in response to HB-EGF but not to EGF. Conversely, inhibition of endogenous NRDc expression in cells by antisense morpholino oligonucleotides inhibited HB-EGF-induced cell migration. Anti-erbB1 neutralizing antibodies completely abrogated the ability of NRDc to enhance HB-EGF-dependent migration, demonstrating that this NRDc activity was dependent on erbB1 signaling. Although NRDc is a metalloproteinase, enzymatic activity was not required for HB-EGF binding or enhancement of cell migration; neither did NRDc cleave HB-EGF. Together, these results suggest that NRDc is a novel specific receptor for HB-EGF that modulates HB-EGF-induced cell migration via erbB1.
Collapse
Affiliation(s)
- Eiichiro Nishi
- Departments of
Surgical Research and Pathology, Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA and Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, H2W 1R7, Canada Present address: Medicity Research Laboratories and the Department of Medical Biochemistry and Molecular Biology, University of Turku, FIN-20520 Turku, Finland Corresponding author e-mail:
| | - Annik Prat
- Departments of
Surgical Research and Pathology, Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA and Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, H2W 1R7, Canada Present address: Medicity Research Laboratories and the Department of Medical Biochemistry and Molecular Biology, University of Turku, FIN-20520 Turku, Finland Corresponding author e-mail:
| | - Véronique Hospital
- Departments of
Surgical Research and Pathology, Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA and Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, H2W 1R7, Canada Present address: Medicity Research Laboratories and the Department of Medical Biochemistry and Molecular Biology, University of Turku, FIN-20520 Turku, Finland Corresponding author e-mail:
| | - Klaus Elenius
- Departments of
Surgical Research and Pathology, Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA and Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, H2W 1R7, Canada Present address: Medicity Research Laboratories and the Department of Medical Biochemistry and Molecular Biology, University of Turku, FIN-20520 Turku, Finland Corresponding author e-mail:
| | - Michael Klagsbrun
- Departments of
Surgical Research and Pathology, Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA and Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, H2W 1R7, Canada Present address: Medicity Research Laboratories and the Department of Medical Biochemistry and Molecular Biology, University of Turku, FIN-20520 Turku, Finland Corresponding author e-mail:
| |
Collapse
|
14
|
Winter AG, Pierotti AR. Gene expression of the dibasic-pair cleaving enzyme NRD convertase (N-arginine dibasic convertase) is differentially regulated in the GH3 pituitary and Mat-Lu prostate cell lines. Biochem J 2000; 351 Pt 3:755-64. [PMID: 11042131 PMCID: PMC1221416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
NRD convertase (N-arginine dibasic convertase, NRD-C) is a dibasic selective metalloprotease which cleaves on the N-terminal side of an arginine residue in a dibasic pair. Abundant in endocrine tissues, the highest levels are found in testis. The mechanism whereby NRD-C expression is regulated at the transcriptional level has been examined by reporter-gene assay and electrophoretic-mobility-shift assays. Analysis of the rat and human promoters show that they are highly conserved, containing a number of motifs which may correspond to transcription-factor binding sites. The rat promoter has been cloned into a luciferase reporter vector and analysed in a number of cell lines. Full functionality of the promoter is observed with 5' deletions to 411 bp upstream of the transcriptional start site in spermatid, prostate and pituitary cell lines. Further deletion to 101 bp causes a complete loss of activity in spermatid and prostate lines. By contrast, GH3 pituitary cells display no reduction in promoter activity with deletion to 101 bp of upstream sequence. A number of transcription-factor binding sites have been identified by electrophoretic-mobility-shift assays in the region 411-101; however, no differences in binding between the cell lines were observed.
Collapse
Affiliation(s)
- A G Winter
- School of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, UK
| | | |
Collapse
|
15
|
Hospital V, Chesneau V, Balogh A, Joulie C, Seidah NG, Cohen P, Prat A. N-arginine dibasic convertase (nardilysin) isoforms are soluble dibasic-specific metalloendopeptidases that localize in the cytoplasm and at the cell surface. Biochem J 2000; 349:587-97. [PMID: 10880358 PMCID: PMC1221182 DOI: 10.1042/0264-6021:3490587] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
N-arginine (R) dibasic (NRD) convertase (nardilysin; EC 3.4.24.61), a metalloendopeptidase of the M16 family, specifically cleaves peptide substrates at the N-terminus of arginines in dibasic motifs in vitro. In rat testis, the enzyme localizes within the cytoplasm of spermatids and associates with microtubules of the manchette and axoneme. NRD1 and NRD2 convertases, two NRD convertase isoforms, differ by the absence (isoform 1) or presence (isoform 2) of a 68-amino acid insertion close to the active site. In this study, we overexpressed both isoforms, either by vaccinia virus infection of BSC40 cells or transfection of COS-7 cells. The partially purified enzymes exhibit very similar biochemical and enzymic properties. Microsequencing revealed that NRD convertase is N-terminally processed. Results of immunocytofluorescence, immunoelectron microscopy and subcellular fractionation studies argue in favour of a primary cytosolic localization of both peptidases. Although the putative signal peptide did not direct NRD convertase into microsomes in an in vitro translation assay, biotinylation experiments clearly showed the presence of both isoforms at the cell surface. In conclusion, although most known processing events at pairs of basic residues are achieved by proprotein convertases within the secretory pathway, NRD convertase may fulfil a similar function in the cytoplasm and/or at the cell surface.
Collapse
Affiliation(s)
- V Hospital
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, UMR 7631 CNRS, Université Pierre et Marie Curie, 96 Bd Raspail, 75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Csuhai E, Juliano MA, Pyrek JS, Harms AC, Juliano L, Hersh LB. New fluorogenic substrates for N-arginine dibasic convertase. Anal Biochem 1999; 269:149-54. [PMID: 10094786 DOI: 10.1006/abio.1999.4033] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N-Arginine dibasic (NRD) convertase is a recently described peptidase capable of selectively cleaving peptides between paired basic residues. The characterization of this unique peptidase has been hindered by the fact that no facile assay procedure has been available. Here we report the development of a rapid and sensitive assay for NRD convertase, based on the utilization of two new internally quenched fluorogenic peptides: Abz-GGFLRRVGQ-EDDnp and Abz-GGFLRRIQ-EDDnp. These peptides contain the fluorescent 2-aminobenzoyl moiety that is quenched in the intact peptide by a 2, 4-dinitrophenyl moiety. Cleavage by NRD convertase at the Arg-Arg sequence results in an increase of fluorescence. NRD convertase cleaves these peptides efficiently and with high specificity as observed by both HPLC and fluorescence spectroscopy. The rate of hydrolysis of the fluorogenic substrates is proportional to enzyme concentration, and obeys Michaelis-Menten kinetics. The kinetic parameters for the fluorescent peptides (Km values of approximately 1.0 microM, and Vmax values of approximately 1 microM/(min. mg) are similar to those obtained with peptide hormones as substrates.
Collapse
Affiliation(s)
- E Csuhai
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | | | | | | | | | | |
Collapse
|