1
|
Kantaev R, Riven I, Goldenzweig A, Barak Y, Dym O, Peleg Y, Albeck S, Fleishman SJ, Haran G. Manipulating the Folding Landscape of a Multidomain Protein. J Phys Chem B 2018; 122:11030-11038. [DOI: 10.1021/acs.jpcb.8b04834] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
2
|
Fan D, Cao S, Zhou Q, Zhang Y, Yue L, Han C, Yang B, Wang Y, Ma Z, Zhu L, Liu C. Exploring the roles of substrate-binding surface of the chaperone site in the chaperone activity of trigger factor. FASEB J 2018; 32:fj201701576. [PMID: 29906241 DOI: 10.1096/fj.201701576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Trigger factor (TF) is a key component of the prokaryotic chaperone network, which is involved in many basic cellular processes, such as protein folding, protein trafficking, and ribosome assembly. The major chaperone site of TF has a cradle-like structure in which protein substrate may fold without interference from other proteins. Here, we investigated in vivo and in vitro the roles of hydrophobic and charged patches on the edge and interior of cradle during TF-assisted protein folding. Our results showed that most of the surface of the cradle was involved in TF-assisted protein folding, which was larger than found in early studies. Although the inner surface of cradle was mostly hydrophobic, both hydrophobic and electrostatic patches were indispensable for TF to facilitate correct protein folding. However, hydrophobic patches were more important for the antiaggregation activity of TF. Furthermore, it was found that the patches on the surface of cradle were involved in TF-assisted protein folding in a spatial and temporal order. These results suggest that the folding-favorable interface between the cradle and substrate was dynamic during TF-assisted protein folding, which enabled TF to be involved in the folding of substrate in an aggressive manner rather than acting as a classic holdase.-Fan, D., Cao, S., Zhou, Q., Zhang, Y., Yue, L., Han, C., Yang, B., Wang, Y., Ma, Z., Zhu, L., Liu, C. Exploring the roles of substrate-binding surface of chaperone site in the chaperone activity of trigger factor.
Collapse
Affiliation(s)
- Dongjie Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shunan Cao
- Key Laboratory for Polar Science, State Ocean Administration, Polar Research Institute of China, Shanghai, China
| | - Qiming Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- ChosenMed Technology Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, China
| | - You Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lei Yue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Bo Yang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lingxiang Zhu
- National Research Institute for Family Planning (NRIFP), Beijing, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
3
|
Mazal H, Aviram H, Riven I, Haran G. Effect of ligand binding on a protein with a complex folding landscape. Phys Chem Chem Phys 2018; 20:3054-3062. [PMID: 28721412 DOI: 10.1039/c7cp03327c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ligand binding to a protein can stabilize it significantly against unfolding. The variation of the folding free energy, ΔΔG0, due to ligand binding can be derived from a simple reaction scheme involving exclusive binding to the native state. One obtains the following expression: , where Kd is the ligand dissociation constant and L is its concentration, R is the universal gas constant and T is the temperature. This expression has been shown to correctly describe experimental results on multiple proteins. In the current work we studied the effect of ligand binding on the stability of the multi-domain protein adenylate kinase from E. coli (AKE). Unfolding experiments were conducted using single-molecule FRET spectroscopy, which allowed us to directly obtain the fraction of unfolded protein in a model-free way from FRET efficiency histograms. Surprisingly, it was found that the effect of two inhibitors (Ap5A and AMPPNP) and a substrate (AMP) on the stability of AKE was much smaller than expected based on Kd values obtained independently using microscale thermophoresis. To shed light on this issue, we measured the Kd for Ap5A over a range of chemical denaturant concentrations where the protein is still folded. It was found that Kd increases dramatically over this range, likely due to the population of folding intermediates, whose binding to the ligand is much weaker than that of the native state. We propose that binding to folding intermediates may dominate the effect of ligands on the stability of multi-domain proteins, and could therefore have a strong impact on protein homeostasis in vivo.
Collapse
Affiliation(s)
- Hisham Mazal
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | | | | | | |
Collapse
|
4
|
Beitlich T, Lorenz T, Reinstein J. Folding properties of cytosine monophosphate kinase from E. coli indicate stabilization through an additional insert in the NMP binding domain. PLoS One 2013; 8:e78384. [PMID: 24205218 PMCID: PMC3813627 DOI: 10.1371/journal.pone.0078384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022] Open
Abstract
The globular 25 kDa protein cytosine monophosphate kinase (CMPK, EC ID: 2.7.4.14) from E. coli belongs to the family of nucleoside monophosphate (NMP) kinases (NMPK). Many proteins of this family share medium to high sequence and high structure similarity including the frequently found α/β topology. A unique feature of CMPK in the family of NMPKs is the positioning of a single cis-proline residue in the CORE-domain (cis-Pro124) in conjunction with a large insert in the NMP binding domain. This insert is not found in other well studied NMPKs such as AMPK or UMP/CMPK. We have analyzed the folding pathway of CMPK using time resolved tryptophan and FRET fluorescence as well as CD. Our results indicate that unfolding at high urea concentrations is governed by a single process, whereas refolding in low urea concentrations follows at least a three step process which we interpret as follows: Pro124 in the CORE-domain is in cis in the native state (N(c)) and equilibrates with its trans-isomer in the unfolded state (U(c) - U(t)). Under refolding conditions, at least the U(t) species and possibly also the U(c) species undergo a fast initial collapse to form intermediates with significant amount of secondary structure, from which the trans-Pro124 fraction folds to the native state with a 100-fold lower rate constant than the cis-Pro124 species. CMPK thus differs from homologous NMP kinases like UMP/CMP kinase or AMP kinase, where folding intermediates show much lower content of secondary structure. Importantly also unfolding is up to 100-fold faster compared to CMPK. We therefore propose that the stabilizing effect of the long NMP-domain insert in conjunction with a subtle twist in the positioning of a single cis-Pro residue allows for substantial stabilization compared to other NMP kinases with α/β topology.
Collapse
Affiliation(s)
- Thorsten Beitlich
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Thorsten Lorenz
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jochen Reinstein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
5
|
Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein. Nat Commun 2011; 2:493. [PMID: 21988909 DOI: 10.1038/ncomms1504] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 09/08/2011] [Indexed: 12/17/2022] Open
Abstract
Proteins attain their function only after folding into a highly organized three-dimensional structure. Much remains to be learned about the mechanisms of folding of large multidomain proteins, which may populate metastable intermediate states on their energy landscapes. Here we introduce a novel method, based on high-throughput single-molecule fluorescence experiments, which is specifically geared towards tracing the dynamics of folding in the presence of a plethora of intermediates. We employ this method to characterize the folding reaction of a three-domain protein, adenylate kinase. Using thousands of single-molecule trajectories and hidden Markov modelling, we identify six metastable states on adenylate kinase's folding landscape. Remarkably, the connectivity of the intermediates depends on denaturant concentration; at low concentration, multiple intersecting folding pathways co-exist. We anticipate that the methodology introduced here will find broad applicability in the study of folding of large proteins, and will provide a more realistic scenario of their conformational dynamics.
Collapse
|
6
|
Lorenz T, Reinstein J. The influence of proline isomerization and off-pathway intermediates on the folding mechanism of eukaryotic UMP/CMP Kinase. J Mol Biol 2008; 381:443-55. [PMID: 18602116 DOI: 10.1016/j.jmb.2008.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
Abstract
The globular 22-kDa protein UMP/CMP from Dictyostelium discoideum (UmpK) belongs to the family of nucleoside monophosphate (NMP) kinases. These enzymes not only show high sequence and structure similarities but also share the alpha/beta-fold, a very common protein topology. We investigated the protein folding mechanism of UmpK as a representative for this ubiquitous enzyme class. Equilibrium stability towards urea and the unfolding and refolding kinetics were studied by means of fluorescence and far-UV CD spectroscopy. Although the unfolding can be described by a two-state process, folding kinetics are rather complex with four refolding phases that can be resolved and an additional burst phase. Moreover, two of these phases exhibit a pronounced rollover in the refolding limb that cannot be explained by aggregation. Whilst secondary structure formation is not observed in the burst phase reaction, folding to the native structure is strongly influenced by the slowest phase, since 30% of the alpha-helical CD signal is restored therein. This process can be assigned to proline isomerization and is strongly accelerated by the Escherichia coli peptidyl-prolyl isomerase trigger factor. The analysis of our single-mixing and double-mixing experiments suggests the occurrence of an off-pathway intermediate and an unproductive collapsed structure, which appear to be rate limiting for the folding of UmpK.
Collapse
Affiliation(s)
- Thorsten Lorenz
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | | |
Collapse
|
7
|
Slaughter BD, Unruh JR, Price ES, Huynh JL, Bieber Urbauer RJ, Johnson CK. Sampling unfolding intermediates in calmodulin by single-molecule spectroscopy. J Am Chem Soc 2005; 127:12107-14. [PMID: 16117552 DOI: 10.1021/ja0526315] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used single-pair fluorescence resonance energy transfer (spFRET) measurements to characterize denatured and partially denatured states of the multidomain calcium signaling protein calmodulin (CaM) in both its apo and Ca(2+)-bound forms. The results demonstrate the existence of an unfolding intermediate. A CaM mutant (CaM-T34C-T110C) was doubly labeled with fluorescent probes AlexaFlour 488 and Texas Red at opposing globular domains. Single-molecule distributions of the distance between fluorophores were obtained by spFRET at varying levels of the denaturant urea. Multiple conformational states of CaM were observed, and the amplitude of each conformation was dependent on urea concentration, with the amplitude of an extended conformation increasing upon denaturation. The distributions at intermediate urea concentrations could not be adequately described as a combination of native and denatured conformations, showing that CaM does not denature via a two-state process and demonstrating that at least one intermediate is present. The intermediate conformations formed upon addition of urea were different for Ca(2+)-CaM and apoCaM. An increase in the amplitude of a compact conformation in CaM was observed for apoCaM but not for Ca(2+)-CAM upon the addition of urea. The changes in the single-molecule distributions of CaM upon denaturation can be described by either a range of intermediate structures or by the presence of a single unfolding intermediate that grows in amplitude upon denaturation. A model for stepwise unfolding of CaM is suggested in which the domains of CaM unfold sequentially.
Collapse
Affiliation(s)
- Brian D Slaughter
- Department of Chemistry, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, Kansas 66045-7582, USA
| | | | | | | | | | | |
Collapse
|
8
|
Villa H, Pérez-Pertejo Y, García-Estrada C, Reguera RM, Requena JM, Tekwani BL, Balaña-Fouce R, Ordóñez D. Molecular and functional characterization of adenylate kinase 2 gene from Leishmania donovani. ACTA ACUST UNITED AC 2003; 270:4339-47. [PMID: 14622299 DOI: 10.1046/j.1432-1033.2003.03826.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ATP-regenerating enzymes may have an important role in maintaining ATP levels in mitochondria-like kinetoplast organelle and glycosomes in parasitic protozoa. Adenylate kinase (AK) (ATP:AMP phosphotransferase) catalyses the reversible transfer of the gamma-phosphate group from ATP to AMP, releasing two molecules of ADP. This study describes cloning and functional characterization of the gene encoding AK2 from a genomic library of Leishmania donovani and also its expression in leishmania promastigote cultures. AK2 was localized on an approximately 1.9-Mb chromosomal band as a single copy gene. L. donovani AK2 gene is expressed as a single 1.9-kb mRNA transcript that is developmentally regulated and accumulated during the early log phase. The overexpression of L. donovani AKgene in Escherichia coli yielded a 26-kDa polypeptide that could be refolded to a functional protein with AK activity. The recombinant protein was purified to apparent homogeneity. Kinetic analysis of purified L. donovani AK showed hyperbolic behaviour for both ATP and AMP, with Km values of 104 and 74 microM, respectively. The maximum enzyme activity (Vmax) was 0.18 micromol.min(-1).mg(-1) protein. P1,P5-(bis adenosine)-5'-pentaphosphate (Ap5A), the specific inhibitor of AK, competitively inhibited activity of the recombinant enzymes with estimated Ki values of 190 nM and 160 nM for ATP and AMP, respectively. Ap5A also inhibited the growth of L. donovani promastigotes in vitro which could be only partially reversed by the addition of ADP. Thus, presence of a highly regulated AK2, which may have role in maintenance of ADP/ATP levels in L. donovani, has been demonstrated.
Collapse
Affiliation(s)
- Héctor Villa
- Departamento de Farmacología y Toxicología (INTOXCAL), Facultad de Veterinaria, Universidad de León, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Rhoades E, Gussakovsky E, Haran G. Watching proteins fold one molecule at a time. Proc Natl Acad Sci U S A 2003; 100:3197-202. [PMID: 12612345 PMCID: PMC152269 DOI: 10.1073/pnas.2628068100] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Accepted: 12/31/2002] [Indexed: 11/18/2022] Open
Abstract
Recent theoretical work suggests that protein folding involves an ensemble of pathways on a rugged energy landscape. We provide direct evidence for heterogeneous folding pathways from single-molecule studies, facilitated by a recently developed immobilization technique. Individual fluorophore-labeled molecules of the protein adenylate kinase were trapped within surface-tethered lipid vesicles, thereby allowing spatial restriction without inducing any spurious interactions with the environment, which often occur when using direct surface-linking techniques. The conformational fluctuations of these protein molecules, prepared at the thermodynamic midtransition point, were studied by using fluorescence resonance energy transfer between two specifically attached labels. Folding and unfolding transitions appeared in experimental time traces as correlated steps in donor and acceptor fluorescence intensity. The size of the steps, in fluorescence resonance energy transfer efficiency units, shows a very broad distribution. This distribution peaks at a relatively low value, indicating a preference for small-step motion on the energy landscape. The time scale of the transitions is also distributed, and although many transitions are too fast to be time-resolved here, the slowest ones may take >1 sec to complete. These extremely slow changes during the folding of single molecules highlight the possible importance of correlated, non-Markovian conformational dynamics.
Collapse
Affiliation(s)
- Elizabeth Rhoades
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
10
|
Ratner V, Kahana E, Haas E. The natively helical chain segment 169-188 of Escherichia coli adenylate kinase is formed in the latest phase of the refolding transition. J Mol Biol 2002; 320:1135-45. [PMID: 12126631 DOI: 10.1016/s0022-2836(02)00520-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The refolding transition of Escherichia coli adenylate kinase (AK) was investigated by monitoring the refolding kinetics of a selected 20 residue helical segment in the CORE domain of the protein. Residues 169 and 188 were labeled by 1-acetamido-methyl-pyrene, and by bimane, respectively. The experiment combines double-jump stopped-flow fast mixing initiation of refolding and time-resolved Förster energy transfer spectroscopy for monitoring the conformational transitions (double-kinetics experiment). Two kinetic phases were found in the denaturant-induced unfolding of AK. In the first phase, the fluorescence quantum yields of both probes decreased. The distribution of the distances between them transformed from the native state's narrow distribution with the mean distance corresponding to the distance in the crystal structure, to a distribution compatible with an unordered structure. In the second, slow step of denaturation, neither the fluorescence parameters of the probes nor the distance distribution between them changed. This step appeared to be a transformation of the fast-folding species formed in the first phase, to the slow-folding species. Refolding of the fast-folding species of the denatured state of AK was also a two-phase process. During the first fast phase, within less than 5ms, the fluorescence emission of both probes increased, but the distance distribution between the labeled sites was unchanged. Only during the second slow refolding step did the intramolecular distance distribution change from the characteristic of the denatured state to the narrow distribution of the native state. This experiment shows that for the case of the CORE domain of AK, the large helical segment of residues 169-188 was not formed in the first compaction step of refolding. The helical conformation of this segment is established only in the second, much slower, refolding phase, simultaneously with the completion of the native structure.
Collapse
Affiliation(s)
- V Ratner
- Department of Life Sciences, Bat-Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|
11
|
Cerasoli E, Kelly SM, Coggins JR, Boam DJ, Clarke DT, Price NC. The refolding of type II shikimate kinase from Erwinia chrysanthemi after denaturation in urea. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2124-32. [PMID: 11985590 DOI: 10.1046/j.1432-1033.2002.ejb.02862.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Shikimate kinase was chosen as a convenient representative example of the subclass of alpha/beta proteins with which to examine the mechanism of protein folding. In this paper we report on the refolding of the enzyme after denaturation in urea. As shown by the changes in secondary and tertiary structure monitored by far UV circular dichroism (CD) and fluorescence, respectively, the enzyme was fully unfolded in 4 m urea. From an analysis of the unfolding curve in terms of the two-state model, the stability of the folded state could be estimated as 17 kJ.mol-1. Approximately 95% of the enzyme activity could be recovered on dilution of the urea from 4 to 0.36 m. The results of spectroscopic studies indicated that refolding occurred in at least four kinetic phases, the slowest of which (k = 0.009 s-1) corresponded with the regain of shikimate binding and of enzyme activity. The two most rapid phases were associated with a substantial increase in the binding of 8-anilino-1-naphthalenesulfonic acid with only modest changes in the far UV CD, indicating that a collapsed intermediate with only partial native secondary structure was formed rapidly. The relevance of the results to the folding of other alpha/beta domain proteins is discussed.
Collapse
Affiliation(s)
- Eleonora Cerasoli
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Scotland, UK
| | | | | | | | | | | |
Collapse
|
12
|
Zhang TH, Luo J, Zhou JM. Conformational changes at the active site of adenylate kinase detected using a fluorescent probe and monoclonal antibody binding. Biochimie 2002; 84:335-9. [PMID: 12106912 DOI: 10.1016/s0300-9084(02)01384-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A fluorescent probe, IAEDANS, was introduced into the active site of adenylate kinase (AK) by specifically modifying Cys-25. During modification, enzyme activity was greatly diminished. This probe allowed observation of conformational changes at the active site during denaturation that could not be detected directly in previous studies. The binding ability of modified AK with its monoclonal antibody (McAb3D3) was identical to that of native AK and the fluorescence of modified AK was quenched by interaction with McAb3D3. The relative fluorescence changes during the binding of modified AK with McAb3D3 in different concentrations of guanidine hydrochloride were monitored. The combination of this active site modification with the use of a conformation specific monoclonal antibody has potential for use in the study of the kinetics of folding of AK and in the detection of folding intermediates.
Collapse
Affiliation(s)
- Tian Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101, Beijing, China
| | | | | |
Collapse
|
13
|
Mouat MF. Dihydrofolate influences the activity of Escherichia coli dihydrofolate reductase synthesised de novo. Int J Biochem Cell Biol 2000; 32:327-37. [PMID: 10716630 DOI: 10.1016/s1357-2725(99)00136-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The folding of proteins into their native structures is known to depend on molecular chaperones. However, other ligands or cofactors which still require characterisation are also likely to influence protein folding. The intention of this study was to reveal how the folding of an enzyme, Escherichia coli dihydrofolate reductase, was affected by a substrate ligand, i.e. dihydrofolate. The enzyme was synthesised by coupled transcription/translation in a bacterial cell-free system. Correct folding of the protein into its native structure was measured by its enzymatic activity. Synthesis of dihydrofolate reductase was found to be inhibited, at the level of translation, by dihydrofolate. The syntheses of other proteins were also inhibited by this compound and the reasons for this inhibition could not be determined. Most notably, the specific activity of the dihydrofolate reductase formed in the presence of the substrate dihydrofolate was increased and this effect was specific for dihydrofolate reductase since it was not observed with other proteins synthesised in the same system. The increase in dihydrofolate reductase specific activity could not be attributed to mere thermal stabilisation of the fully folded enzyme by dihydrofolate. The effects of dihydrofolate on dihydrofolate reductase synthesis and activity were similar to those of the molecular chaperone DnaJ which is known to promote the folding of newly synthesised proteins. It is suggested that dihydrofolate may interact with the newly synthesised dihydrofolate reductase polypeptide chain and promote its productive folding.
Collapse
Affiliation(s)
- M F Mouat
- Department of Foods and Nutrition, University of Georgia, Athens 30602, USA.
| |
Collapse
|
14
|
Abstract
An iso-random Bi Bi mechanism has been proposed for adenylate kinase. In this mechanism, one of the enzyme forms can bind the substrates MgATP and AMP, whereas the other form can bind the products MgADP and ADP. In a catalytic cycle, the conformational changes of the free enzyme and the ternary complexes are the rate-limiting steps. The AP(5)A inhibition equations derived from this mechanism show theoretically that AP(5)A acts as a competitive inhibitor for the forward reaction and a mixed noncompetitive inhibitor for the backward reaction.
Collapse
Affiliation(s)
- X R Sheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing, 100101, China
| | | | | |
Collapse
|