1
|
Torrecilhas AC, Soares RP, Schenkman S, Fernández-Prada C, Olivier M. Extracellular Vesicles in Trypanosomatids: Host Cell Communication. Front Cell Infect Microbiol 2020; 10:602502. [PMID: 33381465 PMCID: PMC7767885 DOI: 10.3389/fcimb.2020.602502] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma cruzi, Trypanosoma brucei and Leishmania (Trypanosomatidae: Kinetoplastida) are parasitic protozoan causing Chagas disease, African Trypanosomiasis and Leishmaniases worldwide. They are vector borne diseases transmitted by triatomine bugs, Tsetse fly, and sand flies, respectively. Those diseases cause enormous economic losses and morbidity affecting not only rural and poverty areas but are also spreading to urban areas. During the parasite-host interaction, those organisms release extracellular vesicles (EVs) that are crucial for the immunomodulatory events triggered by the parasites. EVs are involved in cell-cell communication and can act as important pro-inflammatory mediators. Therefore, interface between EVs and host immune responses are crucial for the immunopathological events that those diseases exhibit. Additionally, EVs from these organisms have a role in the invertebrate hosts digestive tracts prior to parasite transmission. This review summarizes the available data on how EVs from those medically important trypanosomatids affect their interaction with vertebrate and invertebrate hosts.
Collapse
Affiliation(s)
- Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Federal University of Sao Paulo (UNIFESP), Diadema, Brazil
| | | | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, São Paulo, Brazil
| | | | - Martin Olivier
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| |
Collapse
|
2
|
Kariuki CK, Stijlemans B, Magez S. The Trypanosomal Transferrin Receptor of Trypanosoma Brucei-A Review. Trop Med Infect Dis 2019; 4:tropicalmed4040126. [PMID: 31581506 PMCID: PMC6958415 DOI: 10.3390/tropicalmed4040126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for life. Its uptake and utility requires a careful balancing with its toxic capacity, with mammals evolving a safe and bio-viable means of its transport and storage. This transport and storage is also utilized as part of the iron-sequestration arsenal employed by the mammalian hosts’ ‘nutritional immunity’ against parasites. Interestingly, a key element of iron transport, i.e., serum transferrin (Tf), is an essential growth factor for parasitic haemo-protozoans of the genus Trypanosoma. These are major mammalian parasites causing the diseases human African trypanosomosis (HAT) and animal trypanosomosis (AT). Using components of their well-characterized immune evasion system, bloodstream Trypanosoma brucei parasites adapt and scavenge for the mammalian host serum transferrin within their broad host range. The expression site associated genes (ESAG6 and 7) are utilized to construct a heterodimeric serum Tf binding complex which, within its niche in the flagellar pocket, and coupled to the trypanosomes’ fast endocytic rate, allows receptor-mediated acquisition of essential iron from their environment. This review summarizes current knowledge of the trypanosomal transferrin receptor (TfR), with emphasis on the structure and function of the receptor, both in physiological conditions as well as in conditions where the iron supply to parasites is being limited. Potential applications using current knowledge of the parasite receptor are also briefly discussed, primarily focused on potential therapeutic interventions.
Collapse
Affiliation(s)
- Christopher K. Kariuki
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), 00502 Nairobi, Kenya
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| | - Benoit Stijlemans
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, 9052 Gent, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon 219220, Korea
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| |
Collapse
|
3
|
Menna-Barreto RFS. Cell death pathways in pathogenic trypanosomatids: lessons of (over)kill. Cell Death Dis 2019; 10:93. [PMID: 30700697 PMCID: PMC6353990 DOI: 10.1038/s41419-019-1370-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022]
Abstract
Especially in tropical and developing countries, the clinically relevant protozoa Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness) and Leishmania species (leishmaniasis) stand out and infect millions of people worldwide leading to critical social-economic implications. Low-income populations are mainly affected by these three illnesses that are neglected by the pharmaceutical industry. Current anti-trypanosomatid drugs present variable efficacy with remarkable side effects that almost lead to treatment discontinuation, justifying a continuous search for alternative compounds that interfere with essential and specific parasite pathways. In this scenario, the triggering of trypanosomatid cell death machinery emerges as a promising approach, although the exact mechanisms involved in unicellular eukaryotes are still unclear as well as the controversial biological importance of programmed cell death (PCD). In this review, the mechanisms of autophagy, apoptosis-like cell death and necrosis found in pathogenic trypanosomatids are discussed, as well as their roles in successful infection. Based on the published genomic and proteomic maps, the panel of trypanosomatid cell death molecules was constructed under different experimental conditions. The lack of PCD molecular regulators and executioners in these parasites up to now has led to cell death being classified as an unregulated process or incidental necrosis, despite all morphological evidence published. In this context, the participation of metacaspases in PCD was also not described, and these proteases play a crucial role in proliferation and differentiation processes. On the other hand, autophagic phenotype has been described in trypanosomatids under a great variety of stress conditions (drugs, starvation, among others) suggesting that this process is involved in the turnover of damaged structures in the protozoa and is not a cell death pathway. Death mechanisms of pathogenic trypanosomatids may be involved in pathogenesis, and the identification of parasite-specific regulators could represent a rational and attractive alternative target for drug development for these neglected diseases.
Collapse
|
4
|
Abbas AH, Silva Pereira S, D'Archivio S, Wickstead B, Morrison LJ, Hall N, Hertz-Fowler C, Darby AC, Jackson AP. The Structure of a Conserved Telomeric Region Associated with Variant Antigen Loci in the Blood Parasite Trypanosoma congolense. Genome Biol Evol 2018; 10:2458-2473. [PMID: 30165630 PMCID: PMC6152948 DOI: 10.1093/gbe/evy186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Abstract
African trypanosomiasis is a vector-borne disease of humans and livestock caused by African trypanosomes (Trypanosoma spp.). Survival in the vertebrate bloodstream depends on antigenic variation of Variant Surface Glycoproteins (VSGs) coating the parasite surface. In T. brucei, a model for antigenic variation, monoallelic VSG expression originates from dedicated VSG expression sites (VES). Trypanosoma brucei VES have a conserved structure consisting of a telomeric VSG locus downstream of unique, repeat sequences, and an independent promoter. Additional protein-coding sequences, known as “Expression Site Associated Genes (ESAGs)”, are also often present and are implicated in diverse, bloodstream-stage functions. Trypanosoma congolense is a related veterinary pathogen, also displaying VSG-mediated antigenic variation. A T. congolense VES has not been described, making it unclear if regulation of VSG expression is conserved between species. Here, we describe a conserved telomeric region associated with VSG loci from long-read DNA sequencing of two T. congolense strains, which consists of a distal repeat, conserved noncoding elements and other genes besides the VSG; although these are not orthologous to T. brucei ESAGs. Most conserved telomeric regions are associated with accessory minichromosomes, but the same structure may also be associated with megabase chromosomes. We propose that this region represents the T. congolense VES, and through comparison with T. brucei, we discuss the parallel evolution of antigenic switching mechanisms, and unique adaptation of the T. brucei VES for developmental regulation of bloodstream-stage genes. Hence, we provide a basis for understanding antigenic switching in T. congolense and the origins of the African trypanosome VES.
Collapse
Affiliation(s)
- Ali Hadi Abbas
- Centre for Genomic Research, Biosciences Building, Liverpool, United Kingdom.,Department of Pathology, Faculty of Veterinary Medicine, University of Kufa, Najaf, Iraq
| | - Sara Silva Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Simon D'Archivio
- School of Life Sciences, University of Nottingham, United Kingdom
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, United Kingdom
| | - Liam J Morrison
- Department of Infection and Immunity, The Roslin Institute, Easter Bush, Edinburgh, United Kingdom
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Alistair C Darby
- Centre for Genomic Research, Biosciences Building, Liverpool, United Kingdom
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| |
Collapse
|
5
|
Tiengwe C, Koeller CM, Bangs JD. Endoplasmic reticulum-associated degradation and disposal of misfolded GPI-anchored proteins in Trypanosoma brucei. Mol Biol Cell 2018; 29:2397-2409. [PMID: 30091673 PMCID: PMC6233060 DOI: 10.1091/mbc.e18-06-0380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Misfolded secretory proteins are retained by endoplasmic reticulum quality control (ERQC) and degraded in the proteasome by ER-associated degradation (ERAD). However, in yeast and mammals, misfolded glycosylphosphatidylinositol (GPI)-anchored proteins are preferentially degraded in the vacuole/lysosome. We investigate this process in the divergent eukaryotic pathogen Trypanosoma brucei using a misfolded GPI-anchored subunit (HA:E6) of the trypanosome transferrin receptor. HA:E6 is N-glycosylated and GPI-anchored and accumulates in the ER as aggregates. Treatment with MG132, a proteasome inhibitor, generates a smaller protected polypeptide (HA:E6*), consistent with turnover in the proteasome. HA:E6* partitions between membrane and cytosol fractions, and both pools are proteinase K-sensitive, indicating cytosolic disposition of membrane-associated HA:E6*. HA:E6* is de-N-glycosylated and has a full GPI-glycan structure from which dimyristoylglycerol has been removed, indicating that complete GPI removal is not a prerequisite for proteasomal degradation. However, HA:E6* is apparently not ubiquitin-modified. The trypanosome GPI anchor is a forward trafficking signal; thus the dynamic tension between ERQC and ER exit favors degradation by ERAD. These results differ markedly from the standard eukaryotic model systems and may indicate an evolutionary advantage related to pathogenesis.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - Carolina M Koeller
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - James D Bangs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| |
Collapse
|
6
|
Umaer K, Bush PJ, Bangs JD. Rab11 mediates selective recycling and endocytic trafficking in Trypanosoma brucei. Traffic 2018; 19:406-420. [PMID: 29582527 DOI: 10.1111/tra.12565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 01/21/2023]
Abstract
Trypanosoma brucei possesses a streamlined secretory system that guarantees efficient delivery to the cell surface of the critical glycosyl-phosphatidylinositol (GPI)-anchored virulence factors, variant surface glycoprotein (VSG) and transferrin receptor (TfR). Both are thought to be constitutively endocytosed and returned to the flagellar pocket via TbRab11+ recycling endosomes. We use conditional knockdown with established reporters to investigate the role of TbRab11 in specific endomembrane trafficking pathways in bloodstream trypanosomes. TbRab11 is essential. Ablation has a modest negative effect on general endocytosis, but does not affect turnover, steady state levels or surface localization of TfR. Nor are biosynthetic delivery to the cell surface and recycling of VSG affected. TbRab11 depletion also causes increased shedding of VSG into the media by formation of nanotubes and extracellular vesicles. In contrast to GPI-anchored cargo, TbRab11 depletion reduces recycling of the transmembrane invariant surface protein, ISG65, leading to increased lysosomal turnover. Thus, TbRab11 plays a critical role in recycling of transmembrane, but not GPI-anchored surface proteins. We proposed a two-step model for VSG turnover involving release of VSG-containing vesicles followed by GPI hydrolysis. Collectively, our results indicate a critical role of TbRab11 in the homeostatic maintenance of the secretory/endocytic system of bloodstream T. brucei.
Collapse
Affiliation(s)
- Khan Umaer
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York
| | - Peter J Bush
- South Campus Instrument Center, School of Dental Medicine, University at Buffalo (SUNY), Buffalo, New York
| | - James D Bangs
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York
| |
Collapse
|
7
|
Perry JA, Sinclair-Davis AN, McAllaster MR, de Graffenried CL. TbSmee1 regulates hook complex morphology and the rate of flagellar pocket uptake in Trypanosoma brucei. Mol Microbiol 2018; 107:344-362. [PMID: 29178204 PMCID: PMC5777864 DOI: 10.1111/mmi.13885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/26/2023]
Abstract
Trypanosoma brucei uses multiple mechanisms to evade detection by its insect and mammalian hosts. The flagellar pocket (FP) is the exclusive site of uptake from the environment in trypanosomes and shields receptors from exposure to the host. The FP neck is tightly associated with the flagellum via a series of cytoskeletal structures that include the hook complex (HC) and the centrin arm. These structures are implicated in facilitating macromolecule entry into the FP and nucleating the flagellum attachment zone (FAZ), which adheres the flagellum to the cell surface. TbSmee1 (Tb927.10.8820) is a component of the HC and a putative substrate of polo-like kinase (TbPLK), which is essential for centrin arm and FAZ duplication. We show that depletion of TbSmee1 in the insect-resident (procyclic) form of the parasite causes a 40% growth decrease and the appearance of multinucleated cells that result from defective cytokinesis. Cells lacking TbSmee1 contain HCs with aberrant morphology and show delayed uptake of both fluid-phase and membrane markers. TbPLK localization to the tip of the new FAZ is also blocked. These results argue that TbSmee1 is necessary for maintaining HC morphology, which is important for the parasite's ability to take up molecules from its environment.
Collapse
Affiliation(s)
- Jenna A. Perry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Amy N. Sinclair-Davis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Michael R. McAllaster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | | |
Collapse
|
8
|
Matovu E, Kitibwa A, Picado A, Biéler S, Bessell PR, Ndung'u JM. Serological tests for gambiense human African trypanosomiasis detect antibodies in cattle. Parasit Vectors 2017; 10:546. [PMID: 29100526 PMCID: PMC5670715 DOI: 10.1186/s13071-017-2487-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/19/2017] [Indexed: 11/23/2022] Open
Abstract
Background Serological tests for gambiense human African trypanosomiasis (gHAT) detect antibodies to antigens on the cell surface of bloodstream trypanosomes. As trypanosomes that cause animal African trypanosomiasis (AAT) also express related antigens, we have evaluated two rapid diagnostic tests (RDTs) on cattle in trypanosomiasis endemic and non-endemic regions, to determine whether gHAT serological tests could also be used to screen for AAT. Methods Two RDTs, 1G RDT, made with native antigens, and p2G RDT, made with recombinant antigens, were tested on 121 cattle in a trypanosomiasis-free region, and on 312 cattle from a rhodesiense HAT and AAT endemic region. A subset of samples from the endemic region were also tested with two immune trypanolysis (TL) tests. The sensitivity of the tests was estimated by evaluating the result of the RDT on samples that were positive by both microscopy and internal transcribed spacer (ITS) PCR, whilst specificity was the result of the RDT on samples that were negative by ITS PCR and microscopy, and others from the non-endemic region. Results The specificity of the p2G RDT on cattle from the non-endemic region was 97.5% (95% CI: 93.0–99.2%), compared to only 57.9% (95% CI: 48.9–66.3%) for 1G RDT. The specificities of 1G RDT, p2G RDT and TL on endemic control cattle were 14.6% (95% CI: 9.7–21.5%), 22.6% (95% CI: 16.4–30.3%) and 68.3% (95% CI: 59.6–75.9%), respectively. The sensitivities of the tests on trypanosome positive samples were 85.1% (95% CI: 79.1–89.7%), 89.1% (95% CI: 83.7–93.0%) and 59.3% (95% CI: 51.8–66.4%), respectively. Among the same samples, 51.7% were positive by both TL and the 1G RDT. Conclusions These serological tests detect cross-reacting antibodies in cattle. The p2G RDT based on recombinant antigens had a high specificity in a non-endemic region, while the 1G RDT had a lower specificity, suggesting cross-reactivity with other pathogens. Electronic supplementary material The online version of this article (10.1186/s13071-017-2487-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda.
| | - Annah Kitibwa
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Albert Picado
- Foundation for Innovative New Diagnostics (FIND), Campus Biotech, Chemin des Mines, Geneva, Switzerland
| | - Sylvain Biéler
- Foundation for Innovative New Diagnostics (FIND), Campus Biotech, Chemin des Mines, Geneva, Switzerland
| | | | - Joseph Mathu Ndung'u
- Foundation for Innovative New Diagnostics (FIND), Campus Biotech, Chemin des Mines, Geneva, Switzerland
| |
Collapse
|
9
|
Ridewood S, Ooi CP, Hall B, Trenaman A, Wand NV, Sioutas G, Scherwitzl I, Rudenko G. The role of genomic location and flanking 3'UTR in the generation of functional levels of variant surface glycoprotein in Trypanosoma brucei. Mol Microbiol 2017; 106:614-634. [PMID: 28906055 PMCID: PMC5698767 DOI: 10.1111/mmi.13838] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Trypanosoma brucei faces relentless immune attack in the mammalian bloodstream, where it is protected by an essential coat of Variant Surface Glycoprotein (VSG) comprising ∼10% total protein. The active VSG gene is in a Pol I‐transcribed telomeric expression site (ES). We investigated factors mediating these extremely high levels of VSG expression by inserting ectopic VSG117 into VSG221 expressing T. brucei. Mutational analysis of the ectopic VSG 3′UTR demonstrated the essentiality of a conserved 16‐mer for mRNA stability. Expressing ectopic VSG117 from different genomic locations showed that functional VSG levels could be produced from a gene 60 kb upstream of its normal telomeric location. High, but very heterogeneous levels of VSG117 were obtained from the Pol I‐transcribed rDNA. Blocking VSG synthesis normally triggers a precise precytokinesis cell‐cycle checkpoint. VSG117 expression from the rDNA was not adequate for functional complementation, and the stalled cells arrested prior to cytokinesis. However, VSG levels were not consistently low enough to trigger a characteristic ‘VSG synthesis block’ cell‐cycle checkpoint, as some cells reinitiated S phase. This demonstrates the essentiality of a Pol I‐transcribed ES, as well as conserved VSG 3′UTR 16‐mer sequences for the generation of functional levels of VSG expression in bloodstream form T. brucei.
Collapse
Affiliation(s)
- Sophie Ridewood
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Cher-Pheng Ooi
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Belinda Hall
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Anna Trenaman
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Nadina Vasileva Wand
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Georgios Sioutas
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Iris Scherwitzl
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Gloria Rudenko
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
10
|
Life Stage-Specific Cargo Receptors Facilitate Glycosylphosphatidylinositol-Anchored Surface Coat Protein Transport in Trypanosoma brucei. mSphere 2017; 2:mSphere00282-17. [PMID: 28713858 PMCID: PMC5506558 DOI: 10.1128/msphere.00282-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 11/20/2022] Open
Abstract
The critical virulence factor of bloodstream-form Trypanosoma brucei is the glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG). Endoplasmic reticulum (ER) exit of VSG is GPI dependent and relies on a discrete subset of COPII machinery (TbSec23.2/TbSec24.1). In other systems, p24 transmembrane adaptor proteins selectively recruit GPI-anchored cargo into nascent COPII vesicles. Trypanosomes have eight putative p24s (TbERP1 to TbERP8) that are constitutively expressed at the mRNA level. However, only four TbERP proteins (TbERP1, -2, -3, and -8) are detectable in bloodstream-form parasites. All four colocalize to ER exit sites, are required for efficient GPI-dependent ER exit, and are interdependent for steady-state stability. These results suggest shared function as an oligomeric ER GPI-cargo receptor. This cohort also mediates rapid forward trafficking of the soluble lysosomal hydrolase TbCatL. Procyclic insect-stage trypanosomes have a distinct surface protein, procyclin, bearing a different GPI anchor structure. A separate cohort of TbERP proteins (TbERP1, -2, -4, and -8) are expressed in procyclic parasites and also function in GPI-dependent ER exit. Collectively, these results suggest developmentally regulated TbERP cohorts, likely in obligate assemblies, that may recognize stage-specific GPI anchors to facilitate GPI-cargo trafficking throughout the parasite life cycle. IMPORTANCE African trypanosomes are protozoan parasites that cause African sleeping sickness. Critical to the success of the parasite is the variant surface glycoprotein (VSG), which covers the parasite cell surface and which is essential for evasion of the host immune system. VSG is membrane bound by a glycolipid (GPI) anchor that is attached in the earliest compartment of the secretory pathway, the endoplasmic reticulum (ER). We have previously shown that the anchor acts as a positive forward trafficking signal for ER exit, implying a cognate receptor mechanism for GPI recognition and loading in coated cargo vesicles leaving the ER. Here, we characterize a family of small transmembrane proteins that act at adaptors for this process. This work adds to our understanding of general GPI function in eukaryotic cells and specifically in the synthesis and transport of the critical virulence factor of pathogenic African trypanosomes.
Collapse
|
11
|
Tiengwe C, Bush PJ, Bangs JD. Controlling transferrin receptor trafficking with GPI-valence in bloodstream stage African trypanosomes. PLoS Pathog 2017; 13:e1006366. [PMID: 28459879 PMCID: PMC5426795 DOI: 10.1371/journal.ppat.1006366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 04/19/2017] [Indexed: 01/10/2023] Open
Abstract
Bloodstream-form African trypanosomes encode two structurally related glycosylphosphatidylinositol (GPI)-anchored proteins that are critical virulence factors, variant surface glycoprotein (VSG) for antigenic variation and transferrin receptor (TfR) for iron acquisition. Both are transcribed from the active telomeric expression site. VSG is a GPI2 homodimer; TfR is a GPI1 heterodimer of GPI-anchored ESAG6 and ESAG7. GPI-valence correlates with secretory progression and fate in bloodstream trypanosomes: VSG (GPI2) is a surface protein; truncated VSG (GPI0) is degraded in the lysosome; and native TfR (GPI1) localizes in the flagellar pocket. Tf:Fe starvation results in up-regulation and redistribution of TfR to the plasma membrane suggesting a saturable mechanism for flagellar pocket retention. However, because such surface TfR is non-functional for ligand binding we proposed that it represents GPI2 ESAG6 homodimers that are unable to bind transferrin-thereby mimicking native VSG. We now exploit a novel RNAi system for simultaneous lethal silencing of all native TfR subunits and exclusive in-situ expression of RNAi-resistant TfR variants with valences of GPI0-2. Our results conform to the valence model: GPI0 ESAG7 homodimers traffick to the lysosome and GPI2 ESAG6 homodimers to the cell surface. However, when expressed alone ESAG6 is up-regulated ~7-fold, leaving the issue of saturable retention in the flagellar pocket in question. Therefore, we created an RNAi-resistant GPI2 TfR heterodimer by fusing the C-terminal domain of ESAG6 to ESAG7. Co-expression with ESAG6 generates a functional heterodimeric GPI2 TfR that restores Tf uptake and cell viability, and localizes to the cell surface, without overexpression. These results resolve the longstanding issue of TfR trafficking under over-expression and confirm GPI valence as a critical determinant of intracellular sorting in trypanosomes.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, United States of America
| | - Peter J. Bush
- South Campus Instrument Center, School of Dental Medicine, University at Buffalo (SUNY), Buffalo, New York, United States of America
| | - James D. Bangs
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, United States of America
| |
Collapse
|
12
|
Gilden JK, Umaer K, Kruzel EK, Hecht O, Correa RO, Mansfield JM, Bangs JD. The role of the PI(3,5)P 2 kinase TbFab1 in endo/lysosomal trafficking in Trypanosoma brucei. Mol Biochem Parasitol 2017; 214:52-61. [PMID: 28356223 DOI: 10.1016/j.molbiopara.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/01/2022]
Abstract
Protein trafficking through endo/lysosomal compartments is critically important to the biology of the protozoan parasite Trypanosoma brucei, but the routes material may take to the lysosome, as well as the molecular factors regulating those routes, remain incompletely understood. Phosphoinositides are signaling phospholipids that regulate many trafficking events by recruiting specific effector proteins to discrete membrane subdomains. In this study, we investigate the role of one phosphoinositide, PI(3,5)P2 in T. brucei. We find a low steady state level of PI(3,5)P2 in bloodstream form parasites comparable to that of other organisms. RNAi knockdown of the putative PI(3)P-5 kinase TbFab1 decreases the PI(3,5)P2 pool leading to rapid cell death. TbFab1 and PI(3,5)P2 both localize strongly to late endo/lysosomes. While most trafficking functions were intact in TbFab1 deficient cells, including both endocytic and biosynthetic trafficking to the lysosome, lysosomal turnover of an endogenous ubiquitinylated membrane protein, ISG65, was completely blocked suggesting that TbFab1 plays a role in the ESCRT-mediated late endosomal/multivesicular body degradative pathways. Knockdown of a second component of PI(3,5)P2 metabolism, the PI(3,5)P2 phosphatase TbFig4, also resulted in delayed turnover of ISG65. Together, these results demonstrate an essential role for PI(3,5)P2 in the turnover of ubiquitinylated membrane proteins and in trypanosome endomembrane biology.
Collapse
Affiliation(s)
- Julia K Gilden
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Khan Umaer
- Department of Microbiology Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, USA.
| | - Emilia K Kruzel
- Department of Microbiology Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, USA.
| | - Oliver Hecht
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Renan O Correa
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - John M Mansfield
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - James D Bangs
- Department of Microbiology Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, USA.
| |
Collapse
|
13
|
Rico E, Ivens A, Glover L, Horn D, Matthews KR. Genome-wide RNAi selection identifies a regulator of transmission stage-enriched gene families and cell-type differentiation in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006279. [PMID: 28334017 PMCID: PMC5380359 DOI: 10.1371/journal.ppat.1006279] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/04/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023] Open
Abstract
Trypanosoma brucei, causing African sleeping-sickness, exploits quorum-sensing (QS) to generate the ‘stumpy forms’ necessary for the parasite’s transmission to tsetse-flies. These quiescent cells are generated by differentiation in the bloodstream from proliferative slender forms. Using genome-wide RNAi selection we screened for repressors of transmission stage-enriched mRNAs in slender forms, using the stumpy-elevated ESAG9 transcript as a model. This identified REG9.1, whose RNAi-silencing alleviated ESAG9 repression in slender forms and tsetse-midgut procyclic forms. Interestingly, trypanosome surface protein Family 5 and Family 7 mRNAs were also elevated, which, like ESAG9, are T. brucei specific and stumpy-enriched. We suggest these contribute to the distinct transmission biology and vector tropism of T. brucei from other African trypanosome species. As well as surface family regulation, REG9.1-depletion generated QS-independent development to stumpy forms in vivo, whereas REG9.1 overexpression in bloodstream forms potentiated spontaneous differentiation to procyclic forms in the absence of an external signal. Combined, this identifies REG9.1 as a regulator of developmental cell fate, controlling the expression of Trypanosoma brucei-specific molecules elevated during transmission. African trypanosomes cause important disease of humans and livestock in sub Saharan Africa and are transmitted by tsetse flies. In preparation for transmission, Trypanosoma brucei uses quorum sensing to generate ‘stumpy forms’ that are arrested and express a distinct subset of genes to the ‘slender forms’ that proliferate to establish the parasitaemia in the bloodstream. This necessitates that stumpy-enriched transcripts are repressed in slender forms, although the molecular control of this is unknown. Here, we have developed a genome-wide selectional strategy to isolate repressors of stumpy-enriched genes, and successfully identified a novel regulatory molecule, termed REG9.1. Silencing of REG9.1 alleviates the repression of the previously characterised stumpy-enriched ESAG9 gene family, and also two novel predicted surface protein families that are specific to Trypansoma brucei but absent from other African trypanosome species. REG9.1 silencing also drives density-independent differentiation to stumpy forms, whereas its ectopic expression in bloodstream forms potentiates differentiation to tsetse midgut procyclic forms in the absence of an external signal. REG9.1 is therefore identified as a novel developmental regulator whose action may contribute to the species-specific transmission biology of Trypanosoma brucei, which differs from that of either Trypanosoma congolense or Trypanosoma vivax.
Collapse
Affiliation(s)
- Eva Rico
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Lucy Glover
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Keith R. Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Jackson AP. Gene family phylogeny and the evolution of parasite cell surfaces. Mol Biochem Parasitol 2016; 209:64-75. [DOI: 10.1016/j.molbiopara.2016.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 11/30/2022]
|
15
|
Tiengwe C, Muratore KA, Bangs JD. Surface proteins, ERAD and antigenic variation in Trypanosoma brucei. Cell Microbiol 2016; 18:1673-1688. [PMID: 27110662 DOI: 10.1111/cmi.12605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/20/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
Variant surface glycoprotein (VSG) is central to antigenic variation in African trypanosomes. Although much prior work documents that VSG is efficiently synthesized and exported to the cell surface, it was recently claimed that 2-3 fold more is synthesized than required, the excess being eliminated by ER-Associated Degradation (ERAD) (Field et al., ). We now reinvestigate VSG turnover and find no evidence for rapid degradation, consistent with a model whereby VSG synthesis is precisely regulated to match requirements for a functional surface coat on each daughter cell. However, using a mutated version of the ESAG7 subunit of the transferrin receptor (E7:Ty) we confirm functional ERAD in trypanosomes. E7:Ty fails to assemble into transferrin receptors and accumulates in the ER, consistent with retention of misfolded protein, and its turnover is selectively rescued by the proteasomal inhibitor MG132. We also show that ER accumulation of E7:Ty does not induce an unfolded protein response. These data, along with the presence of ERAD orthologues in the Trypanosoma brucei genome, confirm ERAD in trypanosomes. We discuss scenarios in which ERAD could be critical to bloodstream parasites, and how these may have contributed to the evolution of antigenic variation in trypanosomes.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Katherine A Muratore
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis-St. Paul, MN, 55455, USA
| | - James D Bangs
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA.
| |
Collapse
|
16
|
Aksoy E, Vigneron A, Bing X, Zhao X, O'Neill M, Wu YN, Bangs JD, Weiss BL, Aksoy S. Mammalian African trypanosome VSG coat enhances tsetse's vector competence. Proc Natl Acad Sci U S A 2016; 113:6961-6. [PMID: 27185908 PMCID: PMC4922192 DOI: 10.1073/pnas.1600304113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tsetse flies are biological vectors of African trypanosomes, the protozoan parasites responsible for causing human and animal trypanosomiases across sub-Saharan Africa. Currently, no vaccines are available for disease prevention due to antigenic variation of the Variant Surface Glycoproteins (VSG) that coat parasites while they reside within mammalian hosts. As a result, interference with parasite development in the tsetse vector is being explored to reduce disease transmission. A major bottleneck to infection occurs as parasites attempt to colonize tsetse's midgut. One critical factor influencing this bottleneck is the fly's peritrophic matrix (PM), a semipermeable, chitinous barrier that lines the midgut. The mechanisms that enable trypanosomes to cross this barrier are currently unknown. Here, we determined that as parasites enter the tsetse's gut, VSG molecules released from trypanosomes are internalized by cells of the cardia-the tissue responsible for producing the PM. VSG internalization results in decreased expression of a tsetse microRNA (mir-275) and interferes with the Wnt-signaling pathway and the Iroquois/IRX transcription factor family. This interference reduces the function of the PM barrier and promotes parasite colonization of the gut early in the infection process. Manipulation of the insect midgut homeostasis by the mammalian parasite coat proteins is a novel function and indicates that VSG serves a dual role in trypanosome biology-that of facilitating transmission through its mammalian host and insect vector. We detail critical steps in the course of trypanosome infection establishment that can serve as novel targets to reduce the tsetse's vector competence and disease transmission.
Collapse
Affiliation(s)
- Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - XiaoLi Bing
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - Xin Zhao
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - Michelle O'Neill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - Yi-Neng Wu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - James D Bangs
- Department of Microbiology and Immunology, University at Buffalo (SUNY), Buffalo, NY 14214
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520;
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520;
| |
Collapse
|
17
|
Matthews KR, McCulloch R, Morrison LJ. The within-host dynamics of African trypanosome infections. Philos Trans R Soc Lond B Biol Sci 2016; 370. [PMID: 26150654 PMCID: PMC4528486 DOI: 10.1098/rstb.2014.0288] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
African trypanosomes are single-celled protozoan parasites that are capable of long-term survival while living extracellularly in the bloodstream and tissues of mammalian hosts. Prolonged infections are possible because trypanosomes undergo antigenic variation-the expression of a large repertoire of antigenically distinct surface coats, which allows the parasite population to evade antibody-mediated elimination. The mechanisms by which antigen genes become activated influence their order of expression, most likely by influencing the frequency of productive antigen switching, which in turn is likely to contribute to infection chronicity. Superimposed upon antigen switching as a contributor to trypanosome infection dynamics is the density-dependent production of cell-cycle arrested parasite transmission stages, which limit the infection while ensuring parasite spread to new hosts via the bite of blood-feeding tsetse flies. Neither antigen switching nor developmental progression to transmission stages is driven by the host. However, the host can contribute to the infection dynamic through the selection of distinct antigen types, the influence of genetic susceptibility or trypanotolerance and the potential influence of host-dependent effects on parasite virulence, development of transmission stages and pathogenicity. In a zoonotic infection cycle where trypanosomes circulate within a range of host animal populations, and in some cases humans, there is considerable scope for a complex interplay between parasite immune evasion, transmission potential and host factors to govern the profile and outcome of infection.
Collapse
Affiliation(s)
- Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Richard McCulloch
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
18
|
DNA Recombination Strategies During Antigenic Variation in the African Trypanosome. Microbiol Spectr 2016; 3:MDNA3-0016-2014. [PMID: 26104717 DOI: 10.1128/microbiolspec.mdna3-0016-2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Survival of the African trypanosome in its mammalian hosts has led to the evolution of antigenic variation, a process for evasion of adaptive immunity that has independently evolved in many other viral, bacterial and eukaryotic pathogens. The essential features of trypanosome antigenic variation have been understood for many years and comprise a dense, protective Variant Surface Glycoprotein (VSG) coat, which can be changed by recombination-based and transcription-based processes that focus on telomeric VSG gene transcription sites. However, it is only recently that the scale of this process has been truly appreciated. Genome sequencing of Trypanosoma brucei has revealed a massive archive of >1000 VSG genes, the huge majority of which are functionally impaired but are used to generate far greater numbers of VSG coats through segmental gene conversion. This chapter will discuss the implications of such VSG diversity for immune evasion by antigenic variation, and will consider how this expressed diversity can arise, drawing on a growing body of work that has begun to examine the proteins and sequences through which VSG switching is catalyzed. Most studies of trypanosome antigenic variation have focused on T. brucei, the causative agent of human sleeping sickness. Other work has begun to look at antigenic variation in animal-infective trypanosomes, and we will compare the findings that are emerging, as well as consider how antigenic variation relates to the dynamics of host-trypanosome interaction.
Collapse
|
19
|
Abstract
African trypanosomes have been around for more than 100 million years, and have adapted to survival in a very wide host range. While various indigenous African mammalian host species display a tolerant phenotype towards this parasitic infection, and hence serve as perpetual reservoirs, many commercially important livestock species are highly disease susceptible. When considering humans, they too display a highly sensitive disease progression phenotype for infections with Trypanosoma brucei rhodesiense or Trypanosoma brucei gambiense, while being intrinsically resistant to infections with other trypanosome species. As extracellular trypanosomes proliferate and live freely in the bloodstream and lymphatics, they are constantly exposed to the immune system. Due to co-evolution, this environment however no longer poses a hostile threat, but has become the niche environment where trypanosomes thrive and obligatory await transmission through the bites of tsetse flies or other haematophagic vectors, ideally without causing severe side infection-associated pathology to their host. Hence, African trypanosomes have acquired various mechanisms to manipulate and control the host immune response, evading effective elimination. Despite the extensive research into trypanosomosis over the past 40 years, many aspects of the anti-parasite immune response remain to be solved and no vaccine is currently available. Here we review the recent work on the different escape mechanisms employed by African Trypanosomes to ensure infection chronicity and transmission potential.
Collapse
|
20
|
Arias JL, Unciti-Broceta JD, Maceira J, Del Castillo T, Hernández-Quero J, Magez S, Soriano M, García-Salcedo JA. Nanobody conjugated PLGA nanoparticles for active targeting of African Trypanosomiasis. J Control Release 2014; 197:190-8. [PMID: 25445702 DOI: 10.1016/j.jconrel.2014.11.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/25/2022]
Abstract
Targeted delivery of therapeutics is an alternative approach for the selective treatment of infectious diseases. The surface of African trypanosomes, the causative agents of African trypanosomiasis, is covered by a surface coat consisting of a single variant surface glycoprotein, termed VSG. This coat is recycled by endocytosis at a very high speed, making the trypanosome surface an excellent target for the delivery of trypanocidal drugs. Here, we report the design of a drug nanocarrier based on poly ethylen glycol (PEG) covalently attached (PEGylated) to poly(D,L-lactide-co-glycolide acid) (PLGA) to generate PEGylated PLGA nanoparticles. This nanocarrier was coupled to a single domain heavy chain antibody fragment (nanobody) that specifically recognizes the surface of the protozoan pathogen Trypanosoma brucei. Nanoparticles were loaded with pentamidine, the first-line drug for T. b. gambiense acute infection. An in vitro effectiveness assay showed a 7-fold decrease in the half-inhibitory concentration (IC50) of the formulation relative to free drug. Furthermore, in vivo therapy using a murine model of African trypanosomiasis demonstrated that the formulation cured all infected mice at a 10-fold lower dose than the minimal full curative dose of free pentamidine and 60% of mice at a 100-fold lower dose. This nanocarrier has been designed with components approved for use in humans and loaded with a drug that is currently in use to treat the disease. Moreover, this flexible nanobody-based system can be adapted to load any compound, opening a range of new potential therapies with application to other diseases.
Collapse
Affiliation(s)
- José L Arias
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Juan D Unciti-Broceta
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain; Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Armilla, Spain; GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| | - José Maceira
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain; Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Armilla, Spain; GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| | - Teresa Del Castillo
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain; Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Armilla, Spain; GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| | - José Hernández-Quero
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Stefan Magez
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Department of Structural Biology, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | - Miguel Soriano
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain; Departamento de Agronomía, Universidad de Almería, Almería, Spain
| | - José A García-Salcedo
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain; Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Armilla, Spain; GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain.
| |
Collapse
|
21
|
Kelly S, Ivens A, Manna PT, Gibson W, Field MC. A draft genome for the African crocodilian trypanosome Trypanosoma grayi. Sci Data 2014; 1:140024. [PMID: 25977781 PMCID: PMC4322581 DOI: 10.1038/sdata.2014.24] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/09/2014] [Indexed: 02/01/2023] Open
Abstract
The availability of genome sequence data has greatly enhanced our understanding of the adaptations of trypanosomatid parasites to their respective host environments. However, these studies remain somewhat restricted by modest taxon sampling, generally due to focus on the most important pathogens of humans. To address this problem, at least in part, we are releasing a draft genome sequence for the African crocodilian trypanosome, Trypanosoma grayi ANR4. This dataset comprises genomic DNA sequences assembled de novo into contigs, encompassing over 10,000 annotated putative open reading frames and predicted protein products. Using phylogenomic approaches we demonstrate that T. grayi is more closely related to Trypanosoma cruzi than it is to the African trypanosomes T. brucei, T. congolense and T. vivax, despite the fact T. grayi and the African trypanosomes are each transmitted by tsetse flies. The data are deposited in publicly accessible repositories where we hope they will prove useful to the community in evolutionary studies of the trypanosomatids.
Collapse
Affiliation(s)
- Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Paul T. Manna
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
22
|
Achcar F, Kerkhoven EJ, Barrett MP. Trypanosoma brucei: meet the system. Curr Opin Microbiol 2014; 20:162-9. [DOI: 10.1016/j.mib.2014.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 12/30/2022]
|
23
|
Abstract
A decade of genome sequencing has transformed our understanding of how
trypanosomatid parasites have evolved and provided fresh impetus to explaining
the origins of parasitism in the Kinetoplastida. In this review, I will consider
the many ways in which genome sequences have influenced our view of genomic
reduction in trypanosomatids; how species-specific genes, and the genomic
domains they occupy, have illuminated the innovations in trypanosomatid genomes;
and how comparative genomics has exposed the molecular mechanisms responsible
for innovation and adaptation to a parasitic lifestyle.
Collapse
|
24
|
Rogé S, Van Nieuwenhove L, Meul M, Heykers A, Brouwer de Koning A, Bebronne N, Guisez Y, Büscher P. Recombinant antigens expressed in Pichia pastoris for the diagnosis of sleeping sickness caused by Trypanosoma brucei gambiense. PLoS Negl Trop Dis 2014; 8:e3006. [PMID: 25032684 PMCID: PMC4102443 DOI: 10.1371/journal.pntd.0003006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Screening tests for gambiense sleeping sickness, such as the CATT/T. b. gambiense and a recently developed lateral flow tests, are hitherto based on native variant surface glycoproteins (VSGs), namely LiTat 1.3 and LiTat 1.5, purified from highly virulent trypanosome strains grown in rodents. METHODOLOGY/PRINCIPAL FINDINGS We have expressed SUMO (small ubiquitin-like modifier) fusion proteins of the immunogenic N-terminal part of these antigens in the yeast Pichia pastoris. The secreted recombinant proteins were affinity purified with yields up to 10 mg per liter cell culture. CONCLUSIONS/SIGNIFICANCE The diagnostic potential of each separate antigen and a mixture of both antigens was confirmed in ELISA on sera from 88 HAT patients and 74 endemic non-HAT controls. Replacement of native antigens in the screening tests for sleeping sickness by recombinant proteins will eliminate both the infection risk for the laboratory staff during antigen production and the need for laboratory animals. Upscaling production of recombinant antigens, e.g. in biofermentors, is straightforward thus leading to improved standardisation of antigen production and reduced production costs, which on their turn will increase the availability and affordability of the diagnostic tests needed for the elimination of gambiense HAT.
Collapse
Affiliation(s)
- Stijn Rogé
- Department of Biomedical Sciences, Unit of Parasite Diagnostics, Institute of Tropical Medicine, Antwerp, Belgium
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Liesbeth Van Nieuwenhove
- Department of Biomedical Sciences, Unit of Parasite Diagnostics, Institute of Tropical Medicine, Antwerp, Belgium
| | - Magali Meul
- Department of Biomedical Sciences, Unit of Parasite Diagnostics, Institute of Tropical Medicine, Antwerp, Belgium
| | - Annick Heykers
- Department of Biomedical Sciences, Unit of Parasite Diagnostics, Institute of Tropical Medicine, Antwerp, Belgium
| | - Annette Brouwer de Koning
- Department of Biomedical Sciences, Unit of Parasite Diagnostics, Institute of Tropical Medicine, Antwerp, Belgium
| | - Nicolas Bebronne
- Department of Biomedical Sciences, Unit of Parasite Diagnostics, Institute of Tropical Medicine, Antwerp, Belgium
| | - Yves Guisez
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Philippe Büscher
- Department of Biomedical Sciences, Unit of Parasite Diagnostics, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
25
|
MacLean L, Myburgh E, Rodgers J, Price HP. Imaging African trypanosomes. Parasite Immunol 2014; 35:283-94. [PMID: 23790101 PMCID: PMC3992894 DOI: 10.1111/pim.12046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/18/2013] [Indexed: 12/18/2022]
Abstract
Trypanosoma brucei are extracellular kinetoplastid parasites transmitted by the blood-sucking tsetse fly. They are responsible for the fatal disease human African trypanosomiasis (HAT), also known as sleeping sickness. In late-stage infection, trypanosomes cross the blood–brain barrier (BBB) and invade the central nervous system (CNS) invariably leading to coma and death if untreated. There is no available vaccine and current late-stage HAT chemotherapy consists of either melarsoprol, which is highly toxic causing up to 8% of deaths, or nifurtimox–eflornithine combination therapy (NECT), which is costly and difficult to administer. There is therefore an urgent need to identify new late-stage HAT drug candidates. Here, we review how current imaging tools, ranging from fluorescent confocal microscopy of live immobilized cells in culture to whole-animal imaging, are providing insight into T. brucei biology, parasite-host interplay, trypanosome CNS invasion and disease progression. We also consider how imaging tools can be used for candidate drug screening purposes that could lead to new chemotherapies.
Collapse
Affiliation(s)
- L MacLean
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, Heslington, York, UK.
| | | | | | | |
Collapse
|
26
|
Walzer PD. The ecology of pneumocystis: perspectives, personal recollections, and future research opportunities. J Eukaryot Microbiol 2013; 60:634-45. [PMID: 24001365 DOI: 10.1111/jeu.12072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
Abstract
I am honored to receive the second Lifetime Achievement Award by International Workshops on Opportunistic Protists and to give this lecture. My research involves Pneumocystis, an opportunistic pulmonary fungus that is a major cause of pneumonia ("PcP") in the immunocompromised host. I decided to focus on Pneumocystis ecology here because it has not attracted much interest. Pneumocystis infection is acquired by inhalation, and the cyst stage appears to be the infective form. Several fungal lung infections, such as coccidiomycosis, are not communicable, but occur by inhaling < 5 μm spores from environmental sources (buildings, parks), and can be affected by environmental factors. PcP risk factors include environmental constituents (temperature, humidity, SO2 , CO) and outdoor activities (camping). Clusters of PcP have occurred, but no environmental source has been found. Pneumocystis is communicable and outbreaks of PcP, especially in renal transplant patients, are an ongoing problem. Recent evidence suggests that most viable Pneumocystis organisms detected in the air are confined to a patient's room. Further efforts are needed to define the risk of Pneumocystis transmission in health care facilities; to develop more robust preventive measures; and to characterize the effects of climatological and air pollutant factors on Pneumocystis transmission in animal models similar to those used for respiratory viruses.
Collapse
Affiliation(s)
- Peter D Walzer
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267-0560; Research Service, Veterans Affairs Medical Center, Cincinnati, Ohio, 45220
| |
Collapse
|
27
|
Perrin C, Lepesant JMJ, Roger E, Duval D, Fneich S, Thuillier V, Alliene JF, Mitta G, Grunau C, Cosseau C. Schistosoma mansoni mucin gene (SmPoMuc) expression: epigenetic control to shape adaptation to a new host. PLoS Pathog 2013; 9:e1003571. [PMID: 24009504 PMCID: PMC3757033 DOI: 10.1371/journal.ppat.1003571] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/27/2013] [Indexed: 11/28/2022] Open
Abstract
The digenetic trematode Schistosoma mansoni is a human parasite that uses the mollusc Biomphalaria glabrata as intermediate host. Specific S. mansoni strains can infect efficiently only certain B. glabrata strains (compatible strain) while others are incompatible. Strain-specific differences in transcription of a conserved family of polymorphic mucins (SmPoMucs) in S. mansoni are the principle determinants for this compatibility. In the present study, we investigated the bases of the control of SmPoMuc expression that evolved to evade B. glabrata diversified antigen recognition molecules. We compared the DNA sequences and chromatin structure of SmPoMuc promoters of two S. mansoni strains that are either compatible (C) or incompatible (IC) with a reference snail host. We reveal that although sequence differences are observed between active promoter regions of SmPoMuc genes, the sequences of the promoters are not diverse and are conserved between IC and C strains, suggesting that genetics alone cannot explain the evolution of compatibility polymorphism. In contrast, promoters carry epigenetic marks that are significantly different between the C and IC strains. Moreover, we show that modifications of the structure of the chromatin of the parasite modify transcription of SmPoMuc in the IC strain compared to the C strain and correlate with the presence of additional combinations of SmPoMuc transcripts only observed in the IC phenotype. Our results indicate that transcription polymorphism of a gene family that is responsible for an important adaptive trait of the parasite is epigenetically encoded. These strain-specific epigenetic marks are heritable, but can change while the underlying genetic information remains stable. This suggests that epigenetic changes may be important for the early steps in the adaptation of pathogens to new hosts, and might be an initial step in adaptive evolution in general. Schistosoma mansoni is a parasitic worm and agent of a disease that causes a considerable economic burden in African and South American countries. The propagation of the parasite requires passage through a freshwater snail of Biomphalaria genus. In the field, actually very few snails are infected. This is due to the fact that specific strains of the parasite can infect only specific strains of the snail. Comparative studies have shown that this so-called compatibility is based on the expression of a family of genes that are called SmPoMucs. We have shown previously that all parasites strains possess the repertoire of all SmPoMuc genes but every strain and even every individual parasite expresses only a subset. These differences could be due to DNA sequence differences in the regions that control gene expression, but here we show that these regions are nearly identical. Instead, the chromatin structure shows strain-specific characteristics. This means that the parasite can adapt to different snail strains simply by changing its chromatin structure and not necessarily the DNA sequence. If this holds true for other parasites, then we have to rethink the way parasite evolution is currently imagined but this also provides a new potential entry point to control the spread of diseases.
Collapse
Affiliation(s)
- Cecile Perrin
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Julie M. J. Lepesant
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Emmanuel Roger
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS UMR 8204, Institut Pasteur de Lille, University Lille Nord de France, Lille, France
| | - David Duval
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Sara Fneich
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Virginie Thuillier
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Jean-Francois Alliene
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Guillaume Mitta
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Christoph Grunau
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Celine Cosseau
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- * E-mail:
| |
Collapse
|
28
|
Silverman JS, Muratore KA, Bangs JD. Characterization of the late endosomal ESCRT machinery in Trypanosoma brucei. Traffic 2013; 14:1078-90. [PMID: 23905922 DOI: 10.1111/tra.12094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 12/31/2022]
Abstract
The multivesicular body (MVB) is a specialized Rab7+ late endosome (LE) containing multiple intralumenal vesicles that function in targeting ubiquitinylated cell surface proteins to the lysosome for degradation. African trypanosomes lack a morphologically well-defined MVB, but contain orthologs of the ESCRT (Endosomal Sorting Complex Required for Transport) machinery that mediates MVB formation. We investigate the role of TbVps23, an early ESCRT component, and TbVps4, the terminal ESCRT ATPase, in lysosomal trafficking in bloodstream form trypanosomes. Both localize to the TbRab7+ LE and RNAi silencing of each rapidly blocks growth. TbVps4 silencing results in approximately threefold accumulation of TbVps23 at the LE, consistent with blocking terminal ESCRT disassembly. Trafficking of endocytic and biosynthetic cargo, but not default lysosomal reporters, is also negatively affected. Others reported that TbVps23 mediates ubiquitin-dependent lysosomal degradation of invariant surface glycoproteins (ISG65) (Leung et al., Traffic 2008;9:1698-1716). In contrast, we find that TbVps23 ablation does not affect ISG65 turnover, while TbVps4 silencing markedly enhances lysosomal degradation. We propose several models to accommodate these results, including that the ESCRT machinery actually retrieves ISG65 from the LE to earlier endocytic compartments, and in its absence ISG65 traffics more efficiently to the lysosome. Overall, these results confirm that the ESCRT machinery is essential in Trypanosoma brucei and plays important and novel role(s) in LE function in trypanosomes.
Collapse
Affiliation(s)
- Jason S Silverman
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), 138 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA; Current address: Monsanto Company, Mailstop LS2A, 800 N Lindbergh Blvd, Saint Louis, MO 63167, USA
| | | | | |
Collapse
|
29
|
Poon SK, Peacock L, Gibson W, Gull K, Kelly S. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biol 2013; 2:110037. [PMID: 22645659 PMCID: PMC3352093 DOI: 10.1098/rsob.110037] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/24/2012] [Indexed: 11/24/2022] Open
Abstract
Here, we present a simple modular extendable vector system for introducing the T7
RNA polymerase and tetracycline repressor genes into Trypanosoma
brucei. This novel system exploits developments in our
understanding of gene expression and genome organization to produce a
streamlined plasmid optimized for high levels of expression of the introduced
transgenes. We demonstrate the utility of this novel system in bloodstream and
procyclic forms of Trypanosoma brucei, including the genome
strain TREU927/4. We validate these cell lines using a variety of inducible
experiments that recapture previously published lethal and non-lethal
phenotypes. We further demonstrate the utility of the single marker (SmOx)
TREU927/4 cell line for in vivo experiments in the tsetse fly
and provide a set of plasmids that enable both whole-fly and salivary
gland-specific inducible expression of transgenes.
Collapse
Affiliation(s)
- S K Poon
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
30
|
Abstract
Faithful transmission of genetic material is essential for the survival of all organisms. Eukaryotic chromosome segregation is driven by the kinetochore that assembles onto centromeric DNA to capture spindle microtubules and govern the movement of chromosomes. Its molecular mechanism has been actively studied in conventional model eukaryotes, such as yeasts, worms, flies and human. However, these organisms are closely related in the evolutionary time scale and it therefore remains unclear whether all eukaryotes use a similar mechanism. The evolutionary origins of the segregation apparatus also remain enigmatic. To gain insights into these questions, it is critical to perform comparative studies. Here, we review our current understanding of the mitotic mechanism in Trypanosoma brucei, an experimentally tractable kinetoplastid parasite that branched early in eukaryotic history. No canonical kinetochore component has been identified, and the design principle of kinetochores might be fundamentally different in kinetoplastids. Furthermore, these organisms do not appear to possess a functional spindle checkpoint that monitors kinetochore-microtubule attachments. With these unique features and the long evolutionary distance from other eukaryotes, understanding the mechanism of chromosome segregation in T. brucei should reveal fundamental requirements for the eukaryotic segregation machinery, and may also provide hints about the origin and evolution of the segregation apparatus.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
31
|
Cestari I, Evans-Osses I, Schlapbach LJ, de Messias-Reason I, Ramirez MI. Mechanisms of complement lectin pathway activation and resistance by trypanosomatid parasites. Mol Immunol 2013; 53:328-34. [PMID: 23063472 DOI: 10.1016/j.molimm.2012.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/15/2012] [Indexed: 11/28/2022]
Abstract
Studies in the past decade have demonstrated a crucial role for the complement lectin pathway in host defence against protozoan microbes. Recognition of pathogen surface molecules by mannan-binding lectin and ficolins revealed new mechanisms of innate immune defence and a diversity of parasite strategies of immune evasion. In the present review, we will discuss the current knowledge of: (1) the molecular mechanism of lectin pathway activation by trypanosomes; (2) the mechanisms of complement evasion by trypanosomes; and (3) host genetic deficiencies of complement lectin pathway factors that contribute to infection susceptibility and disease progression. This review will focus on trypanosomatids, the parasites that cause Chagas disease, leishmaniasis and sleeping sickness (African trypanosomiasis).
Collapse
Affiliation(s)
- Igor Cestari
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
32
|
Monk SL, Simmonds P, Matthews KR. A short bifunctional element operates to positively or negatively regulate ESAG9 expression in different developmental forms of Trypanosoma brucei. J Cell Sci 2013; 126:2294-304. [PMID: 23524999 DOI: 10.1242/jcs.126011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In their mammalian host trypanosomes generate 'stumpy' forms from proliferative 'slender' forms as an adaptation for transmission to their tsetse fly vector. This transition is characterised by the repression of many genes while quiescent stumpy forms accumulate during each wave of parasitaemia. However, a subset of genes are upregulated either as an adaptation for transmission or to sustain infection chronicity. Among this group are ESAG9 proteins, whose genes were originally identified as a component of some telomeric variant surface glycoprotein gene expression sites, although many members of this diverse family are also transcribed elsewhere in the genome. ESAG9 genes are among the most highly regulated genes in transmissible stumpy forms, encoding a group of secreted proteins of cryptic function. To understand their developmental silencing in slender forms and activation in stumpy forms, the post-transcriptional control signals for a well conserved ESAG9 gene have been mapped. This identified a precise RNA sequence element of 34 nucleotides that contributes to gene expression silencing in slender forms but also acts positively, activating gene expression in stumpy forms. We predict that this bifunctional RNA sequence element is targeted by competing negative and positive regulatory factors in distinct developmental forms of the parasite. Analysis of the 3'UTR regulatory regions flanking the highly diverse ESAG9 family reveals that the linear regulatory sequence is not highly conserved, suggesting that RNA structure is important for interactions with regulatory proteins.
Collapse
Affiliation(s)
- Stephanie L Monk
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK
| | | | | |
Collapse
|
33
|
Liu L, Xu YX, Caradonna KL, Kruzel EK, Burleigh BA, Bangs JD, Hirschberg CB. Inhibition of nucleotide sugar transport in Trypanosoma brucei alters surface glycosylation. J Biol Chem 2013; 288:10599-615. [PMID: 23443657 DOI: 10.1074/jbc.m113.453597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide sugar transporters (NSTs) are indispensible for the biosynthesis of glycoproteins by providing the nucleotide sugars needed for glycosylation in the lumen of the Golgi apparatus. Mutations in NST genes cause human and cattle diseases and impaired cell walls of yeast and fungi. Information regarding their function in the protozoan parasite, Trypanosoma brucei, a causative agent of African trypanosomiasis, is unknown. Here, we characterized the substrate specificities of four NSTs, TbNST1-4, which are expressed in both the insect procyclic form (PCF) and mammalian bloodstream form (BSF) stages. TbNST1/2 transports UDP-Gal/UDP-GlcNAc, TbNST3 transports GDP-Man, and TbNST4 transports UDP-GlcNAc, UDP-GalNAc, and GDP-Man. TbNST4 is the first NST shown to transport both pyrimidine and purine nucleotide sugars and is demonstrated here to be localized at the Golgi apparatus. RNAi-mediated silencing of TbNST4 in the procyclic form caused underglycosylated surface glycoprotein EP-procyclin. Similarly, defective glycosylation of the variant surface glycoprotein (VSG221) as well as the lysosomal membrane protein p67 was observed in Δtbnst4 BSF T. brucei. Relative infectivity analysis showed that defects in glycosylation of the surface coat resulting from tbnst4 deletion were insufficient to impact the ability of this parasite to infect mice. Notably, the fact that inactivation of a single NST gene results in measurable defects in surface glycoproteins in different life cycle stages of the parasite highlights the essential role of NST(s) in glycosylation of T. brucei. Thus, results presented in this study provide a framework for conducting functional analyses of other NSTs identified in T. brucei.
Collapse
Affiliation(s)
- Li Liu
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
The emerging role of complement lectin pathway in trypanosomatids: molecular bases in activation, genetic deficiencies, susceptibility to infection, and complement system-based therapeutics. ScientificWorldJournal 2013; 2013:675898. [PMID: 23533355 PMCID: PMC3595680 DOI: 10.1155/2013/675898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/01/2013] [Indexed: 12/21/2022] Open
Abstract
The innate immune system is evolutionary and ancient and is the pivotal line of the host defense system to protect against invading pathogens and abnormal self-derived components. Cellular and molecular components are involved in recognition and effector mechanisms for a successful innate immune response. The complement lectin pathway (CLP) was discovered in 1990. These new components at the complement world are very efficient. Mannan-binding lectin (MBL) and ficolin not only recognize many molecular patterns of pathogens rapidly to activate complement but also display several strategies to evade innate immunity. Many studies have shown a relation between the deficit of complement factors and susceptibility to infection. The recently discovered CLP was shown to be important in host defense against protozoan microbes. Although the recognition of pathogen-associated molecular patterns by MBL and Ficolins reveal efficient complement activations, an increase in deficiency of complement factors and diversity of parasite strategies of immune evasion demonstrate the unsuccessful effort to control the infection. In the present paper, we will discuss basic aspects of complement activation, the structure of the lectin pathway components, genetic deficiency of complement factors, and new therapeutic opportunities to target the complement system to control infection.
Collapse
|
35
|
Abstract
Sleeping sickness describes two diseases, both fatal if left untreated: (i) Gambian sleeping sickness caused by Trypanosoma brucei gambiense, a chronic disease with average infection lasting around 3 years, and (ii) Rhodesian sleeping sickness caused by T. b. rhodesiense, an acute disease with death occurring within weeks of infection. Control of Gambian sleeping sickness is based on case detection and treatment involving serological screening, followed by diagnostic confirmation and staging. In stage I, patients can remain asymptomatic as trypanosomes multiply in tissues and body fluids; in stage II, trypanosomes cross the blood-brain barrier, enter the central nervous system and, if left untreated, death follows. Staging is crucial as it defines the treatment that is prescribed; for both forms of disease, stage II involves the use of the highly toxic drug melarsoprol or, in the case of Gambian sleeping sickness, the use of complex and very expensive drug regimes. Case detection of T. b. gambiense sleeping sickness is known to be inefficient but could be improved by the identification of parasites using molecular tools that are, as yet, rarely used in the field. Diagnostics are not such a problem in relation to T. b. rhodesiense sleeping sickness, but the high level of under-reporting of this disease suggests that current strategies, reliant on self-reporting, are inefficient. Sleeping sickness is one of the 'neglected tropical diseases' that attracts little attention from donors or policymakers. Proper quantification of the burden of sleeping sickness matters, as the primary reason for its 'neglect' is that the true impact of the disease is unknown, largely as a result of under-reporting. Certainly, elimination will not be achieved without vast improvements in field diagnostics for both forms of sleeping sickness especially if there is a hidden reservoir of 'chronic carriers'. Mass screening would be a desirable aim for Gambian sleeping sickness and could be handled on a national scale in the endemic countries - perhaps by piggybacking on programmes committed to other diseases. As well as improved diagnostics, the search for non-toxic drugs for stage II treatment should remain a research priority. There is good evidence that thorough active case finding is sufficient to control T. b. gambiense sleeping sickness, as there is no significant animal reservoir. Trypanosoma brucei rhodesiense sleeping sickness is a zoonosis and control involves interrupting the fly-animal-human cycle, so some form of tsetse control and chemotherapy of the animal reservoir must be involved. The restricted application of insecticide to cattle is the most promising, affordable and sustainable technique to have emerged for tsetse control. Animal health providers can aid disease control by treating cattle and, when allied with innovative methods of funding (e.g. public-private partnerships) not reliant on the public purse, this approach may prove more sustainable. Sleeping sickness incidence for the 36 endemic countries has shown a steady decline in recent years and we should take advantage of the apparent lull in incidence and aim for elimination. This is feasible in some sleeping sickness foci but must be planned and paid for increasingly by the endemic countries themselves. The control and elimination of T. b. gambiense sleeping sickness may be seen as a public good, as appropriate strategies depend on local health services for surveillance and treatment, but public-private funding mechanisms should not be excluded. It is timely to take up the tools available and invest in new tools - including novel financial instruments - to eliminate this disease from Africa.
Collapse
Affiliation(s)
- Susan C Welburn
- Division of Pathway Medicine and Centre for Infectious Diseases, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
36
|
Ward CJK. Conference scene: Understanding pathogen evasion of host immunity. Immunotherapy 2012; 4:879-81. [PMID: 23046231 DOI: 10.2217/imt.12.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This novel conference organized by EuroSciCon hosted scientists from across Europe with research interests varying in pathogen type and branch of immunology. The conference was intentionally convened to promote cross-disciplinary discussion and interaction among immunologists differing in research background. The day involved several talks in addition to a question and answer session chaired by an expert panel, allowing researchers to discuss and integrate their diverse interests and findings in a novel forum. This report highlights topical research in bacterial, viral, fungal and parasitic interactions with host immunity.
Collapse
|
37
|
MacGregor P, Szöőr B, Savill NJ, Matthews KR. Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act. Nat Rev Microbiol 2012; 10:431-8. [PMID: 22543519 PMCID: PMC3834543 DOI: 10.1038/nrmicro2779] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During their life cycle, trypanosomes must overcome conflicting demands to ensure their survival and transmission. First, they must evade immunity without overwhelming the host. Second, they must generate and maintain transmission stages at sufficient levels to allow passage into their tsetse vector. Finally, they must rapidly commit to onward development when they enter the tsetse fly. On the basis of recent quantification and modelling of Trypanosoma brucei infection dynamics, we propose that the interplay between immune evasion and development achieves both infection chronicity and transmissibility. Moreover, we suggest that a novel form of bistable regulation ensures developmental commitment on entry into the tsetse fly midgut.
Collapse
Affiliation(s)
- Paula MacGregor
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | | | | | | |
Collapse
|
38
|
Silverman JS, Bangs JD. Form and function in the trypanosomal secretory pathway. Curr Opin Microbiol 2012; 15:463-8. [PMID: 22445359 DOI: 10.1016/j.mib.2012.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/01/2012] [Indexed: 01/31/2023]
Abstract
Recent advances in secretory biology of African trypanosomes reveal both similarities and striking differences with other model eukaryotic organisms. Secretion is streamlined for rapid and selective transport of the major cargo, VSG. Selectivity in the early and post-Golgi compartments is dependent on glycosylphosphatidyl inositol anchors. Streamlining includes reduced organellar abundance, and close association of ER exit sites with Golgi and with unique flagellar cytoskeletal elements that govern organellar replication and segregation. These elements include a novel centrin containing bilobe structure. Innate signals for post-Golgi sorting of biosynthetic lysosomal cargo trafficking have been defined, as have pathways for both biosynthetic and endocytic trafficking to the lysosome. Less well-defined secretory organelles such as the multivesicular body and acidocalcisomes are receiving closer scrutiny.
Collapse
Affiliation(s)
- Jason S Silverman
- Department of Medical Microbiology & Immunology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | |
Collapse
|