1
|
Makwana MV, Williamson MP, Jackson RFW, Muimo R. Quantitation of phosphohistidine in proteins in a mammalian cell line by 31P NMR. PLoS One 2022; 17:e0273797. [PMID: 36048825 PMCID: PMC9436146 DOI: 10.1371/journal.pone.0273797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
There is growing evidence to suggest that phosphohistidines are present at significant levels in mammalian cells and play a part in regulating cellular activity, in particular signaling pathways related to cancer. Because of the chemical instability of phosphohistidine at neutral or acid pH, it remains unclear how much phosphohistidine is present in cells. Here we describe a protocol for extracting proteins from mammalian cells in a way that avoids loss of covalent phosphates from proteins, and use it to measure phosphohistidine concentrations in human bronchial epithelial cell (16HBE14o-) lysate using 31P NMR spectroscopic analysis. Phosphohistidine is determined on average to be approximately one third as abundant as phosphoserine and phosphothreonine combined (and thus roughly 15 times more abundant than phosphotyrosine). The amount of phosphohistidine, and phosphoserine/phosphothreonine per gram of protein from a cell lysate was determined to be 23 μmol/g and 68 μmol/g respectively. The amount of phosphohistidine, and phosphoserine/phosphothreonine per cell was determined to be 1.8 fmol/cell, and 5.8 fmol/cell respectively. Phosphorylation is largely at the N3 (tele) position. Typical tryptic digest conditions result in loss of most of the phosphohistidine present, which may explain why the amounts reported here are greater than is generally seen using mass spectroscopy assays. The results further strengthen the case for a functional role of phosphohistidine in eukaryotic cells.
Collapse
Affiliation(s)
- Mehul V. Makwana
- Department of Chemistry, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Mike P. Williamson
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | | | - Richmond Muimo
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
2
|
Paris J, Theisen A, Marzullo BP, Haris A, Morgan TE, Barrow MP, O’Hara J, O’Connor PB. Multimodal Tandem Mass Spectrometry Techniques for the Analysis of Phosphopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1126-1133. [PMID: 35604791 PMCID: PMC9264387 DOI: 10.1021/jasms.1c00353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Collisionally activated dissociation (CAD), infrared multiphoton dissociation (IRMPD), ultraviolet photodissociation (UVPD), electron capture dissociation and electron detachment dissociation (EDD) experiments were conducted on a set of phosphopeptides, in a Fourier transform ion cyclotron resonance mass spectrometer. The fragmentation patterns were compared and varied according to the fragmentation mechanisms and the composition of the peptides. CAD and IRMPD produced similar fragmentation profiles of the phosphopeptides, while UVPD produced a large number of complementary fragments. Electron-based dissociation techniques displayed lower fragmentation efficiencies, despite retaining the labile phosphate group, and drastically different fragmentation profiles. EDD produced complex spectra whose interpretation proved challenging.
Collapse
Affiliation(s)
- Johanna Paris
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alina Theisen
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Bryan P. Marzullo
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Anisha Haris
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Tomos E. Morgan
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark P. Barrow
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - John O’Hara
- UCB, 216 Bath Road, Slough SL1 3WE, United
Kingdom
| | - Peter B. O’Connor
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
3
|
Zhao X, Fu S, Zhao Y, Ni F. One-pot synthesis and multiple MS/MS fragmentation studies of phospholysine peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9186. [PMID: 34480769 DOI: 10.1002/rcm.9186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Compared with phosphorylation of arginine and histidine, the study of phosphorylation of lysine lags far behind. The major challenges toward the current study of phosphorylation of lysine include synthesis and unambiguous phosphosite identification. This study provided a simple chemical synthesis method to construct phospholysine peptides (pLys peptides) and investigated their fragmentation under multiple activation types. METHODS Herein, we developed a synthetic method for pLys peptides in aqueous solution within one pot. Two peptides were lysine-phosphorylated using this method. The purified pLys peptides were first characterized using NMR, then were subjected to nano-liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis under multiple fragmentation method including collision-induced dissociation (CID), higher energy collisional dissociation (HCD), electron transfer dissociation (ETD), electron transfer/higher energy collisional dissociation (EThcD), and ultraviolet photodissociation (UVPD) fragmentation to investigate the relevant diagnostic ions. RESULTS Two pLys peptides were synthesized with a moderate yield following an easily handled experimental protocol. NMR spectra showed the phosphorylation occurred on ε-NH2 of lysine but not other groups. As for the fragmentation, in general, pLys immonium ions and phosphate-related neutral losses were ubiquitous among spectra derived from these activation types except for ETD. Using these ions as diagnostic ions, the misassigned phosphosites by algorithm could be recorrected. UVPD-generated spectra owned good sequence-coverage and abundant fragment ions, with pLys immonium ions and neutral losses of weak intensity. CONCLUSIONS A synthetic method was developed for pLys peptides in aqueous solution within one pot. The characteristic pLys immonium ions and phosphate-related neutral loss could serve as the diagnostic ions for unambiguous phosphosite identification of pLys peptides. In addition, UVPD was promising for the identification of pLys peptides.
Collapse
Affiliation(s)
- Xuelian Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Liu Y, Xia C, Fan Z, Jiao F, Gao F, Xie Y, He Z, Zhang W, Zhang Y, Shen Y, Qian X, Qin W. Novel Two-Dimensional MoS 2-Ti 4+ Nanomaterial for Efficient Enrichment of Phosphopeptides and Large-Scale Identification of Histidine Phosphorylation by Mass Spectrometry. Anal Chem 2020; 92:12801-12808. [PMID: 32966065 DOI: 10.1021/acs.analchem.0c00618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to its key roles in regulating the occurrence and development of cancer, protein histidine phosphorylation has been increasingly recognized as an important form of post-translational modification in recent years. However, large-scale analysis of histidine phosphorylation is much more challenging than that of serine/threonine or tyrosine phosphorylation, mainly because of its acid lability. In this study, MoS2-Ti4+ nanomaterials were synthesized using a solvothermal method and taking advantage of the electrostatic adsorption between MoS2 nanosheets and Ti4+. The MoS2-Ti4+ nanomaterials have the advantage of the combined affinity of Ti4+ and Mo toward phosphorylation under medium acidic conditions (pH = 3), which is crucial for preventing hydrolysis and loss of histidine phosphorylation during enrichment. The feasibility of using the MoS2-Ti4+ nanomaterial for phosphopeptide enrichment was demonstrated using mixtures of β-casein and bovine serum albumin (BSA). Further evaluation revealed that the MoS2-Ti4+ nanomaterial is capable of enriching synthetic histidine phosphopeptides from 1000 times excess tryptic-digested HeLa cell lysate. Application of the MoS2-Ti4+ nanomaterials for large-scale phosphopeptide enrichment results in the identification of 10 345 serine, threonine, and tyrosine phosphosites and the successful mapping of 159 histidine phosphosites in HeLa cell lysates, therefore indicating great potential for deciphering the vital biological roles of protein (histidine) phosphorylation.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102200, China
| | - Chaoshuang Xia
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102200, China.,Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Zhiya Fan
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102200, China
| | - Fenglong Jiao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102200, China
| | - Fangyuan Gao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102200, China
| | - Yuping Xie
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102200, China
| | - Zhongmei He
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wanjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102200, China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102200, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102200, China
| | - Weijie Qin
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102200, China
| |
Collapse
|
5
|
Yang TC, Chang CY, Yarmishyn AA, Mao YS, Yang YP, Wang ML, Hsu CC, Yang HY, Hwang DK, Chen SJ, Tsai ML, Lai YH, Tzeng Y, Chang CC, Chiou SH. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina. Acta Biomater 2020; 101:484-494. [PMID: 31672582 DOI: 10.1016/j.actbio.2019.10.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023]
Abstract
Nanodiamonds (NDs) are considered to be relatively safe carbon nanomaterials used for the transmission of DNA, proteins and drugs. The feasibility of utilizing the NDs to deliver CRISPR-Cas9 system for gene editing has not been clearly studied. Therefore, in this study, we aimed to use NDs as the carriers of CRISPR-Cas9 components designed to introduce the mutation in RS1 gene associated with X-linked retinoschisis (XLRS). ND particles with a diameter of 3 nm were functionalized by carboxylation of the surface and covalently conjugated with fluorescent mCherry protein. Two linear DNA constructs were attached to the conjugated mCherry: one encoded Cas9 endonuclease and GFP reporter, another encoded sgRNA and contained insert of HDR template designed to introduce RS1 c.625C>T mutation. Such nanoparticles were successfully delivered and internalized by human iPSCs and mouse retinas, the efficiency of internalization was significantly improved by mixing with BSA. The delivery of ND particles led to introduction of RS1 c.625C>T mutation in both human iPSCs and mouse retinas. Rs1 gene editing in mouse retinas resulted in several pathological features typical for XLRS, such as aberrant photoreceptor structure. To conclude, our ND-based CRISPR-Cas9 delivery system can be utilized as a tool for creating in vitro and in vivo disease models of XLRS. STATEMENT OF SIGNIFICANCE: X-linked retinoschisis (XLRS) is a prevalent hereditary retinal disease, which is caused by mutations in RS1 gene, whose product is important for structural organization of the retina. The recent development of genome editing techniques such as CRISPR-Cas9 significantly improved the prospects for better understanding the pathology and development of treatment for this disease. Firstly, gene editing can allow development of appropriate in vitro and in vivo disease models; secondly, CRISPR-Cas9 can be applied for gene therapy by removing the disease-causative mutation in vivo. The major prerequisite for these approaches is to develop safe and efficient CRISPR-Cas9 delivery system. In this study, we tested specifically modified nanodiamonds for such a delivery system. We were able to introduce Rs1 mutation into the mouse retina and, importantly, observed several XLRS-specific effects.
Collapse
|
6
|
Immunohistochemistry (IHC): Chromogenic Detection of 3-Phosphohistidine Proteins in Formaldehyde-Fixed, Frozen Mouse Liver Tissue Sections. Methods Mol Biol 2020; 2077:193-208. [PMID: 31707660 PMCID: PMC9828869 DOI: 10.1007/978-1-4939-9884-5_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of antibodies that specifically detect histidine-phosphorylated proteins is a recent achievement and allows potential roles of histidine phosphorylated proteins in pathological and physiological conditions to be characterized. Immunohistochemical analyses enable the detection of proteins in tissues and can reveal alterations to the quantity and/or localization of these proteins through comparisons of normal and diseased specimens. However, the sensitivity of phosphohistidine modifications to phosphatases, acidic pH, and elevated temperatures poses unique challenges to the detection process and requires a protocol that bypasses traditional procedures utilizing paraffin-embedding and antigen-retrieval methods. Here, we detail a method for a brief fixation by 4% (v/v) paraformaldehyde on freshly collected tissues in the presence of PhosSTOP to block phosphatase activity, followed by a float on sucrose to protect the tissue prior to freezing. Specimens are then embedded in a cryopreservation medium in molds and frozen using an isoflurane, dry ice bath to best preserve the tissue morphology and phosphohistidine signal. We validate this technique in normal mouse liver using SC44-1, a monoclonal anti-3-pHis antibody used to uncover a role for a protein histidine phosphatase as a tumor suppressor in the liver. Furthermore, we demonstrate that the antibody signal can be eliminated by preincubating SC44-1 with a peptide treated with phosphoramidate to phosphorylate histidine residues. Thus, we present an IHC protocol suitable for specific detection of 3-phosphohistidine proteins in mouse liver tissue, and suggest that this can be used as a starting point for optimization of IHC using other phosphohistidine antibodies or in other tissue types, generating information that will enhance our understanding of phosphohistidine in models of disease.
Collapse
|
7
|
Penkert M, Hauser A, Harmel R, Fiedler D, Hackenberger CPR, Krause E. Electron Transfer/Higher Energy Collisional Dissociation of Doubly Charged Peptide Ions: Identification of Labile Protein Phosphorylations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1578-1585. [PMID: 31111417 DOI: 10.1007/s13361-019-02240-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
In recent years, labile phosphorylation sites on arginine, histidine, cysteine, and lysine as well as pyrophosphorylation of serine and threonine have gained more attention in phosphoproteomic studies. However, the analysis of these delicate posttranslational modifications via tandem mass spectrometry remains a challenge. Common fragmentation techniques such as collision-induced dissociation (CID) and higher energy collisional dissociation (HCD) are limited due to extensive phosphate-related neutral loss. Electron transfer dissociation (ETD) has shown to preserve labile modifications, but is restricted to higher charge states, missing the most prevalent doubly charged peptides. Here, we report the ability of electron transfer/higher energy collisional dissociation (EThcD) to fragment doubly charged phosphorylated peptides without losing the labile modifications. Using synthetic peptides that contain phosphorylated arginine, histidine, cysteine, and lysine as well as pyrophosphorylated serine residues, we evaluated the optimal fragmentation conditions, demonstrating that EThcD is the method of choice for unambiguous assignment of tryptic, labile phosphorylated peptides. Graphical Abstract.
Collapse
Affiliation(s)
- Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany.
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Anett Hauser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Robert Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
| |
Collapse
|
8
|
Iacobucci C, Suder P, Bodzon‐Kulakowska A, Antolak A, Silberring J, Smoluch M, Mielczarek P, Grasso G, Pawlaczyk A, Szynkowska MI, Tuccitto N, Stefanowicz P, Szewczuk Z, Natale G. Instrumentation. Mass Spectrom (Tokyo) 2019. [DOI: 10.1002/9781119377368.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Lassak J, Koller F, Krafczyk R, Volkwein W. Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biol Chem 2019; 400:1397-1427. [DOI: 10.1515/hsz-2019-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Franziska Koller
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Wolfram Volkwein
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| |
Collapse
|
10
|
Affiliation(s)
- Clement
M. Potel
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Simone Lemeer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
11
|
Commodore JJ, Cassady CJ. Electron transfer dissociation mass spectrometry of acidic phosphorylated peptides cationized with trivalent praseodymium. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1178-1188. [PMID: 30221809 PMCID: PMC6291000 DOI: 10.1002/jms.4291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
The lanthanide ion praseodymium, Pr(III), was employed to study metallated ion formation and electron transfer dissociation (ETD) of 27 biological and model highly acidic phosphopeptides. All phosphopeptides investigated form metallated ions by electrospray ionization (ESI) that can be studied by ETD to yield abundant sequence information. The ions formed are [M + Pr - H]2+ , [M + Pr]3+ , and [M + Pr + H]4+ . All biological phosphopeptides with a chain length of seven or more residues generate [M + Pr]3+ . For biological phosphopeptides, [M + Pr]3+ undergoes more backbone cleavage by ETD than [M + Pr - H]2+ and, in some cases, full sequence coverage occurs. Acidic model phosphorylated hexa-peptides and octa-peptides, composed of alanine residues and one phosphorylated residue, form exclusively [M + Pr - H]2+ by ESI. Limited sequence information is obtained by ETD of [M + Pr - H]2+ with only metallated product ions being generated. For two biological phosphopeptides, [M + Pr + H]4+ is observed and may be due to the presence of at least one residue with a highly basic side chain that facilitates the addition of an extra proton. For the model phosphopeptides, more sequence coverage occurs when the phosphorylated residue is in the middle of the sequence than at either the N- or C-terminus. ETD of the metallated precursor ions formed by ESI generates exclusively metallated and nonmetallated c- and z-ions for the biological phosphopeptides, while metallated c-ions, z-ions, and a few y-ions form for the model phosphopeptides. Most of the product ions contain the phosphorylated residue indicating that the metal ion binds predominantly at the deprotonated phosphate group. The results of this study indicate that ETD is a promising tool for sequencing highly acidic phosphorylated peptides by metal adduction with Pr (III) and, by extension, all nonradioactive lanthanide metal ions.
Collapse
Affiliation(s)
| | - Carolyn J Cassady
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
12
|
Marmelstein AM, Moreno J, Fiedler D. Chemical Approaches to Studying Labile Amino Acid Phosphorylation. Top Curr Chem (Cham) 2017; 375:22. [DOI: 10.1007/s41061-017-0111-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
|
13
|
Fuhrmann J, Subramanian V, Kojetin DJ, Thompson PR. Activity-Based Profiling Reveals a Regulatory Link between Oxidative Stress and Protein Arginine Phosphorylation. Cell Chem Biol 2016; 23:967-977. [PMID: 27524296 DOI: 10.1016/j.chembiol.2016.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
Protein arginine phosphorylation is a recently discovered modification that affects multiple cellular pathways in Gram-positive bacteria. In particular, the phosphorylation of arginine residues by McsB is critical for regulating the cellular stress response. Given that the highly efficient protein arginine phosphatase YwlE prevents arginine phosphorylation under non-stress conditions, we hypothesized that this enzyme negatively regulates arginine phosphorylation and acts as a sensor of cell stress. To evaluate this hypothesis, we developed the first suite of highly potent and specific SO3-amidine-based YwlE inhibitors. With these protein arginine phosphatase-specific probes, we demonstrated that YwlE activity is suppressed by oxidative stress, which consequently increases arginine phosphorylation, thereby inducing the expression of stress-response genes, which is critical for bacterial virulence. Overall, we predict that these novel chemical tools will be widely used to study the regulation of protein arginine phosphorylation in multiple organisms.
Collapse
Affiliation(s)
- Jakob Fuhrmann
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Venkataraman Subramanian
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, MA 01605, USA; Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Douglas J Kojetin
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, MA 01605, USA; Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
14
|
Frączyk T, Ruman T, Wilk P, Palmowski P, Rogowska-Wrzesinska A, Cieśla J, Zieliński Z, Nizioł J, Jarmuła A, Maj P, Gołos B, Wińska P, Ostafil S, Wałajtys-Rode E, Shugar D, Rode W. Properties of phosphorylated thymidylate synthase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1922-1934. [PMID: 26315778 DOI: 10.1016/j.bbapap.2015.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/24/2015] [Accepted: 08/18/2015] [Indexed: 11/28/2022]
Abstract
Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent.
Collapse
Affiliation(s)
- Tomasz Frączyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Ruman
- Rzeszów University of Technology, Faculty of Chemistry, Rzeszów, Poland
| | - Piotr Wilk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Palmowski
- Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Joanna Cieśla
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Zbigniew Zieliński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Nizioł
- Rzeszów University of Technology, Faculty of Chemistry, Rzeszów, Poland
| | - Adam Jarmuła
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Maj
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Gołos
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Wińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sylwia Ostafil
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Wałajtys-Rode
- Warsaw University of Technology, Faculty of Chemistry, Institute of Biotechnology, Warsaw, Poland
| | - David Shugar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Rode
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
15
|
Bertran-Vicente J, Schümann M, Hackenberger CPR, Krause E. Gas-Phase Rearrangement in Lysine Phosphorylated Peptides During Electron-Transfer Dissociation Tandem Mass Spectrometry. Anal Chem 2015; 87:6990-4. [PMID: 26110354 DOI: 10.1021/acs.analchem.5b01389] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tandem mass spectrometry (MS/MS) strategies coupled with collision-induced dissociation (CID) or radical-driven fragmentation techniques such as electron-capture dissociation (ECD) or electron-transfer dissociation (ETD) have been successfully used for comprehensive phosphoproteome analysis. However, the unambiguous characterization of the phosphorylation site remains a significant challenge due to phosphate-related neutral losses and gas-phase rearrangements, which have been observed during CID. In particular, for the analysis of labile N-phosphorylated peptides, ECD and ETD are emerging as a complementary method. In contrast to CID, the phosphorylation site of histidine, arginine, and lysine phosphorylated peptides can be characterized by ETD. Here, we present a study on the application of ETD for analysis of phospholysine (pLys) peptides. We show that, depending on the charge state of the precursor ion as well as the presence of basic amino acid side chains, phosphate transfer reactions during the ETD process can be observed leading to ambiguous fragment ion spectra. Basically, pLys is stable under ETD conditions allowing an unambiguous assignment of the site of phosphorylation, but some factors/parameters have to be considered to avoid gas-phase rearrangement which would lead to false positive results in phosphoproteomic studies.
Collapse
Affiliation(s)
- Jordi Bertran-Vicente
- †Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany.,§Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Michael Schümann
- †Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany
| | - Christian P R Hackenberger
- †Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany.,‡Department Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Eberhard Krause
- †Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany
| |
Collapse
|
16
|
Azevedo C, Livermore T, Saiardi A. Protein Polyphosphorylation of Lysine Residues by Inorganic Polyphosphate. Mol Cell 2015; 58:71-82. [DOI: 10.1016/j.molcel.2015.02.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/02/2014] [Accepted: 02/03/2015] [Indexed: 10/23/2022]
|
17
|
Ek P, Ek B, Zetterqvist Ö. Phosphohistidine phosphatase 1 (PHPT1) also dephosphorylates phospholysine of chemically phosphorylated histone H1 and polylysine. Ups J Med Sci 2015; 120:20-7. [PMID: 25574816 PMCID: PMC4389004 DOI: 10.3109/03009734.2014.996720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Phosphohistidine phosphatase 1 (PHPT1), also named protein histidine phosphatase (PHP), is a eukaryotic enzyme dephosphorylating proteins and peptides that are phosphorylated on a histidine residue. A preliminary finding that histone H1, which lacks histidine, was phosphorylated by phosphoramidate and dephosphorylated by PHPT1 prompted the present investigation. METHODS Histone H1 and polylysine were phosphorylated at a low concentration (3.9 mM) of phosphoramidate. Their dephosphorylation by recombinant human PHPT1 was investigated by using a DEAE-Sepharose spin column technique earlier developed by us for studies on basic phosphoproteins and phosphopeptides. Determination of protein-bound, acid-labile phosphate was performed by a malachite green method. Mass spectrometry (MS) was used to investigate the occurrence of N-ε-phospholysine residues in a phosphorylated histone H1.2 preparation, and to measure the activity of PHPT1 against free N-ω-phosphoarginine. RESULTS Histone H1.2, which lacks histidine, was phosphorylated by phosphoramidate on several lysine residues, as shown by MS. PHPT1 was shown to dephosphorylate phosphohistone H1 at a rate similar to that previously described for the dephosphorylation of phosphohistidine-containing peptides. In addition, phosphopolylysine was an equally good substrate for PHPT1. However, no dephosphorylation of free phosphoarginine by PHPT1 could be detected. CONCLUSION The finding that PHPT1 can dephosphorylate phospholysine in chemically phosphorylated histone H1 and polylysine demonstrates a broader specificity for this enzyme than known so far.
Collapse
Affiliation(s)
- Pia Ek
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bo Ek
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Örjan Zetterqvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Hydrogen-deuterium exchange in imidazole as a tool for studying histidine phosphorylation. Anal Bioanal Chem 2014; 406:8013-20. [PMID: 25354888 PMCID: PMC4244536 DOI: 10.1007/s00216-014-8218-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/18/2014] [Accepted: 09/25/2014] [Indexed: 11/05/2022]
Abstract
Isotope exchange at the histidine C2 atom of imidazole in D2O solution is well known to occur at a significantly slower rate than the exchange of amide protons. Analysis of the kinetics of this isotope-exchange reaction is proposed herein as a method of detecting histidine phosphorylation. This modification of His-containing peptides is challenging to pinpoint because of its instability under acidic conditions as well as during CID-MS analysis. In this work, we investigated the effect of phosphorylation of the histidine side chain in peptides on deuterium–hydrogen exchange (DHX) in the imidazole. The results demonstrate that phosphorylation dramatically slows the rate of the DHX reaction. This phenomenon can be applied to detect phosphorylation of peptides at the histidine residue (e.g., in enzymatic digests). We also found that the influence of the peptide sequence on the exchange kinetics is relatively small. A CID fragmentation experiment revealed that there was no detectable hydrogen scrambling in peptides deuterated at C2 of the imidazole ring. Therefore, MS/MS can be used to directly identify the locations of deuterium ions incorporated into peptides containing multiple histidine moieties.
Collapse
|
19
|
Bertran-Vicente J, Serwa RA, Schümann M, Schmieder P, Krause E, Hackenberger CPR. Site-specifically phosphorylated lysine peptides. J Am Chem Soc 2014; 136:13622-8. [PMID: 25196693 DOI: 10.1021/ja507886s] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein phosphorylation controls major processes in cells. Although phosphorylation of serine, threonine, and tyrosine and also recently histidine and arginine are well-established, the extent and biological significance of lysine phosphorylation has remained elusive. Research in this area has been particularly limited by the inaccessibility of peptides and proteins that are phosphorylated at specific lysine residues, which are incompatible with solid-phase peptide synthesis (SPPS) due to the intrinsic acid lability of the P(═O)-N phosphoramidate bond. To address this issue, we have developed a new synthetic route for the synthesis of site-specifically phospholysine (pLys)-containing peptides by employing the chemoselectivity of the Staudinger-phosphite reaction. Our synthetic approach relies on the SPPS of unprotected ε-azido lysine-containing peptides and their subsequent reaction to phosphoramidates with phosphite esters before they are converted into the natural modification via UV irradiation or basic deprotection. With these peptides in hand, we demonstrate that electron-transfer dissociation tandem mass spectrometry can be used for unambiguous assignment of phosphorylated-lysine residues within histone peptides and that these peptides can be detected in cell lysates using a bottom-up proteomic approach. This new tagging method is expected to be an essential tool for evaluating the biological relevance of lysine phosphorylation.
Collapse
Affiliation(s)
- Jordi Bertran-Vicente
- Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Gonzalez-Sanchez MB, Lanucara F, Hardman GE, Eyers CE. Gas-phase intermolecular phosphate transfer within a phosphohistidine phosphopeptide dimer. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2014; 367:28-34. [PMID: 25844054 PMCID: PMC4375673 DOI: 10.1016/j.ijms.2014.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/14/2014] [Accepted: 04/22/2014] [Indexed: 05/26/2023]
Abstract
The hydrogen bonds and electrostatic interactions that form between the protonated side chain of a basic residue and the negatively charged phosphate of a phosphopeptide can play crucial roles in governing their dissociation pathways under low-energy collision-induced dissociation (CID). Understanding how phosphoramidate (i.e. phosphohistidine, phospholysine and phosphoarginine), rather than phosphomonoester-containing peptides behave during CID is paramount in investigation of these problematic species by tandem mass spectrometry. To this end, a synthetic peptide containing either phosphohistidine (pHis) or phospholysine (pLys) was analyzed by ESI-MS using a Paul-type ion trap (AmaZon, Bruker) and by traveling wave ion mobility-mass spectrometry (Synapt G2-Si, Waters). Analysis of the products of low-energy CID demonstrated formation of a doubly 'phosphorylated' product ion arising from intermolecular gas-phase phosphate transfer within a phosphopeptide dimer. The results are explained by the formation of a homodimeric phosphohistidine (pHis) peptide non-covalent complex (NCX), likely stabilized by the electrostatic interaction between the pHis phosphate group and the protonated C-terminal lysine residue of the peptide. To the best of our knowledge this is the first report of intermolecular gas-phase phosphate transfer from one phosphopeptide to another, leading to a doubly phosphorylated peptide product ion.
Collapse
Affiliation(s)
- Maria-Belen Gonzalez-Sanchez
- Michael Barber Centre for Mass Spectrometry, School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Francesco Lanucara
- Michael Barber Centre for Mass Spectrometry, School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Gemma E. Hardman
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Claire E. Eyers
- Michael Barber Centre for Mass Spectrometry, School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
21
|
Wilk P, Jarmuła A, Ruman T, Banaszak K, Rypniewski W, Cieśla J, Dowierciał A, Rode W. Crystal structure of phosphoramide-phosphorylated thymidylate synthase reveals pSer127, reflecting probably pHis to pSer phosphotransfer. Bioorg Chem 2013; 52:44-9. [PMID: 24321279 DOI: 10.1016/j.bioorg.2013.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
Abstract
Crystal structure is presented of the binary complex between potassium phosphoramidate-phosphorylated recombinant C. elegans thymidylate synthase and dUMP. On each monomer a single phosphoserine residue (Ser127) was identified, instead of expected phosphohistidine. As (31)P NMR studies of both the phosphorylated protein and of potassium phosphoramidate potential to phosphorylate different amino acids point to histidine as the only possible site of the modification, thermodynamically favored intermolecular phosphotransfer from histidine to serine is suggested.
Collapse
Affiliation(s)
- Piotr Wilk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Adam Jarmuła
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Tomasz Ruman
- Rzeszów University of Technology, Faculty of Chemistry, Bioorganic Chemistry Laboratory, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Katarzyna Banaszak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Cieśla
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Anna Dowierciał
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Wojciech Rode
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland.
| |
Collapse
|
22
|
Modzel M, Stefanowicz P, Szewczuk Z. Hydrogen scrambling in non-covalent complexes of peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:2739-2744. [PMID: 23124664 DOI: 10.1002/rcm.6396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Mass spectrometry analysis combined with hydrogen-deuterium exchange (HDX-MS) is arising as a tool for quick analysis of native protein conformation. However, during collision-induced dissociation (CID) the spatial distribution of deuterium is not always conserved. It is therefore important to find out how hydrogen scrambling occurs--this study concentrates on the possibility of scrambling between amino acid residues spatially close together, but not connected by covalent bonds. METHODS Peptides used in this study were synthesized by Fmoc strategy. Deuteration occurred in ammonia formate solution in D(2)O. Non-covalent complexes consisting of a deuterated and a non-deuterated peptide were analyzed by electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR-MS) with quadrupole mass filter. Low-energy CID was used for complex dissociation. RESULTS The complexes were isolated on a quadrupole and subjected to CID to cause dissociation. The deuterium distribution before and after the dissociation of a non-covalent complex to its components was measured. The study revealed that no significant scrambling occurred between the constituents of the complexes--the degree of scrambling did not exceed 10%. CONCLUSIONS The results obtained for the complexes should be similar to those for protein parts spatially close together--hydrogen scrambling between them should be negligible. The knowledge that almost all the scrambling occurs along peptide chains gives a better insight into the mechanism of HDX inside a protein.
Collapse
Affiliation(s)
- Maciej Modzel
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, Wroclaw, Poland
| | | | | |
Collapse
|
23
|
Schwartz PA, Murray BW. Protein kinase biochemistry and drug discovery. Bioorg Chem 2011; 39:192-210. [PMID: 21872901 DOI: 10.1016/j.bioorg.2011.07.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 12/19/2022]
Abstract
Protein kinases are fascinating biological catalysts with a rapidly expanding knowledge base, a growing appreciation in cell regulatory control, and an ascendant role in successful therapeutic intervention. To better understand protein kinases, the molecular underpinnings of phosphoryl group transfer, protein phosphorylation, and inhibitor interactions are examined. This analysis begins with a survey of phosphate group and phosphoprotein properties which provide context to the evolutionary selection of phosphorylation as a central mechanism for biological regulation of most cellular processes. Next, the kinetic and catalytic mechanisms of protein kinases are examined with respect to model aqueous systems to define the elements of catalysis. A brief structural biology overview further delves into the molecular basis of catalysis and regulation of catalytic activity. Concomitant with a prominent role in normal physiology, protein kinases have important roles in the disease state. To facilitate effective kinase drug discovery, classic and emerging approaches for characterizing kinase inhibitors are evaluated including biochemical assay design, inhibitor mechanism of action analysis, and proper kinetic treatment of irreversible inhibitors. As the resulting protein kinase inhibitors can modulate intended and unintended targets, profiling methods are discussed which can illuminate a more complete range of an inhibitor's biological activities to enable more meaningful cellular studies and more effective clinical studies. Taken as a whole, a wealth of protein kinase biochemistry knowledge is available, yet it is clear that a substantial extent of our understanding in this field remains to be discovered which should yield many new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Phillip A Schwartz
- Pfizer Worldwide Research and Development, La Jolla, Pfizer Inc., San Diego, CA 92121, United States
| | | |
Collapse
|
24
|
Abstract
Abstract Introduction. Research in the field of protein-bound phosphohistidine phosphorylation has been hampered by the difficulties in analysis and detection of phosphohistidine. Therefore a screening method was developed primarily for the analysis of phosphohistidine phosphatase 1 (PHPT1) activity. Methods. A highly positively charged substrate, Ac-Val-Arg-Leu-Lys-His-Arg-Lys-Leu-Arg-pNA, containing the peptide surrounding the phosphorylated histidine in ion channel KCa3.1 was chemically phosphorylated using phosphoramidate. Excess phosphoramidate was removed by anion exchange chromatography using a micro spin column. After incubation of the eluate with PHPT1, the removed phosphate was bound on a consecutive anion exchange spin column. The eluate was assayed in a micro plate format for remaining phosphate in the substrate Ac-Val-Arg-Leu-Lys-His(P)-Arg-Lys-Leu-Arg-pNA. Histone H4, also highly positive in charge, was subjected to the same procedure to explore the possibility to use other substrates to PHPT1 in this assay format. Results. It was found that Ac-Val-Arg-Leu-Lys-His(P)-Arg-Lys-Leu-Arg-pNA and phosphohistone H4 were dephosphorylated by PHPT1. The apparent K(m) for Ac-Val-Arg-Leu-Lys-His(P)-Arg-Lys-Leu-Arg-pNA was in the order of 10 μM.Using this method, phosphohistidine phosphatase activity was detected in mouse liver cell sap with Ac-Val-Arg-Leu-Lys-His(P)-Arg-Lys-Leu-Arg-pNA as substrate. Discussion. The described method for determination of PHPT1 activity is comparably much easier and faster than presently used methods for detection of phosphohistidine phosphatase activity. It is also sensitive, since the lower activity limit was 5 pmol phosphate released per min. It has the potential to be used both for more rapid screening for inhibitors and activators to phosphohistidine phosphatases and for screening of histidine kinases.
Collapse
Affiliation(s)
- Ulla Beckman-Sundh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Toxicology Division, National Food Administration, Uppsala, Sweden
| | - Bo Ek
- Department of Physical and Analytical Chemistry, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Örjan Zetterqvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Pia Ek
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Cydzik M, Rudowska M, Stefanowicz P, Szewczuk Z. Derivatization of peptides as quaternary ammonium salts for sensitive detection by ESI-MS. J Pept Sci 2011; 17:445-53. [PMID: 21351320 DOI: 10.1002/psc.1342] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/19/2010] [Accepted: 11/11/2010] [Indexed: 01/19/2023]
Abstract
A series of model peptides in the form of quaternary ammonium salts at the N-terminus was efficiently prepared by the solid-phase synthesis. Tandem mass spectrometric analysis of the peptide quaternary ammonium derivatives was shown to provide sequence confirmation and enhanced detection. We designed the 2-(1,4-diazabicyclo[2.2.2] octylammonium)acetyl quaternary ammonium group which does not suffer from neutral losses during MS/MS experiments. The presented quaternization of 1,4-diazabicyclo[2.2.2]octane (DABCO) by iodoacetylated peptides is relatively easy and compatible with standard solid-phase peptide synthesis. This methodology offers a novel sensitive approach to analyze peptides and other compounds.
Collapse
Affiliation(s)
- Marzena Cydzik
- Faculty of Chemistry, University of Wrocław, Wrocław, Poland
| | | | | | | |
Collapse
|