1
|
Saddar S, Dienhart MK, Stuart RA. The F1F0-ATP synthase complex influences the assembly state of the cytochrome bc1-cytochrome oxidase supercomplex and its association with the TIM23 machinery. J Biol Chem 2008; 283:6677-86. [PMID: 18187422 DOI: 10.1074/jbc.m708440200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme complexes involved in mitochondrial oxidative phosphorylation are organized into higher ordered assemblies termed supercomplexes. Subunits e and g (Su e and Su g, respectively) are catalytically nonessential subunits of the F1F0-ATP synthase whose presence is required to directly support the stable dimerization of the ATP synthase complex. We report here that Su g and Su e are also important for securing the correct organizational state of the cytochrome bc1-cytochrome oxidase (COX) supercomplex. Mitochondria isolated from the Delta su e and Delta su g null mutant strains exhibit decreased levels of COX enzyme activity but appear to have normal COX subunit protein levels. An altered stoichiometry of the cytochrome bc1-COX supercomplex was observed in mitochondria deficient in Su e and/or Su g, and a perturbation in the association of Cox4, a catalytically important subunit of the COX complex, was also detected. In addition, an increase in the level of the TIM23 translocase associated with the cytochrome bc1-COX supercomplex is observed in the absence of Su e and Su g. Together, our data highlight that a further level of complexity exists between the oxidative phosphorylation supercomplexes, whereby the organizational state of one complex, i.e. the ATP synthase, may influence that of another supercomplex, namely the cytochrome bc1-COX complex.
Collapse
Affiliation(s)
- Sonika Saddar
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | | | |
Collapse
|
2
|
Wenz T, Hellwig P, MacMillan F, Meunier B, Hunte C. Probing the role of E272 in quinol oxidation of mitochondrial complex III. Biochemistry 2006; 45:9042-52. [PMID: 16866349 DOI: 10.1021/bi060280g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bifurcated electron transfer during ubiquinol oxidation is the key reaction of complex III catalysis, but the molecular basis of this process is still not clear. E272 of the conserved cytochrome b PEWY motif has been suggested as a ligand and proton acceptor for ubiquinol oxidation at center P. We introduced the two replacement mutations, E272D and E272Q, into the mitochondrially encoded cytochrome b gene by biolistic transformation to study their effects on substrate binding and catalysis. Both substitutions resulted in a lower ubiquinol cytochrome c reductase activity and affect the KM for ubiquinol. The E272 carboxylate stabilizes stigmatellin binding, and in accordance, both variants are resistant to stigmatellin. Large structural changes in the cofactor environment as well as in the binding pocket can be excluded. The mutations do not perturb the midpoint potentials of the heme groups. The sensitivity toward the respective distal and proximal niche inhibitors HDBT and myxothiazol is retained. However, both mutations provoke subtle structural alterations detected by redox FTIR. They affect binding and oxidation of ubiquinol, and they promote electron short-circuit reactions resulting in production of reactive oxygen species. The aspartate substitution modifies the environment of the reduced Rieske protein as monitored by EPR. Both variants alter the pH dependence of the enzyme activity. Diminished activity at low pH coincides with the loss of one protonatable group with a pKa of approximately 6.2 compared to three pKa values in the wild type, supporting the role of E272 in proton transfer. The conserved glutamate appears to influence the accurate formation of the enzyme-substrate complex and to govern the efficiency of catalysis.
Collapse
Affiliation(s)
- Tina Wenz
- Department Molecular Membrane Biology, Max-Planck-Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
3
|
Devin A, Dejean L, Beauvoit B, Chevtzoff C, Avéret N, Bunoust O, Rigoulet M. Growth yield homeostasis in respiring yeast is due to a strict mitochondrial content adjustment. J Biol Chem 2006; 281:26779-84. [PMID: 16849319 DOI: 10.1074/jbc.m604800200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In living cells, growth is the result of coupling between substrate catabolism and multiple metabolic processes taking place during net biomass formation and cell property maintenance. A crucial parameter for growth description is its yield, i.e. the efficiency of the transformation from substrate consumption to biomass formation. Using numerous yeast strains growing on different respiratory media, we have shown that the growth yield is identical regardless of the strain, growth phase, and respiratory substrate used. This homeostasis is the consequence of a strict linear relationship between growth and respiratory rates. Moreover, in all conditions tested, the oxygen consumption rate was strictly controlled by the cellular content of respiratory chain compounds in such a way that, in vivo, the steady state of oxidative phosphorylation was kept constant. Thus, the growth yield homeostasis depends on the tight adjustment of the cellular content of respiratory chain compounds to the growth rate. Any process leading to a defect in this adjustment allows an energy waste and consequently an energy yield decrease.
Collapse
Affiliation(s)
- Anne Devin
- Institute of Biochemistry and Genetics of the Cell, CNRS Unité Mixte de Recherche 5095-Université Bordeaux 2, 1 Rue Camille Saint Saëns, 33077 Bordeaux Cedex, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Scheffler IE. A century of mitochondrial research: achievements and perspectives. Mitochondrion 2005; 1:3-31. [PMID: 16120266 DOI: 10.1016/s1567-7249(00)00002-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- I E Scheffler
- Division of Biology, University of California, San Diego, and Center for Molecular Genetics, La Jolla, CA 92093-0322, USA.
| |
Collapse
|
5
|
Padilla S, Jonassen T, Jiménez-Hidalgo MA, Fernández-Ayala DJM, López-Lluch G, Marbois B, Navas P, Clarke CF, Santos-Ocaña C. Demethoxy-Q, an intermediate of coenzyme Q biosynthesis, fails to support respiration in Saccharomyces cerevisiae and lacks antioxidant activity. J Biol Chem 2004; 279:25995-6004. [PMID: 15078893 DOI: 10.1074/jbc.m400001200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caenorhabditis elegans clk-1 mutants cannot produce coenzyme Q(9) and instead accumulate demethoxy-Q(9) (DMQ(9)). DMQ(9) has been proposed to be responsible for the extended lifespan of clk-1 mutants, theoretically through its enhanced antioxidant properties and its decreased function in respiratory chain electron transport. In the present study, we assess the functional roles of DMQ(6) in the yeast Saccharomyces cerevisiae. Three mutations designed to mirror the clk-1 mutations of C. elegans were introduced into COQ7, the yeast homologue of clk-1: E233K, predicted to disrupt the di-iron carboxylate site considered essential for hydroxylase activity; L237Stop, a deletion of 36 amino acid residues from the carboxyl terminus; and P175Stop, a deletion of the carboxyl-terminal half of Coq7p. Growth on glycerol, quinone content, respiratory function, and response to oxidative stress were analyzed in each of the coq7 mutant strains. Yeast strains lacking Q(6) and producing solely DMQ were respiratory deficient and unable to support (6)either NADH-cytochrome c reductase or succinate-cytochrome c reductase activities. DMQ(6) failed to protect cells against oxidative stress generated by H(2)O(2) or linolenic acid. Thus, in the yeast model system, DMQ does not support respiratory activity and fails to act as an effective antioxidant. These results suggest that the life span extension observed in the C. elegans clk-1 mutants cannot be attributed to the presence of DMQ per se.
Collapse
Affiliation(s)
- Sergio Padilla
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, 41013-Sevilla, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Brendel M, Bonatto D, Strauss M, Revers LF, Pungartnik C, Saffi J, Henriques JAP. Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae. Mutat Res 2004; 544:179-93. [PMID: 14644320 DOI: 10.1016/j.mrrev.2003.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote Saccharomyces cerevisiae was chosen to investigate the cells' genetic endowment with repair mechanisms for this type of DNA damage and to study the genetic consequences of such repair. Genetic studies on yeast mutants sensitive to photoactivated psoralens, named pso mutants, showed their allocation to 10 distinct loci. Cloning and molecular characterization allowed their grouping into three functional classes: (I) the largest group comprises seven PSO genes that are either generally or specifically involved in error-prone DNA repair and thus affect induced mutability and recombination; (II) one PSO gene that represents error-free excision repair, and (III) two PSO genes encoding proteins not influencing DNA repair but physiological processes unrelated to nucleic acid metabolism. Of the seven DNA repair genes involved in induced mutagenesis three PSO loci [PSO1/REV3, PSO8/RAD6, PSO9/MEC3] were allelic to already known repair genes, whereas three, PSO2/SNM1, PSO3/RNR4, and PSO4/PRP19 represent new genes involved in DNA repair and nucleic acid metabolism in S. cerevisiae. Gene PSO2 encodes a protein indispensable for repair of interstrand cross-link (ICL) that are produced in DNA by a variety of bi- and polyfunctional mutagens and that appears to be important for a likewise repair function in humans as well. In silico analysis predicts a putative endonucleolytic activity for Pso2p/Snm1p in removing hairpins generated as repair intermediates. The absence of induced mutation in pso3/rnr4 mutants indicates an important role of this subunit of ribonucleotide reductase (RNR) in regulation of translesion polymerase zeta in error-prone repair. Prp19p/Pso4p influences efficiency of DNA repair via splicing of pre-mRNAs of intron-containing repair genes but also may function in the stability of the nuclear scaffold that might influence DNA repair capacity. The seventh gene, PSO10 which controls an unknown step in induced mutagenesis is not yet cloned. Two genes, PSO6/ERG3 and PSO7/COX11, are responsible for structural elements of the membrane and for a functional respiratory chain (RC), respectively, and their function thus indirectly influences sensitivity to photoactivated psoralens.
Collapse
Affiliation(s)
- Martin Brendel
- Departamento de Biofisica, Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9500, 91507-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
This review attempts to summarize our present state of knowledge of mitochondria in relation to a number of areas of biology, and to indicate where future research might be directed. In the evolution of eukaryotic cells mitochondria have for a long time played a prominent role. Nowadays their integration into many activities of a cell, and their dynamic behavior as subcellular organelles within a cell and during cell division are a major focus of attention. The crystal structures of the major complexes of the electron transport chain (except complex I) have been established, permitting increasingly detailed analyses of the important mechanism of proton pumping coupled to electron transport. The mitochondrial genome and its replication and expression are beginning to be understood in considerable detail, but more questions remain with regard to mutations and their repair, and the segregation of the mtDNA in oogenesis and development. Much emphasis and a large effort have recently been devoted to understand the role of mitochondria in programmed cell death (apoptosis). The understanding of their central role in mitochondrial diseases is a major achievement of the past decade. Finally, various drugs have traditionally played a part in understanding biochemical mechanisms within mitochondria; the repertoire of drugs with novel and interesting targets is expanding.
Collapse
Affiliation(s)
- I E Scheffler
- Division of Biology, University of California San Diego, La Jolla, CA 92093-0322, USA.
| |
Collapse
|
8
|
Nijtmans LG, Artal Sanz M, Bucko M, Farhoud MH, Feenstra M, Hakkaart GA, Zeviani M, Grivell LA. Shy1p occurs in a high molecular weight complex and is required for efficient assembly of cytochrome c oxidase in yeast. FEBS Lett 2001; 498:46-51. [PMID: 11389896 DOI: 10.1016/s0014-5793(01)02447-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surf1p is a protein involved in the assembly of mitochondrial respiratory chain complexes. However its exact role in this process remains to be elucidated. We studied SHY1, the yeast homologue of SURF1, with an aim to obtain a better understanding of the molecular pathogenesis of cytochrome c oxidase (COX) deficiency in SURF1 mutant cells from Leigh syndrome patients. Assembly of COX was analysed in a shy1 null mutant strain by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Steady-state levels of the enzyme were found to be strongly reduced, the total amount of assembled complex being approximately 30% of control. The presence of a significant amount of holo-COX in the SHY1-disruptant strain suggests that Shy1p may either facilitate assembly of the enzyme, or increase its stability. However, our observations, based on 2D-PAGE analysis of mitochondria labelled in vitro, now provide the first direct evidence that COX assembly is impaired in a Deltashy1 strain. COX enzyme assembled in the absence of Shy1p appears to be structurally and enzymically normal. The in vitro labelling studies additionally indicate that mitochondrial translation is significantly increased in the shy1 null mutant strain, possibly reflecting a compensatory mechanism for reduced respiratory capacity. Protein interactions of both Shy1p and Surf1p are implied by their appearance in a high molecular weight complex of about 250 kDa, as shown by 2D-PAGE.
Collapse
Affiliation(s)
- L G Nijtmans
- Section for Molecular Biology, Swammerdam Institute of Life Sciences, University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Schilke B, Voisine C, Beinert H, Craig E. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1999; 96:10206-11. [PMID: 10468587 PMCID: PMC17867 DOI: 10.1073/pnas.96.18.10206] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
nifU of nitrogen-fixing bacteria is involved in the synthesis of the Fe-S cluster of nitrogenase. In a synthetic lethal screen with the mitochondrial heat shock protein (HSP)70, SSQ1, we identified a gene of Saccharomyces cerevisiae, NFU1, which encodes a protein with sequence identity to the C-terminal domain of NifU. Two other yeast genes were found to encode proteins related to the N-terminal domain of bacterial NifU. They have been designated ISU1 and ISU2. Isu1, Isu2, and Nfu1 are located in the mitochondrial matrix. ISU genes of yeast carry out an essential function, because a Deltaisu1Deltaisu2 strain is inviable. Growth of Deltanfu1Delta isu1 cells is significantly compromised, allowing assessment of the physiological roles of Nfu and Isu proteins. Mitochondria from Deltanfu1Deltaisu1 cells have decreased activity of several respiratory enzymes that contain Fe-S clusters. As a result, Deltanfu1Deltaisu1 cells grow poorly on carbon sources requiring respiration. Deltanfu1Deltaisu1 cells also accumulate abnormally high levels of iron in their mitochondria, similar to Deltassq1 cells, indicating a role for these proteins in iron metabolism. We suggest that NFU1 and ISU1 gene products play a role in iron homeostasis, perhaps in assembly, insertion, and/or repair of mitochondrial Fe-S clusters. The conservation of these protein domains in many organisms suggests that this role has been conserved throughout evolution.
Collapse
Affiliation(s)
- B Schilke
- Department of Biomolecular Chemistry, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | |
Collapse
|