1
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
2
|
Gilgenkrantz H, Mallat A, Moreau R, Lotersztajn S. Targeting cell-intrinsic metabolism for antifibrotic therapy. J Hepatol 2021; 74:1442-1454. [PMID: 33631228 DOI: 10.1016/j.jhep.2021.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
In recent years, there have been major advances in our understanding of the mechanisms underlying fibrosis progression and regression, and how coordinated interactions between parenchymal and non-parenchymal cells impact on the fibrogenic process. Recent studies have highlighted that metabolic reprogramming of parenchymal cells, immune cells (immunometabolism) and hepatic stellate cells is required to support the energetic and anabolic demands of phenotypic changes and effector functions. In this review, we summarise how targeting cell-intrinsic metabolic modifications of the main fibrogenic cell actors may impact on fibrosis progression and we discuss the antifibrogenic potential of metabolically targeted interventions.
Collapse
Affiliation(s)
- Helene Gilgenkrantz
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Ariane Mallat
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Richard Moreau
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Sophie Lotersztajn
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France.
| |
Collapse
|
3
|
Khomich O, Ivanov AV, Bartosch B. Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells 2019; 9:E24. [PMID: 31861818 PMCID: PMC7016711 DOI: 10.3390/cells9010024] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is a regenerative process that occurs after injury. It is characterized by the deposition of connective tissue by specialized fibroblasts and concomitant proliferative responses. Chronic damage that stimulates fibrogenic processes in the long-term may result in the deposition of excess matrix tissue and impairment of liver functions. End-stage fibrosis is referred to as cirrhosis and predisposes strongly to the loss of liver functions (decompensation) and hepatocellular carcinoma. Liver fibrosis is a pathology common to a number of different chronic liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease, and viral hepatitis. The predominant cell type responsible for fibrogenesis is hepatic stellate cells (HSCs). In response to inflammatory stimuli or hepatocyte death, HSCs undergo trans-differentiation to myofibroblast-like cells. Recent evidence shows that metabolic alterations in HSCs are important for the trans-differentiation process and thus offer new possibilities for therapeutic interventions. The aim of this review is to summarize current knowledge of the metabolic changes that occur during HSC activation with a particular focus on the retinol and lipid metabolism, the central carbon metabolism, and associated redox or stress-related signaling pathways.
Collapse
Affiliation(s)
- Olga Khomich
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
| |
Collapse
|
4
|
Elzeftawy A, Mansour L, Kobtan A, Mourad H, El-Kalla F. Evaluation of the blood ammonia level as a non-invasive predictor for the presence of esophageal varices and the risk of bleeding. TURKISH JOURNAL OF GASTROENTEROLOGY 2019; 30:59-65. [PMID: 30465524 DOI: 10.5152/tjg.2018.17894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIMS The development of esophageal varices (EV) and resultant bleeding are the most critical complications of portal hypertension. Upper gastrointestinal endoscopy is the gold standard for diagnosis of EV. To find a non-invasive method for diagnosis of EV and to predict the bleeding risk is appealing and would decrease the cost and discomfort of upper endoscopy. The aim of our study was to evaluate the blood ammonia level as a predictor of the presence of EV and of a high risk of bleeding. MATERIALS AND METHODS In this cross-sectional study, a total of 359 patients with cirrhosis were examined for the presence of EV by upper endoscopy. Abdominal ultrasonography, calculation of the Child-Pugh score, and measurement of blood ammonia were performed for each patient. RESULTS The blood ammonia level was significantly higher in patients with EV than in those without it (p<0.001), and in patients with a high risk of variceal bleeding than in those with a low risk (p=0.026). CONCLUSION An increased blood ammonia level and splenic vein diameter are predictors for the presence of EV and bleeding risk factors. The blood ammonia level may be clinically useful as it correlates with and is an independent predictor for both the endoscopic risk signs and risk factors of bleeding, and therefore, it could be used in patients with cirrhosis to decrease the number of screening endoscopies they are subjected to.
Collapse
Affiliation(s)
- Asmaa Elzeftawy
- Department of Tropical Medicine and Infectious Diseases, Tanta University School of Medicine, Tanta, Egypt
| | - Loai Mansour
- Department of Tropical Medicine and Infectious Diseases, Tanta University School of Medicine, Tanta, Egypt
| | - Abdelrahman Kobtan
- Department of Tropical Medicine and Infectious Diseases, Tanta University School of Medicine, Tanta, Egypt
| | - Heba Mourad
- Department of Clinical Pathology, Tanta University School of Medicine, Tanta, Egypt
| | - Ferial El-Kalla
- Department of Tropical Medicine and Infectious Diseases, Tanta University School of Medicine, Tanta, Egypt
| |
Collapse
|
5
|
Blood Ammonia Level Correlates with Severity of Cirrhotic Portal Hypertensive Gastropathy. Gastroenterol Res Pract 2018; 2018:9067583. [PMID: 30151003 PMCID: PMC6087568 DOI: 10.1155/2018/9067583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/23/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Background Portal hypertensive gastropathy (PHG) is a common anomaly with potential for bleeding found in portal hypertension. Blood ammonia levels correlate well with liver disease severity and existence of portosystemic shunts. Increased ammonia results in vasodilation and hepatic stellate cell activation causing and exacerbating portal hypertension. Objective To assess the relation of blood ammonia to the presence and severity of portal hypertensive gastropathy in cirrhosis. Methods This cross-sectional study included 381 cirrhotics undergoing screening for esophageal varices (EV) divided into a portal hypertensive gastropathy group (203 patients with EV and PHG), esophageal varix group (41 patients with EV but no PHG), and control group (137 patients with no EV or PHG). A full clinical examination, routine laboratory tests, abdominal ultrasonography, child score calculation, and blood ammonia measurement were performed for all patients. Results Blood ammonia, portal vein, splenic vein, and splenic longitudinal diameters were significantly higher and platelet counts lower in patients with EV and EV with PHG than controls. Patients having EV with PHG had significantly higher bilirubin and ammonia than those with EV but no PHG. Severe PHG was associated with significantly higher ammonia, EV grades, and superior location and a lower splenic longitudinal diameter than mild PHG. The PHG score showed a positive correlation with blood ammonia and a negative correlation with splenic longitudinal diameter. Conclusions Blood ammonia levels correlate with the presence, severity, and score of portal hypertensive gastropathy in cirrhosis suggesting a causal relationship and encouraging trials of ammonia-lowering treatments for the management of severe PHG with a tendency to bleed.
Collapse
|
6
|
Dasarathy S, Mookerjee RP, Rackayova V, Rangroo Thrane V, Vairappan B, Ott P, Rose CF. Ammonia toxicity: from head to toe? Metab Brain Dis 2017; 32:529-538. [PMID: 28012068 PMCID: PMC8839071 DOI: 10.1007/s11011-016-9938-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 11/30/2016] [Indexed: 12/14/2022]
Abstract
Ammonia is diffused and transported across all plasma membranes. This entails that hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the role of ammonia, only as neurotoxin, is challenged. This review provides insights and evidence that increased ammonia can disturb many organ and cell types and hence lead to dysfunction.
Collapse
Affiliation(s)
- Srinivasan Dasarathy
- Department of Gastroenterology, Hepatology and Pathobiology, Cleveland Clinic, Cleveland, OH, USA
| | - Rajeshwar P Mookerjee
- Liver Failure Group, UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Hospital, London, UK
| | - Veronika Rackayova
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vinita Rangroo Thrane
- Department of Ophthalmology, Haukeland University Hospital, 5021, Bergen, Norway
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Balasubramaniyan Vairappan
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantri Nagar, Pondicherry, India
| | - Peter Ott
- Department of Medicine V (Hepatology and Gastroenterology), Aarhus, Denmark
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Department of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Nwosu ZC, Alborzinia H, Wölfl S, Dooley S, Liu Y. Evolving Insights on Metabolism, Autophagy, and Epigenetics in Liver Myofibroblasts. Front Physiol 2016; 7:191. [PMID: 27313533 PMCID: PMC4887492 DOI: 10.3389/fphys.2016.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/12/2016] [Indexed: 12/14/2022] Open
Abstract
Liver myofibroblasts (MFB) are crucial mediators of extracellular matrix (ECM) deposition in liver fibrosis. They arise mainly from hepatic stellate cells (HSCs) upon a process termed “activation.” To a lesser extent, and depending on the cause of liver damage, portal fibroblasts, mesothelial cells, and fibrocytes may also contribute to the MFB population. Targeting MFB to reduce liver fibrosis is currently an area of intense research. Unfortunately, a clog in the wheel of antifibrotic therapies is the fact that although MFB are known to mediate scar formation, and participate in liver inflammatory response, many of their molecular portraits are currently unknown. In this review, we discuss recent understanding of MFB in health and diseases, focusing specifically on three evolving research fields: metabolism, autophagy, and epigenetics. We have emphasized on therapeutic prospects where applicable and mentioned techniques for use in MFB studies. Subsequently, we highlighted uncharted territories in MFB research to help direct future efforts aimed at bridging gaps in current knowledge.
Collapse
Affiliation(s)
- Zeribe C Nwosu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Hamed Alborzinia
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Yan Liu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
8
|
Jalan R, De Chiara F, Balasubramaniyan V, Andreola F, Khetan V, Malago M, Pinzani M, Mookerjee RP, Rombouts K. Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension. J Hepatol 2016; 64:823-33. [PMID: 26654994 DOI: 10.1016/j.jhep.2015.11.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) are vital to hepatocellular function and the liver response to injury. They share a phenotypic homology with astrocytes that are central in the pathogenesis of hepatic encephalopathy, a condition in which hyperammonemia plays a pathogenic role. This study tested the hypothesis that ammonia modulates human HSC activation in vitro and in vivo, and evaluated whether ammonia lowering, by using l-ornithine phenylacetate (OP), modifies HSC activation in vivo and reduces portal pressure in a bile duct ligation (BDL) model. METHODS Primary human HSCs were isolated and cultured. Proliferation (BrdU), metabolic activity (MTS), morphology (transmission electron, light and immunofluorescence microscopy), HSC activation markers, ability to contract, changes in oxidative status (ROS) and endoplasmic reticulum (ER) were evaluated to identify effects of ammonia challenge (50 μM, 100 μM, 300 μM) over 24-72 h. Changes in plasma ammonia levels, markers of HSC activation, portal pressure and hepatic eNOS activity were quantified in hyperammonemic BDL animals, and after OP treatment. RESULTS Pathophysiological ammonia concentrations caused significant and reversible changes in cell proliferation, metabolic activity and activation markers of hHSC in vitro. Ammonia also induced significant alterations in cellular morphology, characterised by cytoplasmic vacuolisation, ER enlargement, ROS production, hHSC contraction and changes in pro-inflammatory gene expression together with HSC-related activation markers such as α-SMA, myosin IIa, IIb, and PDGF-Rβ. Treatment with OP significantly reduced plasma ammonia (BDL 199.1 μmol/L±43.65 vs. BDL+OP 149.27 μmol/L±51.1, p<0.05) and portal pressure (BDL 14±0.6 vs. BDL+OP 11±0.3 mmHg, p<0.01), which was associated with increased eNOS activity and abrogation of HSC activation markers. CONCLUSIONS The results show for the first time that ammonia produces deleterious morphological and functional effects on HSCs in vitro. Targeting ammonia with the ammonia lowering drug OP reduces portal pressure and deactivates hHSC in vivo, highlighting the opportunity for evaluating ammonia lowering as a potential therapy in cirrhotic patients with portal hypertension.
Collapse
Affiliation(s)
- Rajiv Jalan
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Francesco De Chiara
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Vairappan Balasubramaniyan
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Varun Khetan
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Massimo Malago
- Division of Surgery, University College London, Royal Free, London, UK
| | - Massimo Pinzani
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Rajeshwar P Mookerjee
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK.
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK.
| |
Collapse
|
9
|
All-trans retinoic acid mitigates methotrexate-induced liver injury in rats; relevance of retinoic acid signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:931-8. [PMID: 25971792 DOI: 10.1007/s00210-015-1130-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/03/2015] [Indexed: 02/01/2023]
Abstract
Methotrexate (MTX) is a widely used drug for treatment of rheumatic and autoimmune diseases as well as different types of cancer. One of the major side effects of MTX is hepatotoxicity. Retinoid receptors, including retinoid X receptor (RXR), and retinoic acid receptor (RAR) are vitamin A receptors that are highly expressed in the liver and regulate important physiological processes through regulation of different genes. In this study, we investigated the effect of MTX on RXR-α and RAR-α expression in the liver and the potential protective effects of all-trans retinoic acid (ATRA) in MTX-induced hepatotoxicity. Rats were randomly divided into five groups: The rates were treated with saline, DMSO, MTX (20 mg/kg/IP; single dose), ATRA (7.5 mg/kg/day, I.P), or MTX and ATRA. Rats were killed 24 h after the last ATRA injection. The liver tissues were dissected out, weighed, and subjected to histological, immunohistochemical, and biochemical examinations. Our results demonstrated that treatment with MTX resulted in significant decrease in reduced glutathione (GSH) content and superoxide dismutase (SOD) activity, with concomitant increase in ALT, AST, and MDA levels. In addition, MTX markedly downregulated the expression of both RXR-α and RAR-α, and changed the appearance of RXR-α to be very small speckled droplets. Treatment with ATRA significantly ameliorated MTX-induced effects on GSH, ALT, and MDA. Moreover, ATRA administration increased the expression and nuclear translocation of RXR-α in rat hepatocytes. In conclusion, our study revealed, for the first time, that retinoid receptors may play an important role in the MTX-induced hepatotoxicity.
Collapse
|
10
|
Fleming KE, Wanless IR. Glutamine synthetase expression in activated hepatocyte progenitor cells and loss of hepatocellular expression in congestion and cirrhosis. Liver Int 2013; 33:525-34. [PMID: 23362937 DOI: 10.1111/liv.12099] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/07/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS In normal human liver, glutamine synthetase (GS) is expressed in a rim of hepatocytes surrounding hepatic veins. GS expression is decreased in cirrhosis and increased in chronic hepatitis, focal nodular hyperplasia, peritumoural hyperplasia and some hepatocellular neoplasms. For the non-neoplastic conditions, there is limited information available on histological pattern of altered GS expression and the mechanisms of these changes. METHODS We examined GS expression in 58 large specimens and 45 needle biopsies with a variety of non-neoplastic human liver conditions and in 12 normal control livers. Expression was correlated with clinical and histological disease states. RESULTS We identified four patterns of GS expression: (i) Loss of normal perivenular expression was seen in states of chronic congestion, severe cirrhosis and zone 3 necrosis. (ii) Diffuse expression was seen in states with active hepatocellular injury and correlated with Ki-67 expression. (iii) Interface expression was seen in feathery degeneration of chronic cholestasis. (iv) GS expression in activated hepatocyte progenitor cells (HPCs) associated with small ducts and ductules was seen in fulminant hepatic failure and in early and late chronic liver disease and rarely in normal livers. CONCLUSIONS Glutamine synthetase expression is increased in regenerating hepatocytes and in early HPCs prior to morphological evidence of hepatocellular differentiation. This may be the earliest marker of HPCs yet demonstrated. Loss of expression may be a reflection of disrupted endothelium-hepatocyte contact in hepatic vein walls caused by congestive injury as found in congestive heart failure and advanced cirrhosis.
Collapse
Affiliation(s)
- Kirsten E Fleming
- Department of Pathology, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | | |
Collapse
|
11
|
Barcellos LM, Costa WS, Medeiros JL, Rocha BR, Sampaio FJB, Cardoso LEM. Protective effects of l-glutamine on the bladder wall of rats submitted to pelvic radiation. Micron 2013; 47:18-23. [PMID: 23465886 DOI: 10.1016/j.micron.2013.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 12/24/2012] [Accepted: 01/05/2013] [Indexed: 11/27/2022]
Abstract
Radiotherapy is often used to treat prostate tumors, but the normal bladder is usually adversely affected. Using an animal model of pelvic radiation, we investigated whether glutamine nutritional supplementation can prevent radiation-induced damage to the bladder, especially in its more superficial layers. Male rats aged 3-4 months were divided into groups of 8 animals each: controls, which consisted intact animals; radiated-only rats, which were sacrificed 7 (R7) or 15 (R15) days after a radiation session (10Gy aimed at the pelvico-abdominal region); and radiated rats receiving l-glutamine supplementation (0.65g/kg body weight/day), which were sacrificed 7 (RG7) or 15 (RG15) days after the radiation session. Cells and blood vessels in the vesical lamina propria, as well as the urothelium, were then measured using histological methods. The effects of radiation were evaluated by comparing controls vs. either R7 or R15, while a protective effect of glutamine was assessed by comparing R7 vs. RG7 and R15 vs. RG15. The results showed that, in R7, epithelial thickness, epithelial cell density, and cell density in the lamina propria were not significantly affected. However, density of blood vessels in R7 was reduced by 48% (p<0.05) and this alteration was mostly prevented by glutamine (p<0.02). In R15, density of blood vessels in the lamina propria was not significantly modified. However, epithelial thickness was reduced by 25% (p<0.05) in R15, and this effect was prevented by glutamine (p<0.01). In R15, epithelial cell density was increased by 35% (p<0.02), but glutamine did not protect against this radiation-induced increase. Cell density in the lamina propria was likewise unaffected in R15. Density of mast cells in the lamina propria was markedly reduced in R7 and R15. The density was still reduced in RG7, but a higher density in RG15 suggested a glutamine-mediated recovery. Alpha-actin positive cells in the lamina propria formed a suburothelial layer and were identified as myofibroblasts. Thickness of this layer was increased in R7, but was similar to controls in RG7, while changes in R15 and RG15 were less evident. In conclusion, pelvic radiation leads to significant acute and post-acute alterations in the composition and structural features of the vesical lamina propria and epithelium. Most of these changes, however, can be prevented by glutamine nutritional supplementation. These results emphasize, therefore, the potential use of this aminoacid as a radioprotective drug.
Collapse
Affiliation(s)
- Leilane M Barcellos
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Danielyan L, Zellmer S, Sickinger S, Tolstonog GV, Salvetter J, Lourhmati A, Reissig DD, Gleiter CH, Gebhardt R, Buniatian GH. Keratinocytes as depository of ammonium-inducible glutamine synthetase: age- and anatomy-dependent distribution in human and rat skin. PLoS One 2009; 4:e4416. [PMID: 19204801 PMCID: PMC2637544 DOI: 10.1371/journal.pone.0004416] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/23/2008] [Indexed: 02/02/2023] Open
Abstract
In inner organs, glutamine contributes to proliferation, detoxification and establishment of a mechanical barrier, i.e., functions essential for skin, as well. However, the age-dependent and regional peculiarities of distribution of glutamine synthetase (GS), an enzyme responsible for generation of glutamine, and factors regulating its enzymatic activity in mammalian skin remain undisclosed. To explore this, GS localization was investigated using immunohistochemistry and double-labeling of young and adult human and rat skin sections as well as skin cells in culture. In human and rat skin GS was almost completely co-localized with astrocyte-specific proteins (e.g. GFAP). While GS staining was pronounced in all layers of the epidermis of young human skin, staining was reduced and more differentiated among different layers with age. In stratum basale and in stratum spinosum GS was co-localized with the adherens junction component beta-catenin. Inhibition of, glycogen synthase kinase 3beta in cultured keratinocytes and HaCaT cells, however, did not support a direct role of beta-catenin in regulation of GS. Enzymatic and reverse transcriptase polymerase chain reaction studies revealed an unusual mode of regulation of this enzyme in keratinocytes, i.e., GS activity, but not expression, was enhanced about 8-10 fold when the cells were exposed to ammonium ions. Prominent posttranscriptional up-regulation of GS activity in keratinocytes by ammonium ions in conjunction with widespread distribution of GS immunoreactivity throughout the epidermis allows considering the skin as a large reservoir of latent GS. Such a depository of glutamine-generating enzyme seems essential for continuous renewal of epidermal permeability barrier and during pathological processes accompanied by hyperammonemia.
Collapse
Affiliation(s)
- Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tübingen, Tübingen, Germany
| | - Sebastian Zellmer
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stefan Sickinger
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Genrich V. Tolstonog
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | | | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital of Tübingen, Tübingen, Germany
| | | | - Cristoph H. Gleiter
- Department of Clinical Pharmacology, University Hospital of Tübingen, Tübingen, Germany
| | - Rolf Gebhardt
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
13
|
Kordes C, Sawitza I, Häussinger D. Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells. Biochem Biophys Res Commun 2007; 367:116-23. [PMID: 18158920 DOI: 10.1016/j.bbrc.2007.12.085] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/14/2007] [Indexed: 12/20/2022]
Abstract
It is well known that hepatic stellate cells (HSC) develop into cells, which are thought to contribute to liver fibrogenesis. Recent data suggest that HSC are progenitor cells with the capacity to differentiate into cells of endothelial and hepatocyte lineages. The present study shows that beta-catenin-dependent canonical Wnt signaling is active in freshly isolated HSC of rats. Mimicking of the canonical Wnt pathway in cultured HSC by TWS119, an inhibitor of the glycogen synthase kinase 3beta, led to reduced beta-catenin phosphorylation, induced nuclear translocation of beta-catenin, elevated glutamine synthetase production, impeded synthesis of alpha-smooth muscle actin and Wnt5a, but promoted the expression of glial fibrillary acidic protein, Wnt10b, and paired-like homeodomain transcription factor 2c. In addition, canonical Wnt signaling lowered DNA synthesis and hindered HSC from entering the cell cycle. The findings demonstrate that beta-catenin-dependent Wnt signaling maintains the quiescent state of HSC and, similar to stem and progenitor cells, influences their developmental fate.
Collapse
Affiliation(s)
- Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
14
|
Lenart J, Dombrowski F, Görlach A, Kietzmann T. Deficiency of manganese superoxide dismutase in hepatocytes disrupts zonated gene expression in mouse liver. Arch Biochem Biophys 2007; 462:238-44. [PMID: 17367743 DOI: 10.1016/j.abb.2007.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/31/2007] [Accepted: 02/04/2007] [Indexed: 12/01/2022]
Abstract
The liver acinus displays a physiological periportal to perivenous oxygen gradient. This gradient was implicated to use reactive oxygen species (ROS) as mediators for the zonal gene expression. Mitochondria use oxygen and produce ROS, therefore they may contribute to the zonation of gene expression. To further elucidate this, we used the Cre-loxP system to generate a hepatocyte-specific null mutation of the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) in mice. We found that ROS levels were enhanced in livers of MnSOD(-/-) mice which were reduced in size and displayed signs of liver failure such as intracellular protein droplets, increased apoptotic bodies and Bax levels as well as multinuclear hepatocytes. Further, the zonation of glutamine synthetase, glucokinase and phosphoenolpyruvate carboxykinase was no longer preserved. We conclude that deficiency of mitochondrial MnSOD initiates a dysregulation of zonated gene expression in liver.
Collapse
Affiliation(s)
- Jacek Lenart
- Faculty of Chemistry, Department of Biochemistry, Erwin-Schrödinger-Strasse, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | | | | |
Collapse
|
15
|
Gebhardt R, Baldysiak-Figiel A, Krügel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. ACTA ACUST UNITED AC 2007; 41:201-66. [PMID: 17368308 DOI: 10.1016/j.proghi.2006.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamine synthetase (GS) has long been known to be expressed exclusively in pericentral hepatocytes most proximal to the central veins of liver lobuli. This enzyme as well as its peculiar distribution complementary to the periportal compartment for ureogenesis plays an important role in nitrogen metabolism, particularly in homeostasis of blood levels of ammonium ions and glutamine. Despite this fact and intensive studies in vivo and in vitro, many aspects of the regulation of its activity on the protein and on the genetic level remained enigmatic. Recent experimental advances using transgenic mice and new analytic tools have revealed the fundamental role of morphogens such as wingless-type MMTV integration site family member signals (Wnt), beta-catenin, and adenomatous polyposis coli in the regulation of this particular enzyme. In addition, novel information concerning the structure of transcription factor binding sites within regulatory regions of the GS gene and their interactions with signalling pathways could be collected. In this review we focus on all aspects of the regulation of GS in the liver and demonstrate how the new findings have changed our view of the determinants of liver zonation. What appeared as a simple response of hepatocytes to blood-derived factors and local cellular interactions must now be perceived as a fundamental mechanism of adult tissue patterning by morphogens that were considered mainly as regulators of developmental processes. Though GS may be the most obvious indicator of morphogen action among many other targets, elucidation of the complex regulation of the expression of the GS gene could pave the road for a better understanding of the mechanisms involved in patterning of liver parenchyma. Based on current knowledge we propose a new concept of how morphogens, hormones and other factors may act in concert, in order to restrict gene expression to small subpopulations of one differentiated cell type, the hepatocyte, in different anatomical locations. Although many details of this regulatory network are still missing, and an era of exciting new discoveries is still about to come, it can already be envisioned that similar mechanisms may well be active in other organs contributing to the fine-tuning of organ-specific functions.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
16
|
Ueberham E, Arendt E, Starke M, Bittner R, Gebhardt R. Reduction and expansion of the glutamine synthetase expressing zone in livers from tetracycline controlled TGF-beta1 transgenic mice and multiple starved mice. J Hepatol 2004; 41:75-81. [PMID: 15246211 DOI: 10.1016/j.jhep.2004.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 12/13/2003] [Accepted: 03/16/2004] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS To learn more about tissue remodelling in fibrotic livers of tetracycline-controlled TGF-beta1 transgenic mice (TGF-beta1-on-mice) and during regeneration after removal of the fibrotic stimulus (off-mice), we investigated the expression of glutamine synthetase (GS), an exclusive pericentrally expressed enzyme. METHODS GS was localised immunohistochemically and quantified by real-time RT-PCR and enzymatic activity measurement. Apoptosis in livers of TGF-beta1-on-mice was demonstrated by in situ apoptosis detection kit (TUNEL reaction). RESULTS Livers of TGF-beta1-on-mice harbour a reduced number of GS-positive hepatocytes and expression of GS is downregulated, while multiple starved mice serving as controls for malnutrition during TGF-beta1 exposure surprisingly showed an impressive amplification of GS-positive hepatocytes. Apoptotic events were frequent around central veins in livers of TGF-beta1-on-mice, while in multiple induced mice apoptosis was dominant around all vessels and weak in midzonal areas. During regeneration from fibrosis, control levels were regained within 21 days. Beta-catenin was dislocated from plasma membrane to cytoplasm exclusively in pericentral hepatocytes during a short time slot after a unique expression of TGF-beta1. CONCLUSIONS Reduction of GS in TGF-beta1-on-mice results from apoptosis of GS-positive hepatocytes rather than downregulation of GS expression. Beta-catenin seems involved in the recovery of GS-positive hepatocytes.
Collapse
Affiliation(s)
- Elke Ueberham
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Liebigstrasse 16, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
17
|
Buniatian GH. Stages of activation of hepatic stellate cells: effects of ellagic acid, an inhibiter of liver fibrosis, on their differentiation in culture. Cell Prolif 2004; 36:307-19. [PMID: 14710849 PMCID: PMC6496808 DOI: 10.1046/j.1365-2184.2003.00287.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED To further explore that hepatic stellate cell (HSC) activation results in physiological protection against environmental insult, the profile of differentiation of HSC has been examined upon treatment with ellagic acid (EA), a plant-derived antioxidant that shows multiple protective effects during liver disease. Sparse rat liver cell cultures were grown in media containing EA (3, 6, 30 and 100 microg/ml) and, as controls, without EA, and inspected until day 7 in culture. The cells were double-labelled with antibodies against glial fibrillary acidic protein (GFAP) and smooth muscle alpha-actin (SMAA), marker proteins of quiescent and activated HSC, respectively. In EA-free culture conditions, the quiescent (SMAA-/GFAP+) HSC transiently acquired a semi-activated (SMAA+/GFAP+), phenotype and were further transformed into activated (SMAA+/GFAP-), pleomorphic HSC. Up to a concentration of 30 microg/ml, EA induced an early synthesis of SMAA in all HSC and inhibited their morphologic differentiation and individual growth throughout the culture period. At a concentration of 6 microg/ml, EA supported the semi-activated (SMAA+/GFAP+) phenotype of HSC throughout the culture period, whereas treatment with high EA concentrations (30 microg/ml) resulted in an early loss of GFAP expression. IN CONCLUSION (i) the uniform response of HSC to EA by mild activation adds functional significance to cellular features preceding the transformation of HSC to myofibroblasts; (ii) the high sensitivity of HSC to EA treatment suggests their involvement in any mechanisms of protection by this antioxidant; (iii) the maintenance of HSC morphology might be one of the factors playing a role in the prevention or slowing down of liver fibrosis; (iv) because the effects of EA are concentration- and time-dependent, an arbitrary usage of this antioxidant is a matter of potential concern; (v) the various patterns of HSC activation observed might correspond to distinct activities of these cells, which, in turn, might lead to different outcomes of liver fibrosis.
Collapse
Affiliation(s)
- G H Buniatian
- Max-Planck-Institut für Zellbiologie, Ladenburg, Germany.
| |
Collapse
|
18
|
Buniatian GH, Hartmann HJ, Traub P, Wiesinger H, Albinus M, Nagel W, Shoeman R, Mecke D, Weser U. Glial fibrillary acidic protein-positive cells of the kidney are capable of raising a protective biochemical barrier similar to astrocytes: expression of metallothionein in podocytes. THE ANATOMICAL RECORD 2002; 267:296-306. [PMID: 12124908 DOI: 10.1002/ar.10115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Blood-tissue exchange and homeostasis within the organs depend on various interactions between endothelial and perivascular cells (Buniatian, 2001). Podocytes possess anatomical and cellular features intermediate between those of astrocytes and hepatic stellate cells (HSCs). Podocytes, like HSCs, are associated with fenestrated capillaries and, similar to astrocytes, interact with the capillaries via the basement membrane and participate in permeability-limiting ultrafiltration. The fact that podocytes come in direct contact with xenobiotics prompted us to investigate whether they express metallothionein (MT), an anticytotoxic system characteristic of astrocytes. In comparative studies, cryosections of 1- and 3-month-old rat kidney and adult rat brain, as well as podocytes and astrocytes from early and prolonged primary cultures of glomerular explants and newborn rat brain, respectively, were investigated. The cells were double-labeled with antiserum against glial fibrillary acidic protein (GFAP) and monoclonal antibody (MAb) against the lysine-containing epitope of Cd/Zn-MT-I (MAb MT) or MAb against alpha-actin. In kidney sections, MT immunoreactivity was detected in GFAP-positive glomerular cells and in interstitial fibroblasts. The pattern of staining for MT and GFAP in glomerular cells was similar to that of astrocytes in vivo. In glomerular cell cultures, MT was expressed in cobblestone-like podocytes which contained Wilms' tumor protein and lacked desmin. MT was upregulated at later culture periods, during which podocytes acquired features typical of undifferentiated astrocytes. This study hints at the existence of common regulatory mechanisms of blood-tissue interactions by neural and non-neural perivascular cells. These mechanisms appear to be used in an organ-specific manner.
Collapse
Affiliation(s)
- Gayane Hrachia Buniatian
- Physiologisch-Chemisches Institut der Universität, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fischer R, Schmitt M, Bode JG, Häussinger D. Expression of the peripheral-type benzodiazepine receptor and apoptosis induction in hepatic stellate cells. Gastroenterology 2001; 120:1212-26. [PMID: 11266385 DOI: 10.1053/gast.2001.23260] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Hepatic stellate cell (HSC) transformation and proliferation play an important role in liver fibrogenesis, and HSC apoptosis may be involved in the termination of this response. METHODS Expression of the peripheral benzodiazepine receptor (PBR) and PBR-ligand-induced apoptosis were studied in cultured rat liver HSC. RESULTS Transformation of HSC led to a transient expression of PBR at the messenger RNA and protein level, which was maximal after about 3 and 7 days of culture, respectively, and declined thereafter. Immunoreactive PBR showed a punctate staining and colocalized with mitochondrial manganese-dependent superoxide dismutase and adenine nucleotide translocator 1. The selective PBR ligands 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195) and 4' chlorodiazepam (Ro5-4864), but not the centrally acting benzodiazepine ligand clonazepam, induced dose-dependent apoptosis in HSC. The apoptotic potency of PK11195 paralleled the level of PBR expression. PK11195 induced dephosphorylation of protein kinase B/Akt and Bad and a downregulation of Bcl-2. Collapse of the mitochondrial membrane potential preceeded PBR-ligand-induced apoptosis. No apoptosis was induced by PK11195 in parenchymal cells, despite the presence of PBR, and PK11195 had no effect in these cells on Bad phosphorylation and Bcl-2 expression. CONCLUSIONS Transformation of HSC leads to a transient expression of PBR and renders the cells sensitive to PBR-ligand-induced apoptosis, involving protein kinase B/Akt and Bad-dependent mechanisms.
Collapse
Affiliation(s)
- R Fischer
- Medizinische Universitätsklinik, Heinrich Heine Universität Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
20
|
Buniatian GH, Hartmann HJ, Traub P, Weser U, Wiesinger H, Gebhardt R. Acquisition of blood--tissue barrier--supporting features by hepatic stellate cells and astrocytes of myofibroblastic phenotype. Inverse dynamics of metallothionein and glial fibrillary acidic protein expression. Neurochem Int 2001; 38:373-83. [PMID: 11222917 DOI: 10.1016/s0197-0186(00)00116-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A number of similarities between astrocytes and hepatic stellate cells (HSC) rose the question whether or not the protective barrier features of blood-tissue interface may be provided by HSC as well. To test this hypothesis, we investigated the presence of metallothionein (MT), a functional marker of blood--brain barrier, in HSC in situ and in cell culture and compared the results with those obtained with astrocytes. The dynamics of MT expression in cultured astrocytes and HSC was investigated by simultaneous labelling of the cells with a monoclonal antibody (MAb MT) against a lysine-containing epitope of the cadmium-induced monomer of MT-I from rat liver and antiserum against glial fibrillary acidic protein (GFAP). Cell activation was estimated by the presence of smooth muscle alpha-actin (SMAA). In immunoblotting, MAb MT recognized monomeric MT protein and proteins in the 30-kDa range; both bands were pronounced in brain and barely visible in liver homogenates. In situ, MAb MT reacted with very few perivascular cells situated in the parenchyma of the liver. Double immunolabelling of brain slices with MAb MT and antiserum against GFAP showed large areas of brain containing cells expressing both MT and GFAP. However, there were also regions in the brain where the cells produced solely GFAP or MT. In liver cell culture, MT was absent from HSC and hepatocytes in early periods of cultivation, during which the cells maintained their original features; however, MT was expressed strongly in HSC during their activation under prolonged culture conditions. Inversely, in astrocytes MT was expressed during early culturing and disappeared from the cells together with SMAA in late culture when GFAP was upregulated. These results suggest that the acquisition of myofibroblastic features by perivascular cells empowers them to establish a protective blood-tissue permeability barrier. In addition, this study shows that, at least in cell culture, an enrichment of perivascular cells in GFAP results in the disappearance of protective functions.
Collapse
Affiliation(s)
- G H Buniatian
- Institut für Biochemie, Universität Leipzig, Medizinische Facultät, Liebig Str. 16, D-04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Bode JG, Peters-Regehr T, Kubitz R, Häussinger D. Expression of glutamine synthetase in macrophages. J Histochem Cytochem 2000; 48:415-22. [PMID: 10681395 DOI: 10.1177/002215540004800311] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We studied the expression of glutamine synthetase in liver macrophages (Kupffer cells, KCs) in situ and in culture. Glutamine synthetase was detectable at the mRNA and protein level in freshly isolated and short-term-cultured rat liver macrophages. Enzyme activity and protein content were about 9% of that in liver parenchymal cells. In contrast, glutamine synthetase mRNA levels in liver macrophages apparently exceeded those in parenchymal liver cells (PCs). By use of confocal laser scanning microscopy and specific macrophage markers, immunoreactive glutamine synthetase was localized to macrophages in normal rat liver and normal human liver in situ. All liver macrophages stained positive for glutamine synthetase. In addition, macrophages in rat pancreas contained immunoreactive glutamine synthetase, whereas glutamine synthetase was not detectable at the mRNA and protein level in blood monocytes and RAW 264.7 mouse macrophages. No significant amounts of glutamine synthetase were found in isolated rat liver sinusoidal endothelial cells (SECs). The data suggest a constitutive expression of glutamine synthetase not only, as previously believed, in perivenous liver parenchymal cells but also in resident liver macrophages.
Collapse
Affiliation(s)
- J G Bode
- Medizinische Universitätsklinik, Klinik für Gastroenterologie, Hepatologie und Infektiologie, Heinrich-Heine Universität, Düsseldorf, Germany
| | | | | | | |
Collapse
|
22
|
Buniatian GH, Gebhardt R, Mecke D, Traub P, Wiesinger H. Common myofibroblastic features of newborn rat astrocytes and cirrhotic rat liver stellate cells in early cultures and in vivo. Neurochem Int 1999; 35:317-27. [PMID: 10482352 DOI: 10.1016/s0197-0186(99)00071-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Double-immunolabelling techniques were employed to investigate the distribution of smooth muscle alpha-actin (actin) in glial fibrillary acidic protein (GFAP)-positive cells in rat brain during early postnatal development and maturation and in glial primary culture derived from newborn rat brain. In addition the expression of desmin was studied in the glial primary cultures as a function of the differentiation of the cells. Comparison of the cultured astroglial cells at an early age with hepatic stellate cells derived from CCl4-induced cirrhotic rat liver, revealed features of the astrocytic cytoskeleton characteristic of myofibroblastic cells, i.e., strong expression of both myofibroblastic markers, actin and desmin. In astroglial cells with an initial morphology reminiscent of fibroblasts the non-filamentous perinuclear immunoreaction of GFAP increased with time at the expense of actin and, partially, desmin. GFAP filaments were spread throughout the cytoplasm of the cells which acquired stellate morphology. The alterations in the morphology of the cells and the distribution and intensity of staining for GFAP and actin during the differentiation of astrocytes in culture were similar to those observed in astrocytes during the maturation of the brain. In astrocytes from a newborn brain as well as in cirrhotic hepatic stellate cells, the area of immunoreaction of GFAP was reduced and confined mainly to the nuclear region. In contrast, the cells expressed actin throughout the cytoplasm. These findings may hint at a similar function of these regionally specialized perivascular myofibroblastic cells in a normal brain and diseased liver and at inverse organ-specific functions which the cells fulfill under non-pathological conditions in vivo.
Collapse
Affiliation(s)
- G H Buniatian
- Physiologisch-chemisches Institut der Universität, Tübingen, Germany
| | | | | | | | | |
Collapse
|