1
|
Fiori MC, Altenberg GA. Purification, Reconstitution, and Functional Analysis of Connexin Hemichannels. Methods Mol Biol 2024; 2801:1-16. [PMID: 38578409 DOI: 10.1007/978-1-0716-3842-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Connexins are the proteins that form the gap junction channels that are essential for cell-to-cell communication. These channels are formed by head-to-head docking of hemichannels (each from one of two adjacent cells). Free "undocked" hemichannels at the plasma membrane are mostly closed, although they are still important under physiological conditions. However, abnormal and sustained increase in hemichannel activity due to connexin mutations or acquired conditions can produce or contribute to cell damage. For example, mutations of Cx26, a connexin isoform, can increase hemichannel activity and cause deafness. Studies using purified isolated systems under well-controlled conditions are essential for a full understanding of molecular mechanisms of hemichannel function under normal conditions and in disease, and here, we present methodology for the expression, purification, and functional analysis of hemichannels formed by Cx26.
Collapse
Affiliation(s)
- Mariana C Fiori
- Clinical Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
2
|
Linsambarth S, Carvajal FJ, Moraga‐Amaro R, Mendez L, Tamburini G, Jimenez I, Verdugo DA, Gómez GI, Jury N, Martínez P, Zundert B, Varela‐Nallar L, Retamal MA, Martin C, Altenberg GA, Fiori MC, Cerpa W, Orellana JA, Stehberg J. Astroglial gliotransmitters released via Cx43 hemichannels regulate NMDAR‐dependent transmission and short‐term fear memory in the basolateral amygdala. FASEB J 2022; 36:e22134. [DOI: 10.1096/fj.202100798rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Sergio Linsambarth
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal Departamento de Biología Celular y Molecular Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| | - Rodrigo Moraga‐Amaro
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Luis Mendez
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Giovanni Tamburini
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Ivanka Jimenez
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Daniel Antonio Verdugo
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Gonzalo I. Gómez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud Universidad Autónoma de Chile Santiago Chile
| | - Nur Jury
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Pablo Martínez
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Brigitte Zundert
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Lorena Varela‐Nallar
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa. Facultad de Medicina Clínica Alemana Universidad del Desarrollo Santiago Chile
| | - Claire Martin
- Unité de Biologie Fonctionnelle et Adaptative Centre National la Recherche Scientifique Unité Mixte de Recherche 8251 Université Paris Diderot, Sorbonne Paris Cité Paris France
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics Center for Membrane Protein Research Texas Tech University Health Sciences Center Lubbock Texas USA
| | - Mariana C. Fiori
- Department of Cell Physiology and Molecular Biophysics Center for Membrane Protein Research Texas Tech University Health Sciences Center Lubbock Texas USA
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal Departamento de Biología Celular y Molecular Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| | - Juan A. Orellana
- Departamento de Neurología Escuela de Medicina Pontificia Universidad Católica de Chile Santiago Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| |
Collapse
|
3
|
Natha CM, Vemulapalli V, Fiori MC, Chang CWT, Altenberg GA. Connexin hemichannel inhibitors with a focus on aminoglycosides. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166115. [PMID: 33711451 DOI: 10.1016/j.bbadis.2021.166115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
Connexins are membrane proteins involved directly in cell-to-cell communication through the formation of gap-junctional channels. These channels result from the head-to-head docking of two hemichannels, one from each of two adjacent cells. Undocked hemichannels are also present at the plasma membrane where they mediate the efflux of molecules that participate in autocrine and paracrine signaling, but abnormal increase in hemichannel activity can lead to cell damage in disorders such as cardiac infarct, stroke, deafness, cataracts, and skin diseases. For this reason, connexin hemichannels have emerged as a valid therapeutic target. Know small molecule hemichannel inhibitors are not ideal leads for the development of better drugs for clinical use because they are not specific and/or have toxic effects. Newer inhibitors are more selective and include connexin mimetic peptides, anti-connexin antibodies and drugs that reduce connexin expression such as antisense oligonucleotides. Re-purposed drugs and their derivatives are also promising because of the significant experience with their clinical use. Among these, aminoglycoside antibiotics have been identified as inhibitors of connexin hemichannels that do not inhibit gap-junctional channels. In this review, we discuss connexin hemichannels and their inhibitors, with a focus on aminoglycoside antibiotics and derivatives of kanamycin A that inhibit connexin hemichannels, but do not have antibiotic effect.
Collapse
Affiliation(s)
- Cristina M Natha
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Varun Vemulapalli
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
4
|
Advances in the development of connexin hemichannel inhibitors selective toward Cx43. Future Med Chem 2021; 13:379-392. [PMID: 33399487 DOI: 10.4155/fmc-2020-0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gap-junction channels formed by two connexin hemichannels play diverse and pivotal roles in intercellular communication and regulation. Normally hemichannels at the plasma membrane participate in autocrine and paracrine signaling, but abnormal increase in their activity can lead or contribute to various diseases. Selective inhibitors toward connexin hemichannels are of great interest. Among more than 20 identified isoforms of connexins, connexin 43 (Cx43) attracts the most interest due to its prevalence and link to cell damage in many disorders or diseases. Traditional antibacterial kanamycin decorated with hydrophobic groups yields amphiphilic kanamycins that show low cytotoxicity and prominent inhibitory effect against Cx43. This review focuses on the development of amphiphilic kanamycins as connexin hemichannel inhibitors and their future perspective.
Collapse
|
5
|
Subedi YP, Kjellgren A, Roberts P, Montgomery H, Thackeray N, Fiori MC, Altenberg GA, Chang CWT. Amphiphilic aminoglycosides with increased selectivity for inhibition of connexin 43 (Cx43) hemichannels. Eur J Med Chem 2020; 203:112602. [PMID: 32679454 DOI: 10.1016/j.ejmech.2020.112602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
Abstract
Gap junction channels formed by the association of connexin hemichannels play a crucial role in intercellular communication. Connexin 43 (Cx43) is expressed in a variety of tissues and organs, including heart and brain, and abnormal sustained opening of undocked "free" hemichannels contributes to the cell damage in cardiac infarcts and stroke. Selective inhibitors of Cx43 hemichannels for clinical use are then desirable. Here, we synthesized and tested new aminoglycosides for their connexin inhibitory activity towards Cx26 and Cx43 hemichannels. The lead compounds displayed enhanced Cx43/Cx26 selectivity for hemichannel inhibition when compared to the parent kanamycin A and other commercially available aminoglycosides. These lead compounds are not cytotoxic to mammalian cells and show promise for the treatment of ischemic damage of the heart, brain, and kidneys. We identified a new compound as a promising lead based on its good selectivity for Cx43 hemichannels inhibition and the simplicity and affordability of its production.
Collapse
Affiliation(s)
- Yagya P Subedi
- Department of Chemistry and Biochemistry, Utah State University, 0300, Old Main Hill, Logan, UT, 84322-0300, USA
| | - Abbey Kjellgren
- Department of Cell Physiology and Molecular Biophysics, And Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6551, USA
| | - Paul Roberts
- Department of Chemistry and Biochemistry, Utah State University, 0300, Old Main Hill, Logan, UT, 84322-0300, USA
| | - Heath Montgomery
- Department of Chemistry and Biochemistry, Utah State University, 0300, Old Main Hill, Logan, UT, 84322-0300, USA
| | - Noah Thackeray
- Department of Chemistry and Biochemistry, Utah State University, 0300, Old Main Hill, Logan, UT, 84322-0300, USA
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, And Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6551, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, And Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6551, USA
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, 0300, Old Main Hill, Logan, UT, 84322-0300, USA.
| |
Collapse
|
6
|
Fiori MC, Cuello LG, Altenberg GA. A Simple Assay to Evaluate the Function of Human Connexin Hemichannels Expressed in Escherichia coli that Can Be Used for Drug Discovery and Mutant Analysis. ACTA ACUST UNITED AC 2020; 87:e68. [PMID: 31756040 DOI: 10.1002/cpph.68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abnormally increased activity of connexin hemichannels contributes to cell damage in many disorders, including deafness, stroke, and cardiac infarct, and therefore hemichannels constitute a potentially important therapeutic target. Unfortunately, the available hemichannel inhibitors are not specific and most are toxic. The absence of a simple and cost-effective screening assay has made the discovery of hemichannel inhibitors difficult. Here, we present an optimized assay where human connexins are expressed in genetically modified Escherichia coli cells deficient in potassium uptake (LB2003 cells). These cells cannot grow in low-potassium medium, and hemichannel function is assayed by the reversion of the no-growth phenotype. Since functional hemichannels are permeable to potassium, they allow for its uptake and cell growth. The simple reading of bacterial growth in low-potassium medium distinguishes functional hemichannels (growth) from those inhibited (no growth). This assay is simple, robust, inexpensive, and reliable, and is easily scaled to high-throughput multiwell platforms. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Preparation of competent LB2003 cells resistant to kanamycin Basic Protocol 2: Growth complementation assay Support Protocol: Evaluation of cytotoxic effects of potential connexin hemichannel inhibitors.
Collapse
Affiliation(s)
- Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
7
|
AlFindee MN, Subedi YP, Fiori MC, Krishnan S, Kjellgren A, Altenberg GA, Chang CWT. Inhibition of Connexin Hemichannels by New Amphiphilic Aminoglycosides without Antibiotic Activity. ACS Med Chem Lett 2018; 9:697-701. [PMID: 30034603 DOI: 10.1021/acsmedchemlett.8b00158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Connexins hemichannels (HCs) from adjacent cells form gap junctional channels that mediate cell-to-cell communication. Abnormal opening of "free" undocked HCs can produce cell damage and participate in the mechanism of disorders such as cardiac infarct, stroke, deafness, skin diseases, and cataracts. Therefore, inhibitors of connexin HCs have great pharmacological potential. Antibiotic aminoglycosides (AGs) have been recently identified as connexin HC inhibitors, but their antibiotic effect is an issue for the treatment of disorders where infections do not play a role. Herein, we synthesized and tested several amphiphilic AGs without antibiotic effect for their inhibition against connexin HCs, using a newly developed cell-based bacterial growth complementation assay. Several leads with superior potency than the parent compound, kanamycin A, were identified. Unlike traditional AGs, these amphiphilic AGs are not bactericidal and are not toxic to mammalian cells, making them better than traditional AGs as HC inhibitors for clinical use and other applications.
Collapse
Affiliation(s)
- Madher N. AlFindee
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Basra, Basra, Iraq
| | - Yagya P. Subedi
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| | - Mariana C. Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6551, United States
| | - Srinivasan Krishnan
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6551, United States
| | - Abbey Kjellgren
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6551, United States
- Honors College, McClellan Hall, Box 41017, Texas Tech University, Lubbock, Texas 79409-1017, United States
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6551, United States
| | - Cheng-Wei T. Chang
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| |
Collapse
|
8
|
Fiori MC, Krishnan S, Kjellgren A, Cuello LG, Altenberg GA. Inhibition by Commercial Aminoglycosides of Human Connexin Hemichannels Expressed in Bacteria. Molecules 2017; 22:molecules22122063. [PMID: 29186829 PMCID: PMC6149774 DOI: 10.3390/molecules22122063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022] Open
Abstract
In addition to gap junctional channels that mediate cell-to-cell communication, connexins form hemichannels that are present at the plasma membrane. Since hemichannels are permeable to small hydrophilic compounds, including metabolites and signaling molecules, their abnormal opening can cause or contribute to cell damage in disorders such as cardiac infarct, stroke, deafness, skin diseases, and cataracts. Therefore, hemichannels are potential pharmacological targets. A few aminoglycosides, well-known broad-spectrum antibiotics, have been shown to inhibit hemichannels. Here, we tested several commercially available aminoglycosides for inhibition of human connexin hemichannels using a cell-based bacterial growth complementation assay that we developed recently. We found that kanamycin A, kanamycin B, geneticin, neomycin, and paromomycin are effective inhibitors of hemichannels formed by connexins 26, 43, and 46 (Cx26, Cx43, and Cx46). Because of the >70 years of clinical experience with aminoglycosides and the fact that several of the aminoglycosides tested here have been used in humans, they are promising starting points for the development of effective connexin hemichannel inhibitors.
Collapse
Affiliation(s)
- Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
| | - Srinivasan Krishnan
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
| | - Abbey Kjellgren
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
- Honors College, McClellan Hall, Box 41017, Texas Tech University, Lubbock, TX 79409-1017, USA.
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
| |
Collapse
|
9
|
Polymer Nanodiscs: Discoidal Amphiphilic Block Copolymer Membranes as a New Platform for Membrane Proteins. Sci Rep 2017; 7:15227. [PMID: 29123151 PMCID: PMC5680229 DOI: 10.1038/s41598-017-15151-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 12/23/2022] Open
Abstract
Lipid nanodiscs are playing increasingly important roles in studies of the structure and function of membrane proteins. Development of lipid nanodiscs as a membrane-protein-supporting platform, or a drug targeting and delivery vehicle in general, is undermined by the fluidic and labile nature of lipid bilayers. Here, we report the discovery of polymer nanodiscs, i.e., discoidal amphiphilic block copolymer membrane patches encased within membrane scaffold proteins, as a novel two-dimensional nanomembrane that maintains the advantages of lipid nanodiscs while addressing their weaknesses. Using MsbA, a bacterial ATP-binding cassette transporter as a membrane protein prototype, we show that the protein can be reconstituted into the polymer nanodiscs in an active state. As with lipid nanodiscs, reconstitution of detergent-solubilized MsbA into the polymer nanodiscs significantly enhances its activity. In contrast to lipid nanodiscs that undergo time- and temperature-dependent structural changes, the polymer nanodiscs experience negligible structural evolution under similar environmental stresses, revealing a critically important property for the development of nanodisc-based characterization methodologies or biotechnologies. We expect that the higher mechanical and chemical stability of block copolymer membranes and their chemical versatility for adaptation will open new opportunities for applications built upon diverse membrane protein functions, or involved with drug targeting and delivery.
Collapse
|
10
|
Zoghbi ME, Mok L, Swartz DJ, Singh A, Fendley GA, Urbatsch IL, Altenberg GA. Substrate-induced conformational changes in the nucleotide-binding domains of lipid bilayer-associated P-glycoprotein during ATP hydrolysis. J Biol Chem 2017; 292:20412-20424. [PMID: 29018094 DOI: 10.1074/jbc.m117.814186] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/25/2017] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (Pgp) is an efflux pump important in multidrug resistance of cancer cells and in determining drug pharmacokinetics. Pgp is a prototype ATP-binding cassette transporter with two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP. Conformational changes at the NBDs (the Pgp engines) lead to changes across Pgp transmembrane domains that result in substrate translocation. According to current alternating access models (substrate-binding pocket accessible only to one side of the membrane at a time), binding of ATP promotes NBD dimerization, resulting in external accessibility of the drug-binding site (outward-facing, closed NBD conformation), and ATP hydrolysis leads to dissociation of the NBDs with the subsequent return of the accessibility of the binding site to the cytoplasmic side (inward-facing, open NBD conformation). However, previous work has not investigated these events under near-physiological conditions in a lipid bilayer and in the presence of transport substrate. Here, we used luminescence resonance energy transfer (LRET) to measure the distances between the two Pgp NBDs. Pgp was labeled with LRET probes, reconstituted in lipid nanodiscs, and the distance between the NBDs was measured at 37 °C. In the presence of verapamil, a substrate that activates ATP hydrolysis, the NBDs of Pgp reconstituted in nanodiscs were never far apart during the hydrolysis cycle, and we never observed the NBD-NBD distances of tens of Å that have previously been reported. However, we found two main conformations that coexist in a dynamic equilibrium under all conditions studied. Our observations highlight the importance of performing studies of efflux pumps under near-physiological conditions, in a lipid bilayer, at 37 °C, and during substrate-stimulated hydrolysis.
Collapse
Affiliation(s)
- Maria E Zoghbi
- From the Department of Cell Physiology and Molecular Biophysics
| | - Leo Mok
- Department of Cell Biology and Biochemistry, and
| | | | | | | | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, and .,Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Guillermo A Altenberg
- From the Department of Cell Physiology and Molecular Biophysics, .,Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
11
|
Krishnan S, Fiori MC, Cuello LG, Altenberg GA. A Cell-Based Assay to Assess Hemichannel Function. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:87-95. [PMID: 28356896 PMCID: PMC5369048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
Activation of connexin hemichannels is involved in the pathophysiology of disorders that include deafness, stroke, and cardiac infarct. This aspect makes hemichannels an attractive therapeutic target. Unfortunately, most available inhibitors are not selective or isoform specific, which hampers their translational application. The absence of a battery of useful inhibitors is due in part to the absence of simple screening assays for the discovery of hemichannel-active drugs. Here, we present an assay that we have recently developed to assess hemichannel function. The assay is based on the expression of functional human connexins in a genetically modified bacterial strain deficient in K+ uptake. These modified cells do not grow in low-K+ medium, but functional expression of connexin hemichannels allows K+ uptake and growth. This cell-growth-based assay is simple, robust, and easily scalable to high-throughput multi-well platforms.
Collapse
Affiliation(s)
- Srinivasan Krishnan
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Mariana C. Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Luis G. Cuello
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
12
|
Krishnan S, Fiori MC, Whisenant TE, Cortes DM, Altenberg GA, Cuello LG. An Escherichia coli-Based Assay to Assess the Function of Recombinant Human Hemichannels. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2017; 22:135-143. [PMID: 27789753 DOI: 10.1177/1087057116675321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Connexins form the gap junctional channels that mediate cell-to-cell communication, and also form hemichannels present at the plasma membrane. Hemichannels are permeable to small hydrophilic compounds, including molecules involved in autocrine and paracrine signaling. An abnormal hemichannel opening causes or contributes to cell damage in common human disorders (e.g., cardiac infarct, cerebrovascular accidents, deafness, skin diseases, and cataracts) and is therefore a potential pharmacological target. The discovery of useful hemichannels inhibitors has been hampered in part by the lack of suitable high-throughput functional assays. Here, we developed and characterized an assay useful to assess the function of hemichannels formed by human connexins expressed in a genetically modified Escherichia coli strain. The LB2003 cells, devoid of three key K+ uptake transport mechanisms, cannot grow in low-[K+] medium, but expression of Cx26, Cx43, or Cx46 rescues their growth defect (growth complementation). We developed a protocol for a simple, inexpensive, easily scalable, reproducible, and sensitive assay that should be useful for the discovery of new and better hemichannel inhibitors based on the analysis of small-compound libraries.
Collapse
Affiliation(s)
- Srinivasan Krishnan
- 1 Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mariana C Fiori
- 1 Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ty E Whisenant
- 1 Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - D Marien Cortes
- 1 Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guillermo A Altenberg
- 1 Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Luis G Cuello
- 1 Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|