1
|
Platelet heterogeneity in activation-induced glycoprotein shedding: functional effects. Blood Adv 2019; 2:2320-2331. [PMID: 30232085 DOI: 10.1182/bloodadvances.2017011544] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
The platelet receptors glycoprotein Ibα (GPIbα) and GPVI are known to be cleaved by members of a disintegrin and metalloprotease (ADAM) family (ADAM10 and ADAM17), but the mechanisms and consequences of this shedding are not well understood. Our results revealed that (1) glycoprotein shedding is confined to distinct platelet populations showing near-complete shedding, (2) the heterogeneity between (non)shed platelets is independent of agonist type but coincides with exposure of phosphatidylserine (PS), and (3) distinct pathways of shedding are induced by elevated Ca2+, low Ca2+ protein kinase C (PKC), or apoptotic activation. Furthermore, we found that receptor shedding reduces binding of von Willebrand factor, enhances binding of coagulation factors, and augments fibrin formation. In response to Ca2+-increasing agents, shedding of GPIbα was abolished by ADAM10/17 inhibition but not by blockage of calpain. Stimulation of PKC induced shedding of only GPIbα, which was annulled by kinase inhibition. The proapoptotic agent ABT-737 induced shedding, which was caspase dependent. In Scott syndrome platelets that are deficient in Ca2+-dependent PS exposure, shedding occurred normally, indicating that PS exposure is not a prerequisite for ADAM activity. In whole-blood thrombus formation, ADAM-dependent glycoprotein shedding enhanced thrombin generation and fibrin formation. Together, these findings indicate that 2 major activation pathways can evoke ADAM-mediated glycoprotein shedding in distinct platelet populations and that shedding modulates platelet function from less adhesive to more procoagulant.
Collapse
|
2
|
Morikawa Y, Kato H, Kashiwagi H, Nishiura N, Akuta K, Honda S, Kanakura Y, Tomiyama Y. Protease-activated receptor-4 (PAR4) variant influences on platelet reactivity induced by PAR4-activating peptide through altered Ca 2+ mobilization and ERK phosphorylation in healthy Japanese subjects. Thromb Res 2018; 162:44-52. [DOI: 10.1016/j.thromres.2017.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022]
|
3
|
Abstract
Thrombin is a potent agonist of platelets. In the current article, the research on the interaction of thrombin with blood platelets is reviewed starting with the first studies demonstrating the direct action of thrombin on platelets and ending with an analysis of the importance of the protease-activated receptors (PARs) and the GpIb complex. The antithrombin activity of platelets is discussed in terms of the binding of thrombin to receptor(s) on the platelet surface. Evaluation of the PAR receptors and the GpIb supports a model where thrombin binds to the GpIb receptor prior to the proteolysis of the PAR receptor(s). Thus, the maximal hemostatic response requires both PAR receptors and the GpIb receptors.
Collapse
Affiliation(s)
- Roger L Lundblad
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27516-6695, USA.
| | | |
Collapse
|
4
|
Vanhoorelbeke K, Ulrichts H, Romijn RA, Huizinga EG, Deckmyn H. The GPIbα–thrombin interaction: far from crystal clear. Trends Mol Med 2004; 10:33-9. [PMID: 14720584 DOI: 10.1016/j.molmed.2003.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRC, KU Leuven Campus Kortrijk, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| | | | | | | | | |
Collapse
|
5
|
Yun TH, Baglia FA, Myles T, Navaneetham D, López JA, Walsh PN, Leung LLK. Thrombin activation of factor XI on activated platelets requires the interaction of factor XI and platelet glycoprotein Ib alpha with thrombin anion-binding exosites I and II, respectively. J Biol Chem 2003; 278:48112-9. [PMID: 12968031 DOI: 10.1074/jbc.m306925200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of factor XI (FXI) by thrombin on stimulated platelets plays a physiological role in hemostasis, providing additional thrombin generation required in cases of severe hemostatic challenge. Using a collection of 53 thrombin mutants, we identified 16 mutants with <50% of the wild-type thrombin FXI-activating activity in the presence of dextran sulfate. These mutants mapped to anion-binding exosite (ABE) I, ABE-II, the Na+-binding site, and the 50-insertion loop. Only the ABE-II mutants showed reduced binding to dextran sulfate-linked agarose. Selected thrombin mutants in ABE-I (R68A, R70A, and R73A), ABE-II (R98A, R245A, and K248A), the 50-insertion loop (W50A), and the Na+-binding site (E229A and R233A) with <10% of the wild-type activity also showed a markedly reduced ability to activate FXI in the presence of stimulated platelets. The ABE-I, 50-insertion loop, and Na+-binding site mutants had impaired binding to FXI, but normal binding to glycocalicin, the soluble form of glycoprotein Ibalpha (GPIb alpha). In contrast, the ABE-II mutants were defective in binding to glycocalicin, but displayed normal binding to FXI. Our data support a quaternary complex model of thrombin activation of FXI on stimulated platelets. Thrombin bound to one GPIb alpha molecule, via ABE-II on its posterior surface, is properly oriented for its activation of FXI bound to a neighboring GPI alpha molecule, via ABE-I on its anterior surface. GPIb alpha plays a critical role in the co-localization of thrombin and FXI and the resultant efficient activation of FXI.
Collapse
Affiliation(s)
- Thomas H Yun
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Dumas JJ, Kumar R, Seehra J, Somers WS, Mosyak L. Crystal structure of the GpIbalpha-thrombin complex essential for platelet aggregation. Science 2003; 301:222-6. [PMID: 12855811 DOI: 10.1126/science.1083917] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Direct interaction between platelet receptor glycoprotein Ibalpha (GpIbalpha) and thrombin is required for platelet aggregation and activation at sites of vascular injury. Abnormal GpIbalpha-thrombin binding is associated with many pathological conditions,including occlusive arterial thrombosis and bleeding disorders. The crystal structure of the GpIbalpha-thrombin complex at 2.6 angstrom resolution reveals simultaneous interactions of GpIbalpha with exosite I of one thrombin molecule,and with exosite II of a second thrombin molecule. In the crystal lattice,the periodic arrangement of GpIbalpha-thrombin complexes mirrors a scaffold that could serve as a driving force for tight platelet adhesion. The details of these interactions reconcile GpIbalpha-thrombin binding modes that are presently controversial,highlighting two distinct interfaces that are potential targets for development of novel antithrombotic drugs.
Collapse
Affiliation(s)
- John J Dumas
- Department of Chemical and Screening Sciences, Wyeth, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | | | | | | | | |
Collapse
|
7
|
Ulrichts H, Vanhoorelbeke K, Cauwenberghs S, Vauterin S, Kroll H, Santoso S, Deckmyn H. von Willebrand factor but not alpha-thrombin binding to platelet glycoprotein Ibalpha is influenced by the HPA-2 polymorphism. Arterioscler Thromb Vasc Biol 2003; 23:1302-7. [PMID: 12775575 DOI: 10.1161/01.atv.0000079510.23517.43] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Glycoprotein (GP) Ibalpha is the functionally dominant subunit of the platelet GPIb-IX-V receptor complex. The N-terminal domain of the GPIbalpha chain contains binding sites for alpha-thrombin and von Willebrand factor (VWF). The human platelet alloantigen (HPA)-2 polymorphism of the GPIbalpha gene is associated with a C/T transition at nucleotide 1018, resulting in a Thr/Met dimorphism at residue 145 of GPIbalpha. To study the structural and functional effects of this dimorphism, N-terminal fragments (AA1-289) of the HPA-2a and HPA-2b alloform of GPIbalpha expressed in CHO cells were used. METHODS AND RESULTS Of 74 moAbs directed against human GPIbalpha, 2 antibodies with epitope between AA1-59 could differentiate between both alloforms. In addition, VWF bound with a higher affinity to the recombinant HPA-2a fragment or to homozygous HPA-2a platelets. In contrast, no difference was found in the binding of alpha-thrombin to the recombinant alloform fragments or of antibodies directed against the alpha-thrombin binding anionic sulfated tyrosine sequence (AA269-282). CONCLUSIONS Whereas the Thr145Met dimorphism does not affect alpha-thrombin binding, it does influence the conformation of the N-terminal flanking region and first leucine-rich repeat of GPIbalpha and by this has an effect on VWF binding.
Collapse
Affiliation(s)
- Hans Ulrichts
- Laboratory for Thrombosis Research, IRC, KULeuven Campus Kortrijk, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Adam F, Guillin MC, Jandrot-Perrus M. Glycoprotein Ib-mediated platelet activation. A signalling pathway triggered by thrombin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2959-70. [PMID: 12846829 DOI: 10.1046/j.1432-1033.2003.03670.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelet activation by thrombin plays a major role in the development of haemostasis and thrombosis. Thrombin activates human platelets by cleaving the N-terminal region of G-protein-coupled protease-activated receptors (PARs). On the other hand, the platelet membrane glycoprotein GPIb acts as a thrombin-binding site and promotes platelet activation by low thrombin concentrations. We present here new evidence in favour of a thrombin receptor function for GPIb. We have selected conditions in which thrombin-GPIb interactions were enhanced by thrombin immobilization. Activation was studied independently of PAR cleavage by using active-site-blocked thrombin. We show that immobilized, proteolytically inactive thrombin induces platelet adhesion and spreading, dense granule secretion and integrin alphaIIbbeta3-dependent platelet-platelet interactions. The pathway must be dependent on GPIb because it is deficient in platelets from a patient with Bernard Soulier syndrome and inhibited by a monoclonal antibody to GPIb (SZ2) or by an excess of glycocalicin. Secreted ADP plays a major role in GPIb-dependent thrombin-induced platelet activation which is, in addition, regulated by cAMP concentration. Thrombin-induced GPIb-dependent platelet activation leads to tyrosyl phosphorylation of several proteins. Inhibition of platelet-platelet interactions and protein tyrosine phosphorylations by inhibitors of phosphatidylinositol 3-kinases and protein kinase C implies that activation of the latter are important steps of the GPIb-coupled signalling pathway triggered by thrombin.
Collapse
|
9
|
Abstract
In recent years, academic research institutions have increasingly sought to commercialize their discoveries, providing the opportunity to raise venture capital and benefit financially from their developments. In the last 6 years, Hamilton Civic Hospitals Research Center, affiliated with McMaster University, Ontario, Canada, has set up two companies, Vascular Therapeutics and Osteokine, to commercialize its discoveries in thrombosis and osteoporosis. Epidemiological evidence shows a continuing socioeconomic burden of both of these disorders, thereby offering opportunities for new drug development. Key areas in the field of thrombosis include novel parenteral anticoagulants to replace heparin as adjunctive therapy in acute coronary syndromes, safer and more practical oral anticoagulants that do not require monitoring to replace coumarins, and oral antiplatelet drugs for use in combination with aspirin. Since their creation, Vascular Therapeutics and Osteokine have attracted major funding and developed several patentable compounds that show clinical and commercial promise.
Collapse
Affiliation(s)
- J Hirsh
- Hamilton Civic Hospital Research Center and McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Li CQ, Vindigni A, Sadler JE, Wardell MR. Platelet glycoprotein Ib alpha binds to thrombin anion-binding exosite II inducing allosteric changes in the activity of thrombin. J Biol Chem 2001; 276:6161-8. [PMID: 11024046 DOI: 10.1074/jbc.m004164200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycoprotein (GP) Ib-IX complex is a platelet surface receptor that binds thrombin as one of its ligands, although the biological significance of thrombin interaction remains unclear. In this study we have used several approaches to investigate the GPIb alpha-thrombin interaction in more detail and to study its effect on the thrombin-induced elaboration of fibrin. We found that both glycocalicin and the amino-terminal fragment of GPIb alpha reduced the release of fibrinopeptide A from fibrinogen by about 50% by a noncompetitive allosteric mechanism. Similarly, GPIb alpha caused in thrombin an allosteric reduction in the rate of turnover of the small peptide substrate d-Phe-Pro-Arg-pNA. The K(d) for the glycocalicin-thrombin interaction was 1 microm at physiological ionic strength but was highly salt-dependent, decreasing to 0.19 microm at 100 mm NaCl (Gamma(salt) = -4.2). The salt dependence was characteristic of other thrombin ligands that bind to exosite II of this enzyme, and we confirmed this as the GPIb alpha-binding site on thrombin by using thrombin mutants and by competition binding studies. R68E or R70E mutations in exosite I of thrombin had little effect on its interaction with GPIb alpha. Both the allosteric inhibition of fibrinogen turnover caused by GPIb alpha binding to these mutants, and the K(d) values for their interactions with GPIb alpha were similar to those of wild-type thrombin. In contrast, R89E and K248E mutations in exosite II of thrombin markedly increased the K(d) values for the interactions of these thrombin mutants with GPIb alpha by 10- and 25-fold, respectively. Finally, we demonstrated that low molecular weight heparin (which binds to thrombin exosite II) but not hirugen (residues 54-65 of hirudin, which binds to exosite I of thrombin) inhibited thrombin binding to GPIb alpha. These data demonstrate that GPIb alpha binds to thrombin exosite II and in so doing causes a conformational change in the active site of thrombin by an allosteric mechanism that alters the accessibility of both its natural substrate, fibrinogen, and the small peptidyl substrate d-Phe-Pro-Arg-pNA.
Collapse
Affiliation(s)
- C Q Li
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
11
|
De Candia E, Hall SW, Rutella S, Landolfi R, Andrews RK, De Cristofaro R. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J Biol Chem 2001; 276:4692-8. [PMID: 11084032 DOI: 10.1074/jbc.m008160200] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of human platelets by alpha-thrombin is mediated at least in part by cleavage of protease-activated G-protein-coupled receptors, PAR-1 and PAR-4. Platelet glycoprotein Ibalpha also has a high affinity binding site for alpha-thrombin, and this interaction contributes to platelet activation through a still unknown mechanism. In the present study the hypothesis that GpIbalpha may contribute to platelet activation by modulating the hydrolysis of PAR-1 on the platelet membrane was investigated. Gel-filtered platelets from normal individuals were stimulated by alpha-thrombin, and the kinetics of PAR-1 hydrolysis by enzyme was followed with flow cytometry using an anti-PAR-1 monoclonal antibody (SPAN 12) that recognizes only intact PAR-1 molecules. This strategy allowed measurement of the apparent k(cat)/K(m) value for thrombin hydrolysis of PAR-1 on intact platelets, which was equal to 1.5 +/- 0.1 x 10(7) m(-1) sec(-1). The hydrolysis rate of PAR-1 by thrombin was measured under conditions in which thrombin binding to GpIb was inhibited by different strategies, with the following results. 1) Elimination of GpIbalpha on platelet membranes by mocarhagin treatment reduced the k(cat)/K(m) value by about 6-fold. 2) A monoclonal anti-GpIb antibody reduced the apparent k(cat)/K(m) value by about 5-fold. 3) An oligonucleotide DNA aptamer, HD22, which binds to the thrombin heparin-binding site (HBS) and inhibits thrombin interaction with GpIbalpha, reduced the apparent k(cat)/K(m) value by about 5-fold. 4) Displacement of alpha-thrombin from the binding site on GpIb using PPACK-thrombin reduced the apparent k(cat)/K(m) value by about 5-fold, and 5) mutation at the HBS of thrombin (R98A) caused a 5-fold reduction of the apparent k(cat)/K(m) value of PAR-1 hydrolysis. Altogether these results show that thrombin interaction with GpIb enhances the specificity of thrombin cleavage of PAR-1 on intact platelets, suggesting that GpIb may function as a "cofactor" for PAR-1 activation by thrombin.
Collapse
Affiliation(s)
- E De Candia
- Institute of Medical Semeiotics, Haemostasis Research Center and Department of Hematology, Catholic University School of Medicine, 00168 Rome, Italy
| | | | | | | | | | | |
Collapse
|
12
|
The GPIb thrombin-binding site is essential for thrombin-induced platelet procoagulant activity. Blood 2000. [DOI: 10.1182/blood.v96.7.2469.h8002469_2469_2478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the platelet glycoprotein (GP) Ib-V-IX receptor in thrombin activation of platelets has remained controversial although good evidence suggests that blocking this receptor affects platelet responses to this agonist. The mechanism of expression of procoagulant activity in response to platelet agonists is also still obscure. Here, the binding site for thrombin on GPIb is shown to have a key role in the exposure of negatively charged phospholipids on the platelet surface and thrombin generation, in response to thrombin, which also requires protease-activated receptor-1, GPIIb-IIIa, and platelet-platelet contact. Von Willebrand factor binding to GPIb is not essential to initiate development of platelet procoagulant activity. Inhibition of fibrinogen binding to GPIIb-IIIa also failed to block platelet procoagulant activity. Both heparin and low molecular weight heparin block thrombin-induced platelet procoagulant activity, which may account for part of their clinical efficacy. This study demonstrates a new, critical role for platelet GPIb in hemostasis, showing that platelet activation and coagulation are tightly interwoven, which may have implications for alternative therapies for thrombotic diseases.
Collapse
|
13
|
Abstract
AbstractThe role of the platelet glycoprotein (GP) Ib-V-IX receptor in thrombin activation of platelets has remained controversial although good evidence suggests that blocking this receptor affects platelet responses to this agonist. The mechanism of expression of procoagulant activity in response to platelet agonists is also still obscure. Here, the binding site for thrombin on GPIb is shown to have a key role in the exposure of negatively charged phospholipids on the platelet surface and thrombin generation, in response to thrombin, which also requires protease-activated receptor-1, GPIIb-IIIa, and platelet-platelet contact. Von Willebrand factor binding to GPIb is not essential to initiate development of platelet procoagulant activity. Inhibition of fibrinogen binding to GPIIb-IIIa also failed to block platelet procoagulant activity. Both heparin and low molecular weight heparin block thrombin-induced platelet procoagulant activity, which may account for part of their clinical efficacy. This study demonstrates a new, critical role for platelet GPIb in hemostasis, showing that platelet activation and coagulation are tightly interwoven, which may have implications for alternative therapies for thrombotic diseases.
Collapse
|
14
|
De Cristofaro R, De Candia E, Rutella S, Weitz JI. The Asp(272)-Glu(282) region of platelet glycoprotein Ibalpha interacts with the heparin-binding site of alpha-thrombin and protects the enzyme from the heparin-catalyzed inhibition by antithrombin III. J Biol Chem 2000; 275:3887-95. [PMID: 10660541 DOI: 10.1074/jbc.275.6.3887] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet glycoprotein Ib (GpIb) mediates interaction with both von Willebrand factor and thrombin. Thrombin binds to GpIb via its heparin-binding site (HBS) (De Candia, E., De Cristofaro, R., De Marco, L., Mazzucato, M., Picozzi, M., and Landolfi, R. (1997) Thromb. Haemostasis 77, 735-740; De Cristofaro, R., De Candia, E., Croce, G., Morosetti, R., and Landolfi, R. (1998) Biochem. J. 332, 643-650). To identify the thrombin-binding domain on GpIbalpha, we examined the effect of GpIbalpha(1-282), a GpIbalpha fragment released by the cobra venom mocarhagin on the heparin-catalyzed rate of thrombin inhibition by antithrombin III (AT). GpIbalpha(1-282) inhibited the reaction in a dose-dependent and competitive fashion. In contrast, the GpIbalpha(1-271) fragment, produced by exposing GpIbalpha(1-282) to carboxypeptidase Y, had no effect on thrombin inhibition by the heparin-AT complex. Measurements of the apparent equilibrium constant of the GpIbalpha(1-282) binding to thrombin as a function of different salts (NaCl and tetramethyl-ammonium chloride) concentration (0.1-0.2 M) indicated a large salt dependence (Gamma(+/-) = -4.5), similar to that pertaining to the heparin binding to thrombin. The importance of thrombin HBS in its interaction with GpIbalpha was confirmed using DNA aptamers, which specifically bind to either HBS (HD22) or the fibrinogen recognition site of thrombin (HD1). HD22, but not HD1, inhibited thrombin binding to GpIbalpha(1-282). Furthermore, the proteolytic derivative gamma(T)-thrombin, which lacks the fibrinogen recognition site, binds to GpIbalpha via its intact HBS in a reaction that is inhibited by HD22. Neither alpha- nor gamma(T)-thrombin bound to GpIbalpha(1-271), suggesting that the Asp(272)-Glu(282) region of GpIbalpha may act as a "heparin-like" ligand for the thrombin HBS, thereby inhibiting heparin binding to thrombin. It was also demonstrated that intact platelets may dose-dependently inhibit the heparin-catalyzed thrombin inhibition by AT at enzyme concentrations <5 nM. Altogether, these findings show that thrombin HBS binds to the region of GpIbalpha involving the Asp(272)-Glu(282) segment, protecting the enzyme from the inactivation by the heparin-AT system.
Collapse
Affiliation(s)
- R De Cristofaro
- Haemostasis Research Center, Catholic University School of Medicine, Largo F. Vito, 00168 Rome, Italy.
| | | | | | | |
Collapse
|
15
|
De Candia E, De Cristofaro R, Landolfi R. Thrombin-induced platelet activation is inhibited by high- and low-molecular-weight heparin. Circulation 1999; 99:3308-14. [PMID: 10385507 DOI: 10.1161/01.cir.99.25.3308] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Thrombin binds to platelet glycoprotein Ib (Gp Ib), and this interaction contributes to platelet activation. Thrombin ligation to Gp Ib was recently shown to be inhibited by heparin, thus raising the hypothesis, investigated in this article, that heparin might inhibit thrombin-induced platelet activation. METHODS AND RESULTS Aggregation of gel-filtered platelets by 1 nmol/L thrombin was reduced by both high-molecular-weight (MW) (14 500-Da) and low-MW (4500-Da) heparin, with IC50 values of 1.65+/-0.26 and 5.13+/-0.8 micromol/L, respectively. Homogeneous-MW fractions (16 000- to 13 000-Da range) were used to evaluate the heparin effect on intracytoplasmic calcium release by thrombin. Calcium mobilization by 1 nmol/L thrombin was reduced as a function of heparin concentration, and the inhibitory effect was correlated to the MW of heparin fractions (IC50 values were 1.9+/-0.39, 6.07+/-0.83, and 14. 8+/-0.43 micromol/L for 16 000-, 9000-, and 3000-Da heparin, respectively). Platelet aggregation and calcium mobilization by ADP and by the thrombin receptor-activating peptide were not affected by heparin. The activation of Gp Ib-depleted platelets by alpha-thrombin was not inhibited by heparin. Moreover, platelet stimulation by heparin binding site phosphopyridoxylated thrombin, which has a severe impairment of Gp Ib ligation, was not affected by heparin. Finally, heparin did not interfere with the hydrolysis by thrombin of the protease-activated receptor 1. CONCLUSIONS These results demonstrated that heparin, by inhibiting the thrombin-Gp Ib interaction, is able to interfere with thrombin-induced platelet activation. The extent of the inhibitory effect is directly related to the MW of heparin fractions.
Collapse
Affiliation(s)
- E De Candia
- Istituto di Semeiotica Medica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | |
Collapse
|
16
|
De Cristofaro R, De Candia E, Landolfi R. Effect of high- and low-molecular-weight heparins on thrombin-thrombomodulin interaction and protein C activation. Circulation 1998; 98:1297-301. [PMID: 9751678 DOI: 10.1161/01.cir.98.13.1297] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Thrombin-thrombomodulin (TM) interaction, which is critical for accelerating the protein C anticoagulant pathway, involves the heparin-like domain of TM. This study was aimed at investigating the possible effect of heparin on thrombin-TM binding and protein C activation. METHODS AND RESULTS The affinity of thrombin-TM interaction was studied by a functional method, based on the ability of thrombin-TM adduct to activate protein C, and by evaluation of the binding of thrombin to immobilized TM. Both experimental approaches showed that the affinity of thrombin-TM interaction was decreased by micromolar heparin concentrations. Heparin had no significant effect when a recombinant TM form, lacking the chondroitin sulfate moiety, was used. Furthermore, it was also shown that the inhibitory effect of heparin was directly proportional to the heparin molecular mass (molecular weight range, 3 to 16 kDa), which suggests that the effect was mediated by formation of electrostatic bonds between heparin and thrombin. CONCLUSIONS These results indicate that heparin at therapeutic concentrations reduces the affinity of thrombin for TM and the rate of protein C activation. The magnitude of this effect is proportionally linked to the molecular mass of heparin.
Collapse
Affiliation(s)
- R De Cristofaro
- Hemostasis Research Center, Department of Internal Medicine, Catholic University, Rome, Italy
| | | | | |
Collapse
|