1
|
Piszczatowski RT, Bülow HE, Steidl U. Heparan sulfates and heparan sulfate proteoglycans in hematopoiesis. Blood 2024; 143:2571-2587. [PMID: 38639475 DOI: 10.1182/blood.2023022736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
ABSTRACT From signaling mediators in stem cells to markers of differentiation and lineage commitment to facilitators for the entry of viruses, such as HIV-1, cell surface heparan sulfate (HS) glycans with distinct modification patterns play important roles in hematopoietic biology. In this review, we provide an overview of the importance of HS and the proteoglycans (HSPGs) to which they are attached within the major cellular subtypes of the hematopoietic system. We summarize the roles of HSPGs, HS, and HS modifications within each main hematopoietic cell lineage of both myeloid and lymphoid arms. Lastly, we discuss the biological advances in the detection of HS modifications and their potential to further discriminate cell types within hematopoietic tissue.
Collapse
Affiliation(s)
- Richard T Piszczatowski
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Departments of Oncology, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Blood Cancer Institute, Albert Einstein College of Medicine, Bronx, NY
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
2
|
Brokhman I, Watkin AMT, Bacher JC, Glazer SA, Galea AM. A Novel Method for the Production of an Autologous Anti-Inflammatory and Anti-Catabolic Product (Cytorich) from Human Blood: A Prospective Treatment for the COVID-19-Induced Cytokine Storm. Med Sci Monit 2021; 27:e934365. [PMID: 34795200 PMCID: PMC8609770 DOI: 10.12659/msm.934365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Autologous blood-derived products can target specific inflammatory molecular pathways and have potentially beneficial therapeutic effects on inflammatory pathologies. The purpose of this study was to assess in vitro the anti-inflammatory and anti-catabolic potential of an autologous blood product as a possible treatment for COVID-19-induced cytokine storm. Material/Methods Blood samples from healthy donors and donors who had recovered from COVID-19 were incubated using different techniques and analyzed for the presence of anti-inflammatory, anti-catabolic, regenerative, pro-inflammatory, and procatabolic molecules. Results The highest concentrations of therapeutic molecules for targeting inflammatory pathways were found in the blood that had been incubated for 24 h at 37°C, whereas a significant increase was observed after 6 h of incubation in blood from COVID-19-recovered donors. Beneficially, the 6-h incubation process did not downregulate anti-COVID-19 immunoglobulin G concentrations. Unfortunately, increases in matrix metalloproteinase 9, tumor necrosis factor α, and interleukin-1 were detected in the product after incubation; however, these increases could be blocked by adding citric acid, with no effect on the concentration of the target therapeutic molecules. Our data allow for safer and more effective future treatments. Conclusions An autologous blood-derived product containing anti-inflammatory and anti-catabolic molecules, which we term Cytorich, has a promising therapeutic role in the treatment of a virus-induced cytokine storm, including that associated with COVID-19.
Collapse
Affiliation(s)
- Irina Brokhman
- Department of Research and Development, The Institute of Human Mechanics, Toronto, ON, Canada
| | - Alyssia M T Watkin
- Department of Research and Development, The Institute of Human Mechanics, Toronto, ON, Canada
| | - Jeffrey C Bacher
- Department of Research and Development, The Institute of Human Mechanics, Toronto, ON, Canada
| | - Stephen A Glazer
- Toronto Critical Care Medicine, Humber River Hospital, Toronto, ON, Canada
| | - Anthony M Galea
- Department of Research and Development, The Institute of Human Mechanics, Toronto, ON, Canada
| |
Collapse
|
3
|
Subhan MA, Torchilin VP. Neutrophils as an emerging therapeutic target and tool for cancer therapy. Life Sci 2021; 285:119952. [PMID: 34520766 DOI: 10.1016/j.lfs.2021.119952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 02/09/2023]
Abstract
Activation of neutrophils is necessary for the protection of the host against microbial infection. This property can be used as mode of therapy for cancer treatment. Neutrophils have conflicting dual functions in cancer as either a tumor promoter or inhibitor. Neutrophil-based drug delivery has achieved increased attention in pre-clinical models. This review addresses in detail the different neutrophil constituents, the conflicting function of neutrophils and activation of the neutrophil as an important target of therapy for cancer treatment, and use of neutrophils or neutrophil membrane-derived vesicles as vehicles for drug delivery and targeting.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh..
| | - Vladimir P Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA; Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
4
|
Charles Jacob HK, Charles Richard JL, Signorelli R, Kashuv T, Lavania S, Vaish U, Boopathy R, Middleton A, Boone MM, Sundaram R, Dudeja V, Saluja AK. Modulation of Early Neutrophil Granulation: The Circulating Tumor Cell-Extravesicular Connection in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13112727. [PMID: 34072942 PMCID: PMC8198339 DOI: 10.3390/cancers13112727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) found in the blood of pancreatic cancer patients show a worse prognosis to therapy if they are seen in clusters of cells with neutrophils or platelets or with other cell types than when they are seen as singlets. We wanted to investigate if there is a secondary mode of communication between the CTCs and neutrophils that causes them to associate. We describe for the first time an extravesicular (EV) mediated communication between CTCs and neutrophils that modulates early transcriptome changes that can cause neutrophils to partially degranulate and form associations. We also identify the protein cargo carried in such EVs and how when added to naïve neutrophils, they can modulate transcriptomic changes in neutrophils partially disarming them to form clusters rather than undergo specialized cell death, which is characterized by release of condensed chromatin (NETs) and granular contents termed as NETosis. Abstract Tumor cells dissociate from the primary site and enter into systemic circulation (circulating tumor cells, CTCs) either alone or as tumor microemboli (clusters); the latter having an increased predisposition towards forming distal metastases than single CTCs. The formation of clusters is, in part, created by contacts between cell–cell junction proteins and/or cytokine receptor pairs with other cells such as neutrophils, platelets, fibroblasts, etc. In the present study, we provide evidence for an extravesicular (EV) mode of communication between pancreatic cancer CTCs and neutrophils. Our results suggest that the EV proteome of CTCs contain signaling proteins that can modulate degranulation and granule mobilization in neutrophils and, also, contain tissue plasminogen activator and other proteins that can regulate cluster formation. By exposing naïve neutrophils to EVs isolated from CTCs, we further show how these changes are modulated in a dynamic fashion indicating evidence for a deeper EV based remodulatory effect on companion cells in clusters.
Collapse
Affiliation(s)
- Harrys Kishore Charles Jacob
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
| | - John Lalith Charles Richard
- School of Biosciences, Engineering and Technology (SBET), VIT Bhopal University, Madhya Pradesh 466114, India;
| | | | - Tyler Kashuv
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33146, USA;
| | - Shweta Lavania
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Utpreksha Vaish
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Ranjitha Boopathy
- Department of Life Sciences, Shiv Nadar University, Greater Noida 201304, India;
| | - Ashley Middleton
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
| | | | - Ramakrishnan Sundaram
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Vikas Dudeja
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
- Department of Life Sciences, Shiv Nadar University, Greater Noida 201304, India;
| | - Ashok Kumar Saluja
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-305-243-2703
| |
Collapse
|
5
|
Liu Q, Yang W, Luo N, Liu J, Wu Y, Ding J, Li C, Cheng Z. LPS and IL-8 activated umbilical cord blood-derived neutrophils inhibit the progression of ovarian cancer. J Cancer 2020; 11:4413-4420. [PMID: 32489460 PMCID: PMC7255365 DOI: 10.7150/jca.41035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Immunotherapy including immune checkpoint blockade, cancer vaccines, and adoptive cell therapy. However, no immune therapies support ovarian cancer. It is not clear whether the neutrophils, the component of the immune system derived from umbilical cord blood play a role in inhibiting the progression of ovarian cancer. Methods: We investigate the impact of LPS and IL-8 activated neutrophils derived from umbilical cord blood(UCB)on ovarian cancer progression. After co-culture LPS and IL-8 activated UCB-derived neutrophils with ovarian cancer cell line SKOV3 and OVCAR3, CCK8, Transwell assay, and Flow Cytometry was performed to detect cell proliferation, migration, invasion, and apoptosis of ovarian cancer cell lines SKOV3 and OVCAR3. Furthermore, RT-PCR and western blotting assay were used to analyze the mechanism of metastasis and apoptosis of ovarian cancer cell lines respectively to support previous function experiments. Results: We demonstrate LPS and IL-8 activated neutrophils derived from umbilical cord blood inhibit proliferation, invasion migration and promote apoptosis of SKOV3 and OVCAR3. Meanwhile, LPS and IL-8 activated UCB-derived neutrophils significantly decreased BAX and increased BCL2 expression in SKOV3 and OVCAR3 which account for the mechanism of apoptosis. Moreover, LPS and IL-8 activated UCB derived neutrophils significantly up-regulated E-cadherin and downregulated N-cadherin, MMP2 expression in SKOV3 and OVCAR3. Conclusion: Taken together, these results approved that LPS and IL-8 activated neutrophils from UCB may be the novel strategy in immune therapy for ovarian cancer.
Collapse
Affiliation(s)
- Qi Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weihong Yang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ning Luo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuliang Wu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jinye Ding
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Caixia Li
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Institute of Gynecological Minimally Invasive Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Higashi N, Irimura T, Nakajima M. Heparanase is Involved in Leukocyte Migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:435-444. [PMID: 32274720 DOI: 10.1007/978-3-030-34521-1_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Leukocyte migration is essential for exerting self-defense mechanisms. During the extravasation process, leukocytes transmigrate through the endothelial lining and the subendothelial basement membrane. Accumulating evidence supports the involvement of heparanase in this process. Altered cellular distribution resulting in relocalization of heparanase to the leading edge of migration is a key event to rapidly turn on the function of the enzyme during migration. This review presents current research investigating the cellular machinery that builds up a functional subcellular structure for leukocyte attachment to and degradation of the extracellular matrix. Recent advances in the understanding of the roles of heparanase in inflammatory diseases and pharmacological approaches to control heparanase-mediated actions during inflammation are also discussed.
Collapse
Affiliation(s)
- Nobuaki Higashi
- Department of Biochemistry, Hoshi University School of Pharmacy, Tokyo, Japan.
| | - Tatsuro Irimura
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University School of Medicine, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
7
|
Mollinedo F. Neutrophil Degranulation, Plasticity, and Cancer Metastasis. Trends Immunol 2019; 40:228-242. [PMID: 30777721 DOI: 10.1016/j.it.2019.01.006] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
Neutrophils are the first responders to inflammation and infection. Recently, an elevated neutrophil-to-lymphocyte ratio has generally become a prognostic indicator of poor overall survival in cancer. Accordingly, heterogeneous ill-defined neutrophil-like populations have been increasingly recognized as important players in cancer development. In addition, neutrophil granule proteins released upon cell activation have been associated with tumor progression; this differential granule mobilization may allow neutrophils - and possibly associated cancer cells - to leave the bloodstream and enter inflamed/infected tissues. This review discusses and proposes how granule mobilization may facilitate neutrophil-mediated transport of cancer cells into different tissues as well as leading to different cellular phenotypes that underlie remarkable neutrophil plasticity. This concept might inform novel neutrophil-centered approaches to putative cancer therapies.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
8
|
Postnikoff CK, Nichols KK. Neutrophil and T-Cell Homeostasis in the Closed Eye. Invest Ophthalmol Vis Sci 2017; 58:6212-6220. [PMID: 29222551 PMCID: PMC6110127 DOI: 10.1167/iovs.17-22449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose This study sought to examine the changes and phenotype of the tear neutrophil and T-cell populations between early eyelid closure and after a full night of sleep. Methods Fourteen healthy participants were recruited and trained to wash the ocular surface with PBS for at-home self-collection of ocular surface and tear leukocytes following up to 1 hour of sleep and a full night of sleep (average 7 hours), on separate days. Cells were isolated, counted, and incubated with fluorescently labeled antibodies to identify neutrophils, monocytes, and T cells. For neutrophil analysis, samples were stimulated with lipopolysaccharide (LPS) or calcium ionophore (CaI) before antibody incubation. Flow cytometry was performed. Results Following up to 1 hour of sleep, numerous leukocytes were collected (2.6 × 105 ± 3.0 × 105 cells), although significantly (P < 0.005) more accumulated with 7 hours of sleep (9.9 × 105 ± 1.2× 106 cells). Neutrophils (65%), T cells (3%), and monocytes (1%) were identified as part of the closed eye leukocyte infiltration following 7 hours of sleep. Th17 cells represented 22% of the total CD4+ population at the 7-hour time point. Neutrophil phenotype changed with increasing sleep, with a downregulation of membrane receptors CD16, CD11b, CD14, and CD15, indicating a loss in the phagocytic capability of neutrophils. Conclusions Neutrophils begin accumulating in the closed eye conjunctival sac much earlier than previously demonstrated. The closed eye tears are also populated with T cells, including a subset of Th17 cells. The closed eye environment is more inflammatory than previously thought and is relevant to understanding ocular homeostasis.
Collapse
Affiliation(s)
- Cameron K Postnikoff
- School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kelly K Nichols
- School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
9
|
Alvarenga DM, Mattos MS, Araújo AM, Antunes MM, Menezes GB. Neutrophil biology within hepatic environment. Cell Tissue Res 2017; 371:589-598. [PMID: 29127519 DOI: 10.1007/s00441-017-2722-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/26/2017] [Indexed: 12/29/2022]
Abstract
Neutrophils are the most abundant leukocyte in the human circulation. These short-lived cells are constantly produced from hematopoietic stem cells (HSC) within the bone marrow from which they daily reach the blood and perform major roles in innate immunity. Neutrophils are the first cells to reach inflamed tissues and are armed with a plethora of enzymes that help both with their trafficking within tissues and the killing of pathogens. Damaged or infected organs are rapidly invaded by neutrophils. Their erroneous activation within parenchyma or the vasculature is involved in the pathogenesis of several inflammatory diseases including arthritis, colitis, sepsis, acute lung injury and liver failure. Despite the proposal of a canonical pathway that governs neutrophil migration into tissues, the liver has been extensively described as a unique environment for leukocyte recruitment. Since the control of inflammatory responses is considered one of the most promising avenues for novel therapeutics, the expansion of our understanding of the mechanisms behind neutrophil accumulation within injured liver might add to the development of specific and more efficacious treatments. In this review, we discuss the basic concepts of neutrophil ontogeny and biology, with a focus on the particularities and the molecular steps involved in neutrophil recruitment to the liver.
Collapse
Affiliation(s)
- Débora Moreira Alvarenga
- Center for Gastrointestinal Biology, Departamento de Morfologia, Sala N3-140, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. PresidenteAntônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, Brasil
| | - Matheus Silvério Mattos
- Center for Gastrointestinal Biology, Departamento de Morfologia, Sala N3-140, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. PresidenteAntônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, Brasil
| | - Alan Moreira Araújo
- Center for Gastrointestinal Biology, Departamento de Morfologia, Sala N3-140, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. PresidenteAntônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, Brasil
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Sala N3-140, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. PresidenteAntônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, Brasil.
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Sala N3-140, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. PresidenteAntônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
10
|
Barbosa GO, Cervigne NK, Carvalho HF, Augusto TM. Heparanase 1 involvement in prostate physiopathology. Cell Biol Int 2017; 41:1194-1202. [DOI: 10.1002/cbin.10748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Guilherme O. Barbosa
- Department of Structural and Functional Biology; State University of Campinas; Campinas Sao Paulo Brazil
| | - Nilva K. Cervigne
- Faculty of Medicine of Jundiai; Department of Morphology and Basic Pathology; Jundiai Sao Paulo Brazil
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology; State University of Campinas; Campinas Sao Paulo Brazil
| | - Taize M. Augusto
- Faculty of Medicine of Jundiai; Department of Morphology and Basic Pathology; Jundiai Sao Paulo Brazil
| |
Collapse
|
11
|
Schrimpf C, Wrede C, Glage S, Hegermann J, Backhaus S, Blasczyk R, Heuft HG, Müller T. Differentiation of induced pluripotent stem cell-derived neutrophil granulocytes from common marmoset monkey (Callithrix jacchus). Transfusion 2016; 57:60-69. [PMID: 27888517 DOI: 10.1111/trf.13909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inherited and acquired marrow failure syndromes most commonly lead to defect in myeloid and/or neutrophil differentiation and/or function. Besides this, neutropenia induced by cancer-adjusted chemotherapy is a frequent clinical problem. In both cases, cell replacement therapy is a well-established, but due to necessity of donors limited and perilous procedure. Therefore, autologous cell replacement from patients' own marrow-derived cells lowers risk and bares new possibilities for therapy. Since the immune system of the marmoset monkey is known to show high similarity to humans, preclinical studies with these animals bare high hopes for immunologic research and cell replacement therapy. STUDY DESIGN AND METHODS Marmoset-induced pluripotent stem (iPS) cells (cj-iPSC) were first cultivated on mouse embryonic feeder cells in medium containing recombinant human vascular endothelial growth factor. After 13 days, CD34+/vascular endothelial growth factor receptor-2 (VEGFR2)- cells were sorted, treated with interleukin (IL-3), thrombopoietin, and stem cell factor for 20 days and further cultivated with granulocyte-colony-stimulating factor (G-CSF) and IL-3 for 10 days. RESULTS CD34+/VEGFR2- cells could be generated in high amounts (39.65 ± 6.01%; 2.31 × 105 cells). Afterward, these hematopoietic progenitors could be successfully differentiated into mature cj-iPSC-derived neutrophils showing similar morphology, specific surface antigens, and neutrophil-specific gene products and in vitro phagocytic activity. CONCLUSION cj-iPSC-derived neutrophils bare high hopes in hematologic cell replacement therapy. They exhibit high morphologic similarity to native neutrophils and present neutrophil-specific surface antigens, antimicrobial proteins, and gene products yielding an auspicious approach for continuative experiments including tests in living animals.
Collapse
Affiliation(s)
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, REBIRTH Cluster of Excellence, Hannover.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, REBIRTH Cluster of Excellence, Hannover.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Samantha Backhaus
- Institute for Transfusion Medicine, REBIRTH Cluster of Excellence, Hannover
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, REBIRTH Cluster of Excellence, Hannover
| | - Hans-Gert Heuft
- Institute for Transfusion Medicine, REBIRTH Cluster of Excellence, Hannover
| | - Thomas Müller
- Institute for Transfusion Medicine, REBIRTH Cluster of Excellence, Hannover.,REBIRTH Cluster of Excellence, Hannover, Germany.,Synlab Medical Care Centre Weiden Ltd, Weiden, Germany
| |
Collapse
|
12
|
Hasan R, Rink L, Haase H. Chelation of Free Zn²⁺ Impairs Chemotaxis, Phagocytosis, Oxidative Burst, Degranulation, and Cytokine Production by Neutrophil Granulocytes. Biol Trace Elem Res 2016; 171:79-88. [PMID: 26400651 DOI: 10.1007/s12011-015-0515-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/10/2015] [Indexed: 01/08/2023]
Abstract
Neutrophil granulocytes are the largest leukocyte population in the blood and major players in the innate immune response. Impaired neutrophil function has been reported in in vivo studies with zinc-deficient human subjects and experimental animals. Moreover, in vitro formation of neutrophil extracellular traps has been shown to depend on free intracellular Zn(2+). This study investigates the requirement of Zn(2+) for several other essential neutrophil functions, such as chemotaxis, phagocytosis, cytokine production, and degranulation. To exclude artifacts resulting from indirect effects of zinc deprivation, such as impaired hematopoietic development and influences of other immune cells, direct effects of zinc deprivation were tested in vitro using cells isolated from healthy human donors. Chelation of Zn(2+) by the membrane permeable chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN) reduced granulocyte migration toward N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF) and IL-8, indicating a role of free intracellular Zn(2+) in chemotaxis. However, a direct action of Zn(2+) as a chemoattractant, as previously reported by others, was not observed. Similar to chemotaxis, phagocytosis, oxidative burst, and granule release were also impaired in TPEN-treated granulocytes. Moreover, Zn(2+) contributes to the regulatory role of neutrophil granulocytes in the inflammatory response by affecting the cytokine production by these cells. TPEN inhibited the lipopolysaccharide-induced secretion of chemotactic IL-8 and also anti-inflammatory IL-1ra. In conclusion, free intracellular Zn(2+) plays essential roles in multiple neutrophil functions, affecting extravasation to the site of the infection, uptake and killing of microorganisms, and inflammation.
Collapse
Affiliation(s)
- Rafah Hasan
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Hajo Haase
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| |
Collapse
|
13
|
Altara R, Manca M, Sabra R, Eid AA, Booz GW, Zouein FA. Temporal cardiac remodeling post-myocardial infarction: dynamics and prognostic implications in personalized medicine. Heart Fail Rev 2015; 21:25-47. [PMID: 26498937 DOI: 10.1007/s10741-015-9513-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite dramatic improvements in short-term mortality rates following myocardial infarction (MI), long-term survival for MI patients who progress to heart failure remains poor. MI occurs when the left ventricle (LV) is deprived of oxygen for a sufficient period of time to induce irreversible necrosis of the myocardium. The LV response to MI involves significant tissue, cellular, and molecular level modifications, as well as substantial hemodynamic changes that feedback negatively to amplify the response. Inflammation to remove necrotic myocytes and fibroblast activation to form a scar are key wound healing responses that are highly variable across individuals. Few biomarkers of early remodeling stages are currently clinically adopted. The discovery of underlying pathophysiological mechanisms and associated novel biomarkers has the potential of improving prognostic capability and therapeutic monitoring. Combining these biomarkers with other prominent ones could constitute a powerful diagnostic and prognostic tool that directly reflects the pathophysiological remodeling of the LV. Understanding temporal remodeling at the tissue, cellular, and molecular level and its link to a well-defined set of biomarkers at early stages post-MI is a prerequisite for improving personalized care and devising more successful therapeutic interventions. Here we summarize the integral mechanisms that occur during early cardiac remodeling in the post-MI setting and highlight the most prominent biomarkers for assessing disease progression.
Collapse
Affiliation(s)
- Raffaele Altara
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Marco Manca
- DG-DI, Medical Applications, CERN, Geneva, Switzerland
| | - Ramzi Sabra
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA. .,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
14
|
Abdelfattah NS, Amgad M, Zayed AA, Salem H, Elkhanany AE, Hussein H, Abd El-Baky N. Clinical correlates of common corneal neovascular diseases: a literature review. Int J Ophthalmol 2015; 8:182-93. [PMID: 25709930 DOI: 10.3980/j.issn.2222-3959.2015.01.32] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022] Open
Abstract
A large subset of corneal pathologies involves the formation of new blood and lymph vessels (neovascularization), leading to compromised visual acuity. This article aims to review the clinical causes and presentations of corneal neovascularization (CNV) by examining the mechanisms behind common CNV-related corneal pathologies, with a particular focus on herpes simplex stromal keratitis, contact lenses-induced keratitis and CNV secondary to keratoplasty. Moreover, we reviewed CNV in the context of different types of corneal transplantation and keratoprosthesis, and summarized the most relevant treatments available so far.
Collapse
Affiliation(s)
- Nizar Saleh Abdelfattah
- Doheny Image Reading Center, Doheny Eye Institute, University of California, Los Angeles, 1355 San Pablo Street, Los Angeles, California 90033, USA
| | - Mohamed Amgad
- Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Amira A Zayed
- Department of Surgery, Mayo Clinic, Rochester 55905, MN, USA
| | - Hamdy Salem
- Faculty of Medicine, University of Alexandria, Alexandria 21131, Egypt
| | - Ahmed E Elkhanany
- Department of Medical Oncology, Mayo Clinic, Rochester 55905, MN, USA
| | - Heba Hussein
- Faculty of Oral and Dental Medicine, Cairo University, Cairo 11956, Egypt
| | - Nawal Abd El-Baky
- Antibody Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, Alexandria 21934, Egypt
| |
Collapse
|
15
|
Antoine F, Girard D. Curcumin increases gelatinase activity in human neutrophils by a p38 mitogen-activated protein kinase (MAPK)-independent mechanism. J Immunotoxicol 2014; 12:188-93. [PMID: 24926560 DOI: 10.3109/1547691x.2014.917749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Curcumin has been found to possess anti-inflammatory activities and neutrophils, key players in inflammation, were previously found to be important targets to curcumin in a few studies. For example, curcumin was found to induce apoptosis in neutrophils by a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism. However, the role of curcumin on the biology of neutrophils is still poorly defined. To study the role of curcumin on neutrophil degranulation and to determine the role of p38 MAPK, human neutrophils were freshly isolated from healthy individuals and incubated in vitro with curcumin. Degranulation was studied at three levels: surface expression of granule markers by flow cytometry; release of matrix metallopeptidase-9 (MMP-9 or gelatinase B) enzyme into supernatants by Western blot; and gelatinase B activity by zymography. Activation of p38 MAPK was studied by monitoring its tyrosine phosphorylation levels by western blot and its role by the utilization of a pharmacological inhibitor. The results indicate that curcumin increased the cell surface expression of CD35 (secretory vesicle), CD63 (azurophilic granules), and CD66b (gelatinase granules) in neutrophils. Also, curcumin increased the release and enzymatic activity of gelatinase B in the extracellular milieu and activated p38 MAP kinase in these cells. However, in contrast to fMLP, curcumin-induced enzymatic activity and secretion of gelatinase B were not reversed by use of a p38 inhibitor. Finally, it was found that curcumin was able to enhance phagocytosis. Taken together, the results here demonstrate that curcumin induced degranulation in human neutrophils and that the increased gelatinase activity is not dependent on p38 MAPK activation. Therefore, degranulation is another human neutrophil function that could be modulated by curcumin, as well as phagocytosis.
Collapse
Affiliation(s)
- Francis Antoine
- Laboratoire de recherche en inflammation et physiologie des granulocytes, INRS-Institut Armand-Frappier, University of Québec , Laval, Quebec , Canada
| | | |
Collapse
|
16
|
Koshy ST, Ferrante TC, Lewin SA, Mooney DJ. Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials 2014; 35:2477-87. [PMID: 24345735 PMCID: PMC3893146 DOI: 10.1016/j.biomaterials.2013.11.044] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/18/2013] [Indexed: 11/28/2022]
Abstract
The performance of biomaterials-based therapies can be hindered by complications associated with surgical implant, motivating the development of materials systems that allow minimally invasive introduction into the host. In this study, we created cell-adhesive and degradable gelatin scaffolds that could be injected through a conventional needle while maintaining a predefined geometry and architecture. These scaffolds supported attachment, proliferation, and survival of cells in vitro and could be degraded by recombinant matrix metalloproteinase-2 and -9. Prefabricated gelatin cryogels rapidly resumed their original shape when injected subcutaneously into mice and elicited only a minor host response following injection. Controlled release of granulocyte-macrophage colony-stimulating factor from gelatin cryogels resulted in complete infiltration of the scaffold by immune cells and promoted matrix metalloproteinase production leading to cell-mediated degradation of the cryogel matrix. These findings suggest that gelatin cryogels could serve as a cell-responsive platform for biomaterial-based therapy.
Collapse
Affiliation(s)
- Sandeep T Koshy
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Thomas C Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sarah A Lewin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Elbjeirami WM, Donnachie EM, Burns AR, Smith CW. Endothelium-derived GM-CSF influences expression of oncostatin M. Am J Physiol Cell Physiol 2011; 301:C947-53. [PMID: 21775705 DOI: 10.1152/ajpcell.00205.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During and after transendothelial migration, neutrophils undergo a number of phenotypic changes resulting from encounters with endothelium-derived factors. This report uses an in vitro model with human umbilical vein endothelial cells and isolated human neutrophils to examine the effects of two locally derived cytokines, granulocyte (G)-macrophage (M) colony-stimulating factor (GM-CSF) and G-CSF, on oncostatin M (OSM) expression. Neutrophils contacting activated HUVEC expressed and released increased amounts of oncostatin M (OSM), a proinflammatory cytokine known to induce polymorphonuclear neutrophil adhesion and chemotaxis. Neutrophil transendothelial migration resulted in threefold higher OSM expression and protein levels compared with nontransmigrated cells. Addition of anti-GM-CSF neutralizing antibody reduced OSM expression level but anti-G-CSF was without effect. GM-CSF but not G-CSF protein addition to cultures of isolated neutrophils resulted in a significant increase in OSM protein secretion. However, inhibition of β(2) integrins by neutralizing antibody significantly reduced GM-CSF-induced OSM production indicating this phenomenon is adhesion dependent. Thus cytokine-stimulated endothelial cells can produce sufficient quantities of GM-CSF to influence in an adhesion-dependent manner, the phenotypic characteristics of neutrophils resulting in the latter's transmigration. Both transmigration and adhesion phenomenon lead to increased production of OSM by neutrophils that then play a major role in inflammatory response.
Collapse
Affiliation(s)
- Wafa M Elbjeirami
- Department of Pathology, Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan.
| | | | | | | |
Collapse
|
18
|
Mollinedo F, Janssen H, de la Iglesia-Vicente J, Villa-Pulgarin JA, Calafat J. Selective fusion of azurophilic granules with Leishmania-containing phagosomes in human neutrophils. J Biol Chem 2010; 285:34528-36. [PMID: 20801889 DOI: 10.1074/jbc.m110.125302] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania parasites use polymorphonuclear neutrophils as intermediate hosts before their ultimate delivery to macrophages following engulfment of parasite-infected neutrophils. This leads to a silent and unrecognized entry of Leishmania into the macrophage host cell. Neutrophil function depends on its cytoplasmic granules, but their mobilization and role in how Leishmania parasites evade intracellular killing in neutrophils remain undetermined. Here, we have found by ultrastructural approaches that neutrophils ingested Leishmania major promastigotes, and azurophilic granules fused in a preferential way with parasite-containing phagosomes, without promoting parasite killing. Azurophilic granules, identified by the granule marker myeloperoxidase, also fused with Leishmania donovani-engulfed vacuoles in human neutrophils. In addition, the azurophilic membrane marker CD63 was also detected in the vacuole surrounding the parasite, and in the fusion of azurophilic granules with the parasite-engulfed phagosome. Tertiary and specific granules, involved in vacuole acidification and superoxide anion generation, hardly fused with Leishmania-containing phagosomes. L. major interaction with neutrophils did not elicit production of reactive oxygen species or mobilization of tertiary and specific granules. By using immunogold electron microscopy approaches in the engulfment of L. major and L. donovani by human neutrophils, we did not find a significant contribution of endoplasmic reticulum to the formation of Leishmania-containing vacuoles. Live Leishmania parasites were required to be optimally internalized by neutrophils. Our data suggest that Leishmania promastigotes modulate their uptake by neutrophils, and regulate granule fusion processes in a rather selective way to favor parasite survival in human neutrophils.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| | | | | | | | | |
Collapse
|
19
|
Hong X, Nelson KK, deCarvalho AC, Kalkanis SN. Heparanase expression of glioma in human and animal models. J Neurosurg 2010; 113:261-9. [PMID: 19835469 DOI: 10.3171/2009.9.jns09682] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECT Mammalian heparanase has been shown to function in tumor progression, invasion, and angiogenesis. However, heparanase expression in gliomas has not been well analyzed. To clarify its expression in gliomas, human glioma tissues and glioma animal models were investigated. METHODS The expression of heparanase mRNA was determined in 33 resected human glioma tissues by semiquantitative real-time polymerase chain reaction. Heparanase expression was verified with a Western blot assay and immunohistochemistry (IHC) staining. Primary neurospheres from human glioblastoma multiforme (GBM) were developed in vitro. Heparanase expression in murine astrocytoma and human primary neurosphere animal models was examined using IHC. RESULTS The authors found that heparanase mRNA is greatly increased in gliomas including oligodendroglioma (9 samples), anaplastic astrocytoma (11 samples), and GBM (13 samples) as compared with healthy brain mRNA (3 samples). Note, however, that no significant difference was observed among the 3 tumor groups. Increased heparanase expression was also found in tumor tissues on Western blotting. Immunohistochemistry staining demonstrated that heparanase was expressed by neovessel endothelial cells, infiltrated neutrophils, and in some cases, by neoplastic cells. Heparanase-expressing cells, including GBM tumor cells and neovessel endothelial cells, exhibited decreased expression of CD44, a cell adhesion molecule on the cell membrane that is important for regulating tumor invasion. In addition, heparanase-expressing tumor cells showed an elevated density of the cell proliferation marker Ki 67, as compared with its density in non-heparanase-expressing tumor cells, suggesting that heparanase expression is correlated with enhanced tumor proliferation. Two animal glioma models were tested for heparanase expression. Both murine astrocytoma cells (Ast11.9-2) and cultured primary human GBM neurospheres expressed heparanase when grown in animal brain tissue. CONCLUSIONS Glioma tissues contain increased levels of heparanase. Multiple cell types contribute to the expression of heparanase, including neovessel endothelial cells, tumor cells, and infiltrated neutrophils. Heparanase plays an important role in the control of cell proliferation and invasion. Animal models using Ast11.9-2 and primary neurospheres are suitable for antitumor studies targeting heparanase.
Collapse
Affiliation(s)
- Xin Hong
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
20
|
Simard JC, Girard D, Tessier PA. Induction of neutrophil degranulation by S100A9 via a MAPK-dependent mechanism. J Leukoc Biol 2010; 87:905-14. [PMID: 20103766 DOI: 10.1189/jlb.1009676] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
S100A9 is a proinflammatory protein, expressed abundantly in the cytosol of neutrophils and monocytes. High extracellular S100A9 concentrations have been correlated with chronic inflammatory diseases such as rheumatoid arthritis and Crohn's disease, as well as with phagocyte extravasation. This study tested the hypothesis that S100A9 induces degranulation in human neutrophils. S100A9 was found to up-regulate the surface expression of CD35 and CD66b, proteins contained in secretory vesicles and specific/gelatinase granules, respectively. In addition, gelatinase and albumin, stored, respectively, in specific/gelatinase granules and secretory vesicles, were detected in the supernatants of neutrophils stimulated with S100A9. In contrast, stimulation with S100A9 had no effect on CD63 expression or MPO secretion, two proteins contained in azurophilic granules. S100A9 induced the phosphorylation of the MAPKs, ERK1/2, p38, and JNK. Inhibition of p38 and JNK but not ERK1/2, with specific inhibitors (SB203580, JNKII, and PD98059, respectively), blocked neutrophil degranulation induced by S100A9. Taken together, these results support the hypothesis and clearly indicate that S100A9 induces the degranulation of secretory and specific/gelatinase granules but not of azurophilic granules in a process involving p38 and JNK and further support its classification as a DAMP.
Collapse
Affiliation(s)
- Jean-Christophe Simard
- Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | | | | |
Collapse
|
21
|
The role of heparanase in diseases of the glomeruli. Arch Immunol Ther Exp (Warsz) 2010; 58:45-56. [PMID: 20049646 DOI: 10.1007/s00005-009-0061-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/30/2009] [Indexed: 12/28/2022]
Abstract
The glomerular basement membrane (GBM) is a kind of net that remains in a state of dynamic equilibrium. Heparan sulfate proteoglycans (HSPGs) are among its most important components. There are much data indicating the significance of these proteoglycans in protecting proteins such as albumins from penetrating to the urine, although some new data indicate that loss of proteoglycans does not always lead to proteinuria. Heparanase is an enzyme which cleaves beta 1,4 D: -glucuronic bonds in sugar groups of HSPGs. Thus it is supposed that heparanase may have an important role in the pathogenesis of proteinuria. Increased heparanase expression and activity in the course of many glomerular diseases was observed. The most widely documented is the significance of heparanase in the pathogenesis of diabetic nephropathy. Moreover, heparanase acts as a signaling molecule and may influence the concentrations of active growth factors in the GBM. It is being investigated whether heparanase inhibition may cause decreased proteinuria. The heparanase inhibitor PI-88 (phosphomannopentaose sulfate) was effective as an antiproteinuric drug in an experimental model of membranous nephropathy. Nevertheless, this drug is burdened by some toxicity, so further investigations should be considered.
Collapse
|
22
|
Ostrovsky O, Korostishevsky M, Shafat I, Mayorov M, Ilan N, Vlodavsky I, Nagler A. Inverse correlation between HPSE gene single nucleotide polymorphisms and heparanase expression: possibility of multiple levels of heparanase regulation. J Leukoc Biol 2009; 86:445-55. [PMID: 19406828 DOI: 10.1189/jlb.1208735] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Heparanase is an endo-beta-glucuronidase that specifically cleaves the saccharide chains of heparan sulfate proteoglycans. Heparanase plays important roles in processes such as angiogenesis, tumor metastasis, tissue repair and remodeling, inflammation and autoimmunity. Genetic variations of the heparanase gene (HPSE) have been associated with heparanase transcription level. The present study was undertaken to identify haplotype or single nucleotide polymorphisms (SNPs) genotype combinations that correlate with heparanase expression both at the mRNA and protein levels. For this purpose, 11 HPSE gene SNPs were genotyped among 108 healthy individuals. Five out of the eleven polymorphisms revealed an association between the SNPs and heparanase expression. SNP rs4693608 exhibited a strong evidence of association. Analysis of haplotypes distribution revealed that the combination of two SNPs (rs4693608 and rs4364254) disclosed the most significant result. This approach allowed segregation of possible genotype combinations to three groups that correlate with low (LR: GG-CC, GG-CT, GG-TT, GA-CC), intermediate (MR: GA-CT, GA-TT) and high (HR: AA-TT, AA-CT) heparanase expression. Unexpectedly, LR genotype combinations were associated with low mRNA expressions level and high heparanase concentration in plasma, while HR genotype combinations were associated with high expression of mRNA and low plasma protein level. Because the main site of activity of secreted active heparanase is the extracellular matrix and cell surface, the origin and functional significance of plasma heparanase remain to be investigated. The current study indicates that rs4693608 and rs4364254 SNPs are involved in the regulation of heparanase expression and provides the basis for further studies on the association between HPSE gene SNPs and disease outcome.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | |
Collapse
|
23
|
Herrero-Turrión MJ, Calafat J, Janssen H, Fukuda M, Mollinedo F. Rab27a regulates exocytosis of tertiary and specific granules in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2008; 181:3793-803. [PMID: 18768832 DOI: 10.4049/jimmunol.181.6.3793] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The correct mobilization of cytoplasmic granules is essential for the proper functioning of human neutrophils in host defense and inflammation. In this study, we have found that human peripheral blood neutrophils expressed high levels of Rab27a, whereas Rab27b expression was much lower. This indicates that Rab27a is the predominant Rab27 isoform present in human neutrophils. Rab27a was up-regulated during neutrophil differentiation of HL-60 cells. Subcellular fractionation and immunoelectron microscopy studies of resting human neutrophils showed that Rab27a was mainly located in the membranes of specific and gelatinase-enriched tertiary granules, with a minor localization in azurophil granules. Rab27a was largely absent from CD35-enriched secretory vesicles. Tertiary and specific granule-located Rab27a population was translocated to the cell surface upon neutrophil activation with PMA that induced exocytosis of both tertiary and specific granules. Specific Abs against Rab27a inhibited Ca(2+) and GTP-gamma-S activation and PMA-induced exocytosis of CD66b-enriched tertiary and specific granules in electropermeabilized neutrophils, whereas secretion of CD63-enriched azurophil granules was scarcely affected. Human neutrophils lacked or expressed low levels of most Slp/Slac2 proteins, putative Rab27 effectors, suggesting that additional proteins should act as Rab27a effectors in human neutrophils. Our data indicate that Rab27a is a major component of the exocytic machinery of human neutrophils, modulating the secretion of tertiary and specific granules that are readily mobilized upon neutrophil activation.
Collapse
Affiliation(s)
- M Javier Herrero-Turrión
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Cientificas-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | | | | | | | | |
Collapse
|
24
|
Mannello F, Jung K, Tonti GA, Canestrari F. Heparin affects matrix metalloproteinases and tissue inhibitors of metalloproteinases circulating in peripheral blood. Clin Biochem 2008; 41:1466-73. [PMID: 18926810 DOI: 10.1016/j.clinbiochem.2008.09.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Blood sampling/handling alters matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) expression. The aim of this study is to evaluate the effects of high molecular weight heparin on MMP and TIMP expression in blood. DESIGN AND METHODS We analyzed by gelatin zymography and ELISA assays the effects of different heparin salts, dose- and time-dependence of MMP and TIMP concentrations in plasma and sera collected with and without clot-accelerator in plastic tubes from 50 healthy donors. RESULTS The levels and zymography of MMP-2 did not show significant changes among all samples, and during time- and dose-dependent heparin treatments. MMP-9 and TIMP-2 expression were strongly affected by heparin, with significant increase of their content and gelatinolytic activity both in time- and in dose-dependent fashion. Addition of heparin allowed also the displacement of MMP-2 prodomain, favouring zymogen activation. CONCLUSIONS Heparin has direct and indirect effects, altering MMP/TIMP complexes circulating in blood, and increasing the release of TIMP-2. To avoid misinterpretations due to MMP/TIMP complex alteration and MMP prodomain displacement, heparin should be cautiously used in blood collection procedures.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, University Carlo Bo, Urbino, Italy.
| | | | | | | |
Collapse
|
25
|
Brown AJ, Alicknavitch M, D’Souza S, Daikoku T, Kirn-Safran C, Marchetti D, Carson DD, Farach-Carson M. Heparanase expression and activity influences chondrogenic and osteogenic processes during endochondral bone formation. Bone 2008; 43:689-99. [PMID: 18589009 PMCID: PMC2621444 DOI: 10.1016/j.bone.2008.05.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/28/2008] [Accepted: 05/20/2008] [Indexed: 11/30/2022]
Abstract
Endochondral bone formation is a highly orchestrated process involving coordination among cell-cell, cell-matrix and growth factor signaling that eventually results in the production of mineralized bone from a cartilage template. Chondrogenic and osteogenic differentiation occur in sequence during this process, and the temporospatial patterning clearly requires the activities of heparin binding growth factors and their receptors. Heparanase (HPSE) plays a role in osteogenesis, but the mechanism by which it does so is incompletely understood. We used a combination of ex vivo and in vitro approaches and a well described HPSE inhibitor, PI-88 to study HPSE in endochondral bone formation. In situ hybridization and immunolocalization with HPSE antibodies revealed that HPSE is expressed in the peri-chondrium, peri-osteum, and at the chondro-osseous junction, all sites of key signaling events and tissue morphogenesis. Transcripts encoding Hpse also were observed in the pre-hypertrophic zone. Addition of PI-88 to metatarsals in organ culture reduced growth and suggested that HPSE activity aids the transition from chondrogenic to osteogenic processes in growth of long bones. To study this, we used high density cultures of ATDC5 pre-chondrogenic cells grown under conditions favoring chondrogenesis or osteogenesis. Under chondrogenic conditions, HPSE/Hpse was expressed at high levels during the mid-culture period, at the onset of terminal chondrogenesis. PI-88 addition reduced chondrogenesis and accelerated osteogenesis, including a dramatic up-regulation of osteocalcin levels. In normal growth medium, addition of PI-88 reduced migration of ATDC-5 cells, suggesting that HPSE facilitates cartilage replacement by bone at the chondro-osseous junction by removing the HS component of proteoglycans, such as perlecan/HSPG2, that otherwise prevent osteogenic cells from remodeling hypertrophic cartilage.
Collapse
Affiliation(s)
- A. J. Brown
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | | | - S.S. D’Souza
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| | - T. Daikoku
- Division of Reproductive and Developmental Biology, Vanderbilt Medical Center, Nashville, TN 37232
| | - C.B. Kirn-Safran
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | - D. Marchetti
- Department of Pathology and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - D. D. Carson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | - M.C. Farach-Carson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
- Department of Material Sciences, University of Delaware, Newark, DE 19716
- Center for Translational Cancer Research, University of Delaware, Newark, DE 19716
- Corresponding Author: Department of Biological Sciences, University of Delaware, 326 Wolf Hall, Newark, DE 19716 Tel. 302 831-4296; FAX 302 831-2281; E-Mail:
| |
Collapse
|
26
|
Mannello F. Serum or plasma samples? The "Cinderella" role of blood collection procedures: preanalytical methodological issues influence the release and activity of circulating matrix metalloproteinases and their tissue inhibitors, hampering diagnostic trueness and leading to misinterpretation. Arterioscler Thromb Vasc Biol 2008; 28:611-4. [PMID: 18354094 DOI: 10.1161/atvbaha.107.159608] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Harris LK, Baker PN, Brenchley PEC, Aplin JD. Trophoblast-derived heparanase is not required for invasion. Placenta 2008; 29:332-7. [PMID: 18329709 DOI: 10.1016/j.placenta.2008.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 12/19/2007] [Accepted: 01/22/2008] [Indexed: 12/16/2022]
Abstract
To invade the decidua and myometrium, extravillous trophoblast must degrade an assortment of extracellular matrix (ECM) components. The uterine wall is rich in heparan sulphate proteoglycans (HSPG), which interact with collagen, laminin and fibronectin, and bind a variety of growth factors. HSPG are catabolised by heparanase, an enzyme that is highly expressed in the placenta. The aim of this study was to investigate the role of heparanase in first trimester trophoblast invasion. First trimester cytotrophoblasts (CTB) were isolated by trypsin digestion followed by centrifugation on a Percoll gradient. Cells were cultured on Matrigel to promote an extravillous phenotype. Heparanase expression was studied by immunohistochemistry and confocal microscopy. Trophoblast invasion was assessed using an in vitro transwell assay. A high level of heparanase was observed in isolated first trimester trophoblast; however, a function-blocking antibody did not inhibit invasion of primary CTB or the extravillous trophoblast cell line SGHPL-4 at 21% oxygen. In contrast to cancer cells, heparanase expression was not increased following culture at 3% oxygen, and trophoblast invasion was not retarded by the blocking antibody under these conditions. Heparanase expression was observed in stromal cells and vascular endothelium in first trimester parietal decidua. Expression was evident on the cell surface and in the nucleus of trophoblast and decidual cells. In conclusion, trophoblast heparanase is not required for invasion in vitro. Its abundant expression suggests another role during pregnancy, perhaps in controlling the availability of ECM-bound growth factors or acting as a transcription factor.
Collapse
Affiliation(s)
- L K Harris
- Maternal and Fetal Health Research Group, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
28
|
Augusto TM, Felisbino SL, Carvalho HF. Remodeling of rat ventral prostate after castration involves heparanase-1. Cell Tissue Res 2008; 332:307-15. [PMID: 18278514 DOI: 10.1007/s00441-008-0577-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 01/09/2008] [Indexed: 11/30/2022]
Abstract
Androgen deprivation causes the rat ventral prostate to reduce to 10% of its original size by 21 days after castration. The regressive changes result from the loss of epithelial cells by apoptosis and marked reorganization of the stroma. We have investigated whether these changes are accompanied by variations in heparanase expression. The ventral prostate of castrated rats was collected and processed for the quantification of heparan sulfate (HS), for the measurement of heparanase expression and its localization by reverse transcription/polymerase chain reaction, Western blotting, and immunohistochemistry, and for transmission electron microscopy (TEM). Absolute HS content decreased significantly as early as day 7 after surgery. Heparanase mRNA peaked 7 days after castration. The heparanase proenzyme (65 kDa) and the active form (50 kDa) were identified and peaked on day 7 after castration; this coincided with maximum HS-degrading activity. Heparanase was located to the basolateral surface of epithelial cells and in the adjacent stroma. After castration, staining for heparanase was reduced in the epithelium and increased in the stroma. TEM revealed that the peak of heparanase expression at day 7 after castration was associated with extensive changes in the basement membrane of the epithelium, endothelium and smooth muscle cells involving cell shrinkage and/or deletion by apoptosis. These results suggest that heparanase expression increases after castration and correlates with a decreased amount of HS. This variation in heparanase expression is involved in tissue remodeling and in the control of the regressive pattern after 1 week of androgen deprivation.
Collapse
Affiliation(s)
- Taize M Augusto
- Department of Cell Biology, State University of Campinas, CP6109, 13083-863 Campinas, SP, Brazil
| | | | | |
Collapse
|
29
|
Komatsu N, Waki M, Sue M, Tokuda C, Kasaoka T, Nakajima M, Higashi N, Irimura T. Heparanase expression in B16 melanoma cells and peripheral blood neutrophils before and after extravasation detected by novel anti-mouse heparanase monoclonal antibodies. J Immunol Methods 2007; 331:82-93. [PMID: 18162185 DOI: 10.1016/j.jim.2007.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/13/2007] [Accepted: 11/19/2007] [Indexed: 12/29/2022]
Abstract
Degradation of extracellular matrix is associated with extravasation of metastatic tumor cells and inflammatory cells. Heparanase, the heparan sulfate-specific endo-beta-glucuronidase, is a key enzyme for the matrix degradation, yet its involvement in extravasation and invasion during pathological processes was not fully clarified in vivo. In the present study, we examined heparanase expression in mouse experimental models, lung metastasis of melanoma and skin infiltration of neutrophils. Sixteen novel monoclonal antibodies specific for mouse heparanase were established by enzyme-linked immunosorbent assay with a recombinant mouse proheparanase, immunocytochemical staining of B16F10 melanoma cells cultured in vitro, and immunoprecipitation of the lysate of heparanase transfectant cells. Heparanase expression in metastatic nodules of B16F10 melanoma cells and in neutrophils localized in the inflamed skin was immunohistochemically detected using a monoclonal antibody RIO-1 that recognized the C-terminus of mouse heparanase. Homogeneous and strong heparanase staining was observed in 46% of the lung micrometastases of B16F10 melanoma cells. The staining was intensely positive on the invasive front of larger established metastasis nodules, but it was weak or heterogeneous inside the nodules. Heparanase expression in skin-infiltrating neutrophils was examined after inducing local inflammation with croton oil. The monoclonal antibody stained a significant portion of neutrophils inside and along the blood vessels, whereas it did not stain dermal neutrophils located distant from the vasculatures. The present study strongly suggests that both melanoma cells and neutrophils transiently express heparanase before and during the invasive process in vivo.
Collapse
Affiliation(s)
- Noriko Komatsu
- The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Heparan sulphate proteoglycans are ubiquitous macromolecules of cell surfaces and extracellular matrices. Numerous extracellular matrix proteins, growth factors, morphogens, cytokines, chemokines and coagulation factors are bound and regulated by heparan sulphate. Degradation of heparan sulphate thus potentially profoundly affects cell and tissue function. Although there is evidence that several heparan sulphate-degrading endoglucuronidases (heparanases) might exist, so far only one transcript encoding a functional heparanase has been identified: heparanase-1. In the first part of this review, we discuss the current knowledge about heparan sulphate proteoglycans and the functional importance of their versatile interactions. In the second part, we summarize recent findings that have contributed to the characterization of heparanase-1, focusing on the molecular properties, working mechanism, substrate specificity, expression pattern, cellular activation and localization of this enzyme. Additionally, we review data implicating heparanase-1 in several normal and pathological processes, focusing on tumour metastasis and angiogenesis, and on evidence for a potentially direct signalling function of the molecule. In that context, we also briefly discuss heparanase-2, an intriguing close homologue of heparanase-1, for which, so far, no heparan sulphate-degrading activity could be demonstrated.
Collapse
Affiliation(s)
- Veronique Vreys
- Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
- *Correspondence to: Guido DAVID Centre for Human Genetics, Campus Gasthuisberg, O&N1, Herestraat 49, 3000 Leuven, Belgium. Tel.: +32-16-345863; Fax: +32-16-347166; E-mail:
| | - Guido David
- Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
- *Correspondence to: Guido DAVID Centre for Human Genetics, Campus Gasthuisberg, O&N1, Herestraat 49, 3000 Leuven, Belgium. Tel.: +32-16-345863; Fax: +32-16-347166; E-mail:
| |
Collapse
|
31
|
Rittner HL, Labuz D, Richter JF, Brack A, Schäfer M, Stein C, Mousa SA. CXCR1/2 ligands induce p38 MAPK-dependent translocation and release of opioid peptides from primary granules in vitro and in vivo. Brain Behav Immun 2007; 21:1021-32. [PMID: 17604950 DOI: 10.1016/j.bbi.2007.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 12/13/2022] Open
Abstract
Polymorphonuclear leukocytes (PMN) can release opioid peptides which bind to opioid receptors on sensory neurons and inhibit inflammatory pain. This release can be triggered by chemokine receptor 1/2 (CXCR1/2) ligands. Our aim was to identify the granule subpopulation containing opioid peptides and to assess whether MAPK mediate the CXCR1/2 ligand-induced release of these peptides. Using double immunofluorescence confocal microscopy, we showed that beta-endorphin (END) and Met-enkephalin (ENK) were colocalized with the primary (azurophil) granule markers CD63 and myeloperoxidase (MPO) within PMN. END and ENK release triggered by a CXCR1/2 ligand in vitro was dependent on the presence of cytochalasin B (CyB) and on p38 MAPK, but not on p42/44 MAPK. In addition, translocation of END and ENK containing primary granules to submembranous regions of the cell was abolished by the p38 MAPK inhibitor SB203580. In vivo CXCL2/3 reduced pain in rats with complete Freund's adjuvant (CFA)-induced hindpaw inflammation. This effect was attenuated by intraplantar (i.pl.) antibodies against END and ENK and by i.pl. p38 MAPK inhibitor treatment. Taken together, these findings indicate that END and ENK are contained in primary granules of PMN, and that CXCR1/2 ligands induce p38-dependent translocation and release of these opioid peptides to inhibit inflammatory pain.
Collapse
Affiliation(s)
- Heike L Rittner
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, D-12200 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Cai YG, Fang DC, Chen L, Tang XD, Chen T, Yu ST, Luo YH, Xiong Z, Wang DX, Yang SM. Dendritic cells reconstituted with a human heparanase gene induce potent cytotoxic T-cell responses against gastric tumor cells in vitro. Tumour Biol 2007; 28:238-46. [PMID: 17717429 DOI: 10.1159/000107584] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 04/04/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Dendritic cell-based tumor vaccination is a promising approach in the treatment of cancer. Strategies to modify dendritic cells (DCs) with tumor-associated antigens (TAAs) can elicit specific immune responses against tumors. Heparanase is overexpressed in gastric cancer, especially in invasive and metastatic cells, but is downregulated in differential normal tissue. Therefore, heparanase is a potential target in immunotherapy for patients with advanced gastric cancer who are not candidates for surgery. The present paper was designed to investigate the immune response of a heparanase gene-modified DC-based vaccine against gastric cancer cell lines in vitro. METHODS DCs from peripheral blood mononuclear cells of healthy HLA-A2-positive donors were transfected with recombinant adenovirus containing the full-length cDNA of heparanase (rAd-Hpa) to generate heparanase gene-modified DC vaccine. T lymphocytes from the same donors were repeatedly activated by genetically modified DC vaccine to generate heparanase-specific cytotoxicity T lymphocytes (CTLs). CTL-mediated cell lysis of gastric cancer cells lines (KATO-III and SGC-7901) was analyzed in vitro by a standard (51)Cr releasing assay. IFN-gamma secretion was measured by ELISA in heparanase-specific CTLs cocultured with those gastric cancer cell lines. RESULTS Our results showed that the expression of heparanase in DCs transfected with rAd-Hpa was significantly increased. Furthermore, DCs transfected with rAd-Hpa could induce heparanase-specific CTLs against HLA-matched and heparanase-positive gastric cancer cells in vitro, while there were no killing effects on autologous lymphocytes. Meanwhile, these rAd-Hpa-modified DCs could increase IFN-gamma secretion of effector cells when cocultured with KATO-III cells. CONCLUSIONS These findings demonstrate for the first time that the transduction of DCs with rAd-Hpa can induce CTLs that specifically lyse heparanase-positive gastric cancer cells and increase IFN-gamma secretion in an MHC-restricted fashion. Heparanase gene-modified DC vaccine offers a great opportunity for immunotherapy in patients with advanced gastric cancer and possibly also with other malignancies.
Collapse
Affiliation(s)
- Yong-Guo Cai
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kirn-Safran CB, D'Souza SS, Carson DD. Heparan sulfate proteoglycans and their binding proteins in embryo implantation and placentation. Semin Cell Dev Biol 2007; 19:187-93. [PMID: 17766150 PMCID: PMC2275896 DOI: 10.1016/j.semcdb.2007.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/20/2007] [Indexed: 12/23/2022]
Abstract
Complex interactions occur among embryonic, placental and maternal tissues during embryo implantation. Many of these interactions are controlled by growth factors, extracellular matrix and cell surface components that share the ability to bind heparan sulfate (HS) polysaccharides. HS is carried by several classes of cell surface and secreted proteins called HS proteoglycan that are expressed in restricted patterns during implantation and placentation. This review will discuss the expression of HS proteoglycans and various HS binding growth factors as well as extracellular matrix components and HS-modifying enzymes that can release HS-bound proteins in the context of implantation and placentation.
Collapse
|
34
|
Waterman M, Ben-Izhak O, Eliakim R, Groisman G, Vlodavsky I, Ilan N. Heparanase upregulation by colonic epithelium in inflammatory bowel disease. Mod Pathol 2007; 20:8-14. [PMID: 17041566 DOI: 10.1038/modpathol.3800710] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparanase is an endo-beta-D-glucuronidase capable of cleaving heparan sulfate (HS) side chains at a limited number of sites, yielding HS fragments of still appreciable size ( approximately 5-7 kDa). Heparanase activity has long been detected in a number of cell types and tissues. Importantly, heparanase activity correlated with the metastatic potential of tumor-derived cells, attributed to enhanced cell dissemination as a consequence of HS cleavage and remodeling of the extracellular matrix barrier. Similarly, heparanase activity was implicated in neovascularization, inflammation and autoimmunity, involving migration of vascular endothelial cells and activated cells of the immune system. The involvement of heparanase in inflammatory processes of the gastrointestinal tract has not been examined. Here, we utilized immunohistochemical analysis to investigate heparanase expression in acute and chronic inflammatory conditions. Heparanase expression was not detected in specimens derived from normal colon tissue. In contrast, strong heparanase staining was observed in Crohn's disease and ulcerative colitis, but not in infectious colitis. Interestingly, heparanase staining was primarily observed in epithelial rather than immune cells. Importantly, un-fractionated as well as low molecular weight heparin (enoxaparin), which exhibit a strong inhibitory activity towards heparanase, have proven efficacious in ulcerative colitis and Crohn's disease patients, suggesting that heparanase is actively involved in these pathologies and thus may be considered as a target for the development of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Matti Waterman
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
35
|
Mollinedo F, Calafat J, Janssen H, Martín-Martín B, Canchado J, Nabokina SM, Gajate C. Combinatorial SNARE complexes modulate the secretion of cytoplasmic granules in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2006; 177:2831-41. [PMID: 16920918 DOI: 10.4049/jimmunol.177.5.2831] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mobilization of human neutrophil granules is critical for the innate immune response against infection and for the outburst of inflammation. Human neutrophil-specific and tertiary granules are readily exocytosed upon cell activation, whereas azurophilic granules are mainly mobilized to the phagosome. These cytoplasmic granules appear to be under differential secretory control. In this study, we show that combinatorial soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes with vesicle-associated membrane proteins (VAMPs), 23-kDa synaptosome-associated protein (SNAP-23), and syntaxin 4 underlie the differential mobilization of granules in human neutrophils. Specific and tertiary granules contained VAMP-1, VAMP-2, and SNAP-23, whereas the azurophilic granule membranes were enriched in VAMP-1 and VAMP-7. Ultrastructural, coimmunoprecipitation, and functional assays showed that SNARE complexes containing VAMP-1, VAMP-2, and SNAP-23 mediated the rapid exocytosis of specific/tertiary granules, whereas VAMP-1 and VAMP-7 mainly regulated the secretion of azurophilic granules. Plasma membrane syntaxin 4 acted as a general target SNARE for the secretion of the distinct granule populations. These data indicate that at least two SNARE complexes, made up of syntaxin 4/SNAP-23/VAMP-1 and syntaxin 4/SNAP-23/VAMP-2, are involved in the exocytosis of specific and tertiary granules, whereas interactions between syntaxin 4 and VAMP-1/VAMP-7 are involved in the exocytosis of azurophilic granules. Our data indicate that quantitative and qualitative differences in SNARE complex formation lead to the differential mobilization of the distinct cytoplasmic granules in human neutrophils, and a higher capability to form diverse SNARE complexes renders specific/tertiary granules prone to exocytosis.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Cientificas-Universidad de Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
36
|
Galkina SI, Molotkovsky JG, Ullrich V, Sud'ina GF. Scanning electron microscopy study of neutrophil membrane tubulovesicular extensions (cytonemes) and their role in anchoring, aggregation and phagocytosis. The effect of nitric oxide. Exp Cell Res 2005; 304:620-9. [PMID: 15748905 DOI: 10.1016/j.yexcr.2004.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 12/08/2004] [Accepted: 12/09/2004] [Indexed: 11/24/2022]
Abstract
We have shown that human neutrophils develop dynamic thin and very long tubulovesicular extensions (cytonemes) upon adhesion to fibronectin, if cell spreading was blocked by Na(+)-free medium or by 4-bromophenacyl bromide, N-ethylmaleimide, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and cytochalasin D (S. I. Galkina, G. F. Sud'ina and V. Ullrich, (2001). Exp. Cell Res. 266, 222-228). In the present work we found that similar in size and behavior tubulovesicular extensions were formed on the neutrophil cell bodies upon adhesion to fibronectin-coated substrata in the presence of the nitric oxide donor diethylamine NONOate. In the presence of the nitric oxide synthase inhibitor N-omega-nitro-L-arginine methyl ester, neutrophils were well spread and had no microextensions. Using scanning electron microscopy, we demonstrated that tubulovesicular extensions of neutrophils executed long-range adhesion and binding objects for phagocytosis, such as serum-opsonized zymosan particles and erythrocytes. Tubulovesicular extensions anchored neutrophils to substrata in a beta1 and beta2 integrin-independent, but L-selectin-dependent manner. BODIPY-sphingomyelin impaired development of tubulovesicular extension, and heparitinase 1 played a role in their destruction. Membrane tubulovesicular extensions are supposed to represent protrusions of an intracellular exocytotic traffic and serve as cellular sensory and adhesive organelles. Nitric oxide seems to play a role in regulation of tubulovesicular extensions formation, thus affecting neutrophil adhesive interactions and phagocytosis.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A. N. Belozersky Institute of Physico-Chemical Biology of the M. V. Lomonosov Moscow State University, 119992, Moscow, Leninskie gory, Building A, Moscow, Russia.
| | | | | | | |
Collapse
|
37
|
Cao HJ, Fang Y, Zhang X, Chen WJ, Zhou WP, Wang H, Wang LB, Wu JM. Tumor metastasis and the reciprocal regulation of heparanase gene expression by nuclear factor kappa B in human gastric carcinoma tissue. World J Gastroenterol 2005; 11:903-7. [PMID: 15682491 PMCID: PMC4250607 DOI: 10.3748/wjg.v11.i6.903] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether NF-κB is activated in human gastric carcinoma tissues and, if so, to study whether there is any correlation between NF-κB activity and heparanase expression in gastric carcinoma.
METHODS: NF-κB activation was assayed by immunohi-stochemical staining in formalin-fixed, paraffin-embedded specimens from 45 gastric carcinoma patients. Electrophoretic mobility shift assay (EMSA) method was used for nuclear protein from these fresh tissue specimens. Heparanase gene expression was quantified using quantitative RT-PCR.
RESULTS: The nuclear translocation of RelA (marker of NF-κB activation) was significantly higher in tumor cells compared to adjacent and normal epithelial cells [(41.3±3.52)% vs (0.38±0.22) %, t = 10.993, P = 0.000<0.05; (41.3±3.52)% vs (0±0.31)%, t = 11.484, P = 0.000<0.05]. NF-κB activation was correlated with tumor invasion-related clinicopathological features such as lymphatic invasion, pathological stage, and depth of invasion (Z = 2.148, P = 0.032<0.05; χ2 = 8.758, P = 0.033<0.05; χ2 = 18.531, P = 0.006<0.05). NF-κB activation was significantly correlated with expression of heparanase gene (r = 0.194, P = 0.046<0.05).
CONCLUSION: NF-κB RelA (p65) activation was related with increased heparanase gene expression and correlated with poor clinicopathological characteristics in gastric cancers. This suggests NF-κB as a major controller of the metastatic phenotype through its reciprocal regulation of some metastasis-related genes.
Collapse
Affiliation(s)
- Hou-Jun Cao
- Center of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang Province, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yamaguchi N, Ito Y, Ohyashiki K. Increased intracellular activity of matrix metalloproteinases in neutrophils may be associated with delayed healing of infection without neutropenia in myelodysplastic syndromes. Ann Hematol 2005; 84:383-8. [PMID: 15711801 DOI: 10.1007/s00277-004-0965-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 10/04/2004] [Indexed: 01/07/2023]
Abstract
To investigate the influence of the intracellular activity of type II and type IV collagenases [matrix metalloproteinases (MMP)-2, MMP-8, and MMP-9] in neutrophils from patients with myelodysplastic syndromes (MDS), we tried to measure intracellular activity using flow cytometric techniques. We also studied the clinical features of patients showing high activity. The intracellular collagenase activity, expressed as a ratio to the standardized fluorescence intensity, in patients with MDS was significantly higher than normal volunteers (19.5+/-14.8 vs 13.3+/-6.8, p=0.024). The difference among subcategories of MDS according to the French-American-British (FAB) and WHO classifications was not significant. No significant influence of three variables of the International Prognostic Scoring System (IPSS) was seen on activity. Of 8 patients with activity of more than 26.9 (mean+2 standard deviations of normal controls), 5 experienced an episode of delayed healing of infection without neutropenia, while 1 of 43 patients with activity of less than 26.9 experienced such an episode (p=0.0002). The average collagenase activity of six patients with delayed healing of infection without neutropenia (44.7+/-28.9) was significantly higher than that of other MDS patients (16.0+/-7.1, p=0.005) (Fig. 4). It was also significantly higher than the activity of the control group (13.3+/-6.8, p=0.011). Our report suggests that increased collagenase activity in neutrophils may delay healing of infection. In addition, we suggest that increased collagenase activity may be an independent prognostic factor for the susceptibility to severe infection in MDS.
Collapse
Affiliation(s)
- Noritaka Yamaguchi
- First Department of Internal Medicine, Tokyo Medical University, 6-7-1-Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | | | | |
Collapse
|
39
|
De Larco JE, Wuertz BRK, Furcht LT. The Potential Role of Neutrophils in Promoting the Metastatic Phenotype of Tumors Releasing Interleukin-8. Clin Cancer Res 2004; 10:4895-900. [PMID: 15297389 DOI: 10.1158/1078-0432.ccr-03-0760] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the last decade, several groups have shown a direct correlation between the inappropriate or ectopic release of interleukin (IL)-8 by tumor cells in vitro and their growth and metastatic potential using in vivo models of tumor growth. IL-8 is a potent neutrophil chemoattractant. Neutrophils, as "early responders" to wounds and infections, release enzymes to remodel the extracellular matrix of the tissues through which they migrate to reach the site of the wound or infection. It is proposed that the host's cellular response to IL-8 released by tumor cells enhances angiogenesis and contributes to tumor growth and progression. The activities released by the responding neutrophils could serve as enablers of tumor cell migration through the extracellular matrix, helping them enter the vasculature and journey to new, metastatic sites. The reactive oxygen species produced by neutrophilic oxidases to kill invading organisms have the potential to interact with tumor cells to attenuate their apoptotic cascade and increase their mutational rate. It is proposed that the increase in metastatic potential of tumors ectopically releasing IL-8 is, in part, attributable to their ability to attract neutrophils. Discussed here are possible mechanisms by which the neutrophils responding to ectopic IL-8 contribute to the in vivo growth, progression, and metastatic potential of tumor cells. Possible targets are also presented for the development of therapies to attenuate the effects of the ectopic IL-8 release by tumor cells.
Collapse
Affiliation(s)
- Joseph E De Larco
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
40
|
Takahashi H, Ebihara S, Okazaki T, Suzuki S, Asada M, Kubo H, Sasaki H. Clinical significance of heparanase activity in primary resected non-small cell lung cancer. Lung Cancer 2004; 45:207-14. [PMID: 15246192 DOI: 10.1016/j.lungcan.2004.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Revised: 01/30/2004] [Accepted: 02/05/2004] [Indexed: 10/26/2022]
Abstract
Clinicopathological significances of heparanase activity in non-small cell lung cancer (NSCLC) were investigated by analyzing 76 resected specimens of NSCLC. Heparanase activities in NSCLC were significantly higher than non-cancerous lung tissues (P < 0.0001). The heparanase activities of NSCLC were significantly higher in larger diameter tumors (P = 0.0141) or with metastasis to ipsilateral mediastinal lymph nodes (P = 0.0004). The activities of heparanase in primary tumors were increased significantly according to the pathological stage of the progression of the disease (P =0.0009). Among the clinicopathological parameters, histological cell type and evidence of ipsilateral lymph node metastasis showed a significant association with elevated heparanase activities, whereas age, degree of differentiation and tumor diameter did not. Kaplan-Meier curves for overall and disease-free survival demonstrated a significant difference between patients with elevated and non-elevated heparanase activity by log-rank test (P = 0.0145 and 0.0002, respectively). Multivariate analysis showed heparanase activity was an independent factor to influence disease-free survival in our study. These results suggest that heparanase activity could be used as a prognostic indicator for postoperative patients with NSCLC and heparanase might be a promising molecular target for treatment of NSCLC.
Collapse
Affiliation(s)
- Hidenori Takahashi
- Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Gingis-Velitski S, Zetser A, Kaplan V, Ben-Zaken O, Cohen E, Levy-Adam F, Bashenko Y, Flugelman MY, Vlodavsky I, Ilan N. Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. J Biol Chem 2004; 279:44084-92. [PMID: 15292202 DOI: 10.1074/jbc.m402131200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heparanase is a mammalian endoglycosidase that degrades heparan sulfate (HS) at specific intrachain sites, an activity that is strongly implicated in cell dissemination associated with metastasis and inflammation. In addition to its structural role in extracellular matrix assembly and integrity, HS sequesters a multitude of polypeptides that reside in the extracellular matrix as a reservoir. A variety of growth factors, cytokines, chemokines, and enzymes can be released by heparanase activity and profoundly affect cell and tissue function. Thus, heparanase bioavailability, accessibility, and activity should be kept tightly regulated. We provide evidence that HS is not only a substrate for, but also a regulator of, heparanase. Addition of heparin or xylosides to cell cultures resulted in a pronounced accumulation of, heparanase in the culture medium, whereas sodium chlorate had no such effect. Moreover, cellular uptake of heparanase was markedly reduced in HS-deficient CHO-745 mutant cells, heparan sulfate proteoglycan-deficient HT-29 colon cancer cells, and heparinase-treated cells. We also studied the heparanase biosynthetic route and found that the half-life of the active enzyme is approximately 30 h. This and previous localization studies suggest that heparanase resides in the endosomal/lysosomal compartment for a relatively long period of time and is likely to play a role in the normal turnover of HS. Co-localization studies and cell fractionation following heparanase addition have identified syndecan family members as candidate molecules responsible for heparanase uptake, providing an efficient mechanism that limits extracellular accumulation and function of heparanase.
Collapse
Affiliation(s)
- Svetlana Gingis-Velitski
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sasaki N, Higashi N, Taka T, Nakajima M, Irimura T. Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate. THE JOURNAL OF IMMUNOLOGY 2004; 172:3830-5. [PMID: 15004189 DOI: 10.4049/jimmunol.172.6.3830] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Extravasation of peripheral blood monocytes through vascular basement membranes requires degradation of extracellular matrix components including heparan sulfate proteoglycans (HSPGs). Heparanase, the heparan sulfate-specific endo-beta-glucuronidase, has previously been shown to be a key enzyme in melanoma invasion, yet its involvement in monocyte extravasation has not been elucidated. We examined a potential regulatory mechanism of heparanase in HSPG degradation and transmigration through basement membranes in leukocyte trafficking using human promonocytic leukemia U937 and THP-1 cells. PMA-treated cells were shown to degrade 35S-sulfated HSPG in endothelial extracellular matrix into fragments of an approximate molecular mass of 5 kDa. This was not found with untreated cells. The gene expression levels of heparanase or the enzyme activity of the amount of cell lysates were no different between untreated and treated cells. Immunocytochemical staining with anti-heparanase mAb revealed pericellular distribution of heparanase in PMA-treated cells but not in untreated cells. Cell surface heparanase capped into a restricted area on PMA-treated cells when they were allowed to adhere. Addition of a chemoattractant fMLP induced polarization of the PMA-treated cells and heparanase redistribution at the leading edge of migration. Therefore a major regulatory process of heparanase activity in the cells seems to be surface expression and capping of the enzyme. Addition of the anti-heparanase Ab significantly inhibited enzymatic activity and transmigration of the PMA-treated cells, suggesting that the cell surface redistribution of heparanase is involved in monocyte extravasation through basement membranes.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
43
|
Stefanidakis M, Ruohtula T, Borregaard N, Gahmberg CG, Koivunen E. Intracellular and Cell Surface Localization of a Complex between αMβ2 Integrin and Promatrix Metalloproteinase-9 Progelatinase in Neutrophils. THE JOURNAL OF IMMUNOLOGY 2004; 172:7060-8. [PMID: 15153528 DOI: 10.4049/jimmunol.172.11.7060] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have recently demonstrated that promatrix metalloproteinases (proMMPs), particularly proMMP-9, are potent ligands of the leukocyte beta(2) integrins. We studied here the complex formation between proMMP-9 and alpha(M)beta(2), the major MMP and integrin of neutrophils. On resting neutrophils, the proMMP-9/alpha(M)beta(2) complex was primarily detected in intracellular granules, but after cellular activation it became localized to the cell surface, as demonstrated by immunoprecipitation and double immunofluorescence. Further indication of the complex formation was that neutrophils and alpha(M)beta(2)-transfected L cells, but not the wild-type L cells or leukocyte adhesion deficiency cells, bound to immobilized proMMP-9 or its recombinant catalytic domain in a beta(2) integrin-dependent manner. Peptides that bound to the alpha(M) integrin-I domain and inhibited its complex formation with proMMP-9 prevented neutrophil migration in a transendothelial assay in vitro and in a thioglycolate-elicited peritonitis in vivo. These results suggest that the translocating proMMP-9/alpha(M)beta(2) complex may be part of the cell surface machinery guiding neutrophil migration.
Collapse
Affiliation(s)
- Michael Stefanidakis
- Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
44
|
Temkin V, Aingorn H, Puxeddu I, Goldshmidt O, Zcharia E, Gleich GJ, Vlodavsky I, Levi-Schaffer F. Eosinophil major basic protein: first identified natural heparanase-inhibiting protein. J Allergy Clin Immunol 2004; 113:703-9. [PMID: 15100677 DOI: 10.1016/j.jaci.2003.11.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Heparanase and eosinophils are involved in several diseases, including inflammation, cancer, and angiogenesis. OBJECTIVE We sought to determine whether eosinophils produce active heparanase. METHODS Human peripheral blood eosinophils were isolated by immunoselection and tested for heparanase protein (immunocytochemistry, Western blot), mRNA (RT-PCR) and activity (Na(2)[(35)S]O(4)-labeled extracellular matrix degradation) before and after activation. Heparanase intracellular localization (confocal laser microscopy) and ability to bind to eosinophil major basic protein (MBP) were also evaluated (immunoprecipitation). A model of allergic peritonitis resulting in eosinophilia was induced in TNF knockout and wild-type mice for in vivo studies. RESULTS Eosinophils synthesized heparanase mRNA and contained heparanase in the active (50-kd) and latent (65-kd) forms. Heparanase partially co-localized with and was bound to MBP. No heparanase enzymatic activity was detected in eosinophils resting or activated with various agonists, including GM-CSF/C5a. Eosinophil lysates and MBP inhibited recombinant heparanase activity in a concentration-dependent manner (100%, 2 x 10(-7) mol/L). Eosinophil peroxidase and eosinophil cationic protein, but not myelin basic protein or compound 48/80, partially inhibited heparanase activity. Poly-l-arginine at very high concentrations caused an almost complete inhibition. In allergic peritonitis, heparanase activity in the peritoneal fluid inversely correlated with eosinophil number. CONCLUSIONS MBP is the first identified natural heparanase-inhibiting protein. Its presence in the eosinophil granules might indicate a protective function of these cells in diseases associated with inflammation and cancer progression.
Collapse
Affiliation(s)
- Vladislav Temkin
- Department of Pharmacology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sotnikov I, Hershkoviz R, Grabovsky V, Ilan N, Cahalon L, Vlodavsky I, Alon R, Lider O. Enzymatically Quiescent Heparanase Augments T Cell Interactions with VCAM-1 and Extracellular Matrix Components under Versatile Dynamic Contexts. THE JOURNAL OF IMMUNOLOGY 2004; 172:5185-93. [PMID: 15100255 DOI: 10.4049/jimmunol.172.9.5185] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During their migration into inflammatory sites, immune cells, such as T cells, secrete extracellular matrix (ECM)-degrading enzymes, such as heparanase, which, under mildly acidic conditions, degrade heparan sulfate proteoglycans (HSPG). We have previously shown that at pH 7.2, human placental heparanase loses its enzymatic activity, while retaining its ability to bind HSPG and promote T cell adhesion to unfractionated ECM. We now demonstrate that the 65-kDa recombinant human heparanase, which is devoid of enzymatic activity, but can still bind HSPG, captures T cells under shear flow conditions and mediates their rolling and arrest, in the absence or presence of stromal cell-derived factor 1 alpha (SDF-1 alpha; CXCL12), in an alpha(4)beta(1)-VCAM-1-dependent manner. Furthermore, heparanase binds to and induces T cell adhesion to key ECM components, like fibronectin and hyaluronic acid, in beta(1) integrin- and CD44-specific manners, respectively, via the activation of the protein kinase C and phosphatidylinositol 3-kinase intracellular signaling machineries. Although the nature of the putative T cell heparanase-binding moiety is unknown, it appears that heparanase exerts its proadhesive activity by interacting with the T cells' surface HSPG, because pretreatment of the cells with heparinase abolished their subsequent response to heparanase. Also, heparanase augmented the SDF-1 alpha-triggered phosphorylation of Pyk-2 and extracellular signal-regulated kinase-2 implicated in integrin functioning. Moreover, heparanase, which had no chemotactic effect on T cells on its own, augmented the SDF-1 alpha-induced T cell chemotaxis across fibronectin. These findings add another dimension to the known versatility of heparanase as a key regulator of T cell activities during inflammation, both in the context of the vasculature and at extravascular sites.
Collapse
Affiliation(s)
- Ilya Sotnikov
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Gingis-Velitski S, Zetser A, Flugelman MY, Vlodavsky I, Ilan N. Heparanase induces endothelial cell migration via protein kinase B/Akt activation. J Biol Chem 2004; 279:23536-41. [PMID: 15044433 DOI: 10.1074/jbc.m400554200] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Heparanase is a mammalian endoglycosidase that degrades heparan sulfate (HS) at specific intra-chain sites. Blood-borne neutrophils, macrophages, mast cells, and platelets exhibit heparanase activity that is thought to be stored in specific granules. The degranulated heparanase is implicated in extravasation of metastatic tumor cells and activated cells of the immune system. Degranulation and heparanase release in response to an inflammatory stimulus or platelet activation would facilitate cellular extravasation directly, by altering the composition and structural integrity of the extracellular matrix, or indirectly, by releasing HS-bound proinflammatory cytokines and chemokines. We hypothesized that in addition to such indirect effect, the released heparanase may also locally affect and activate neighboring cells such as endothelial cells. Here, we provide evidence that addition of the 65-kDa latent heparanase to endothelial cells enhances Akt signaling. Heparanase-mediated Akt phosphorylation was independent of its enzymatic activity or the presence of cell membrane HS proteoglycans and was augmented by heparin. Moreover, addition of heparanase stimulated phosphatidylinositol 3-kinase-dependent endothelial cell migration and invasion. These results suggest, for the first time, that heparanase activates endothelial cells and elicits angiogenic responses directly. This effect appears to be mediated by as yet unidentified heparanase receptor.
Collapse
Affiliation(s)
- Svetlana Gingis-Velitski
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
47
|
Chodobski A, Chung I, Koźniewska E, Ivanenko T, Chang W, Harrington JF, Duncan JA, Szmydynger-Chodobska J. Early neutrophilic expression of vascular endothelial growth factor after traumatic brain injury. Neuroscience 2004; 122:853-67. [PMID: 14643756 DOI: 10.1016/j.neuroscience.2003.08.055] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The formation of edema after traumatic brain injury (TBI) is in part associated with the disruption of the blood-brain barrier. However, the molecular and cellular mechanisms underlying these phenomena have not been fully understood. One possible factor involved in edema formation is vascular endothelial growth factor (VEGF). This growth factor has previously been demonstrated to increase the blood-brain barrier permeability to the low molecular weight markers and macromolecules. In this study, we analyzed the temporal changes in VEGF expression after TBI in rats. In the intact brain, VEGF was expressed at relatively low levels and was found in the cells located close to the cerebrospinal fluid space. These were the astrocytes located under the ependyma and the pia-glial lining, as well as the epithelial cells of the choroid plexus. In addition, several groups of neurons, including those located in the frontoparietal cortex and in all hippocampal regions, were VEGF-positive. The pattern of VEGF-immunopositive staining of neurons and choroidal epithelium suggested that in these cells, VEGF binds to the cell membrane-associated heparan sulfate proteoglycans. Following TBI, there was an early (within 4 h post-injury) increase in VEGF expression in the traumatized parenchyma associated with neutrophilic invasion. The ipsilateral choroid plexus appeared to play a role in facilitating the migration of neutrophils from blood into the cerebrospinal fluid space, from where many of these cells infiltrated the brain parenchyma. VEGF-immunopositive staining of neutrophils resembled haloes and was found ipsilaterally within the frontoparietal cortex and around the velum interpositum, a part of the subarachnoid space. These haloes likely represent the deposition of neutrophil-derived VEGF within the extracellular matrix, from where this growth factor may be gradually released during an early post-traumatic period. The maximum number of VEGF-secreting neutrophils was observed between 8 h and 1 day after TBI. In addition, from 4 h post-TBI, there was a progressive increase in the number of VEGF-immunoreactive astrocytes in the ipsilateral frontoparietal cortex. The maximum number of astrocytes expressing VEGF was observed 4 days after TBI, and then the levels of astroglial VEGF expression declined gradually. Early invasion of brain parenchyma by VEGF-secreting neutrophils together with a delayed increase in astrocytic synthesis of this growth factor correlate with the biphasic opening of the blood-brain barrier and formation of edema previously observed after TBI. Therefore, these findings suggest that VEGF plays an important role in promoting the formation of post-traumatic brain edema.
Collapse
Affiliation(s)
- A Chodobski
- Department of Clinical Neurosciences, Brown University School of Medicine, Aldrich Building, Room 405, 593 Eddy Street, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The neutrophil is a major effector cell of innate immunity. Exocytosis of granules and secretory vesicles plays a pivotal role in most neutrophil functions from early activation to the destruction of phagocytosed microorganisms. Neutrophil granules contain a multitude of antimicrobial and potentially cytotoxic substances that are delivered to the phagosome or to the exterior of the cell following degranulation. This review summarises current knowledge of granule biology and highlights the effects of neutrophil degranulation in the acute inflammatory response.
Collapse
Affiliation(s)
- Mikkel Faurschou
- The Granulocyte Research Laboratory, Department of Haematology, Rigshospitalet 4042, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen OE, Denmark
| | | |
Collapse
|
49
|
Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y, Uno F, Fujiwara T, Gunduz M, Nagatsuka H, Nakajima M, Tanaka N, Haisa M. Heparanase expression correlates with invasion and poor prognosis in gastric cancers. J Transl Med 2003; 83:613-22. [PMID: 12746471 DOI: 10.1097/01.lab.0000067482.84946.bd] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Degradation of basement membrane and extracellular matrix structures are important features of the metastatic process of malignant tumors. Human heparanase degrades heparan sulfate proteoglycans, which represent the main components of basement membranes and the extracellular matrix. Because of the role of heparanase in tumor invasion and metastasis, we examined heparanase expression in primary gastric cancers and in cell lines derived from gastric cancers by immunohistochemistry and RT-PCR, respectively. Four of seven gastric cancer cell lines showed heparanase mRNA expression by RT-PCR. Heparanase protein was detected in both the cytoplasm and the nucleus of heparanase mRNA-positive cells by immunohistochemical staining. Heparanase expression was confirmed in 35 (79.5%) of 44 gastric tumor samples by immunohistochemical staining. However, no or weak heparanase expression was detected in normal gastric mucosa. In situ hybridization showed that the mRNA expression pattern of heparanase was similar to that of the protein, suggesting that increased expression of the heparanase protein at the invasive front was caused by an increase of heparanase mRNA in tumor cells. Analysis of the clinicopathologic features showed stronger heparanase expression in cases of huge growing tumors, extensive invasion to lymph vessels, and regional lymph node metastasis. In gastric cancer, patients with heparanase expression showed significantly poorer prognosis than those without such expression (p = 0.006). In conclusion, our findings suggest that high expression of heparanase in gastric cancer is a strong predictor of poor survival.
Collapse
Affiliation(s)
- Munenori Takaoka
- Department of First Surgery, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mollinedo F, Martín-Martín B, Calafat J, Nabokina SM, Lazo PA. Role of vesicle-associated membrane protein-2, through Q-soluble N-ethylmaleimide-sensitive factor attachment protein receptor/R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor interaction, in the exocytosis of specific and tertiary granules of human neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1034-42. [PMID: 12517971 DOI: 10.4049/jimmunol.170.2.1034] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have examined the role of the R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) synaptobrevin-2/vesicle-associated membrane protein (VAMP)-2 in neutrophil exocytosis. VAMP-2, localized in the membranes of specific and gelatinase-containing tertiary granules in resting human neutrophils, resulted translocated to the cell surface following neutrophil activation under experimental conditions that induced exocytosis of specific and tertiary granules. VAMP-2 was also found on the external membrane region of granules docking to the plasma membrane in activated neutrophils. Specific Abs against VAMP-2 inhibited Ca(2+) and GTP-gamma-S-induced exocytosis of CD66b-enriched specific and tertiary granules, but did not affect exocytosis of CD63-enriched azurophilic granules, in electropermeabilized neutrophils. Tetanus toxin disrupted VAMP-2 and inhibited exocytosis of tertiary and specific granules. Activation of neutrophils led to the interaction of VAMP-2 with the plasma membrane Q-SNARE syntaxin 4, and anti-syntaxin 4 Abs inhibited exocytosis of specific and tertiary granules in electropermeabilized neutrophils. Immunoelectron microscopy showed syntaxin 4 on the plasma membrane contacting with docked granules in activated neutrophils. These data indicate that VAMP-2 mediates exocytosis of specific and tertiary granules, and that Q-SNARE/R-SNARE complexes containing VAMP-2 and syntaxin 4 are involved in neutrophil exocytosis.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Cientificas-Universidad de Salamanca, Spain.
| | | | | | | | | |
Collapse
|