1
|
Kim SY, Lee S, Park JT, Lee SJ, Kim HS. Postmortem-Derived Exosomal MicroRNA 486-5p as Potential Biomarkers for Ischemic Heart Disease Diagnosis. Int J Mol Sci 2024; 25:9619. [PMID: 39273565 PMCID: PMC11395318 DOI: 10.3390/ijms25179619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Exosomes are nanovesicles 30-150 nm in diameter released extracellularly. Those isolated from human body fluids reflect the characteristics of their cells or tissues of origin. Exosomes carry extensive biological information from their parent cells and have significant potential as biomarkers for disease diagnosis and prognosis. However, there are limited studies utilizing exosomes in postmortem diagnostics. In this study, we extended our initial research which identified the presence and established detection methodologies for exosomes in postmortem fluids. We analyzed exosomal miRNA extracted from plasma and pericardial fluid samples of a control group (n = 13) and subjects with acute myocardial infarction (AMI; n = 24). We employed next-generation sequencing (NGS) to investigate whether this miRNA could serve as biomarkers for coronary atherosclerosis leading to acute myocardial infarction. Our analysis revealed 29 miRNAs that were differentially expressed in the AMI group compared to the control group. Among these, five miRNAs exhibited more than a twofold increase in expression across all samples from the AMI group. Specifically, miR-486-5p levels were significantly elevated in patients with high-grade (type VI or above) atherosclerotic plaques, as per the American Heart Association criteria, highlighting its potential as a predictive biomarker for coronary atherosclerosis progression. Our results indicate that postmortem-derived exosomal microRNAs can serve as potential biomarkers for various human diseases, including cardiovascular disorders. This finding has profound implications for forensic diagnostics, a field critically lacking diagnostic markers.
Collapse
Affiliation(s)
- So-Yeon Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (S.-Y.K.); (J.-T.P.)
| | - Sookyoung Lee
- Department of Forensic Medicine, National Forensic Service, 10, Ipchun-ro, Wonju-si 61469, Republic of Korea;
| | - Jong-Tae Park
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (S.-Y.K.); (J.-T.P.)
| | - Su-Jin Lee
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (S.-Y.K.); (J.-T.P.)
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (S.-Y.K.); (J.-T.P.)
| |
Collapse
|
2
|
Moxon JV, Calcino A, Kraeuter AK, Phie J, Anderson G, Standley G, Sealey C, Jones RE, Field MA, Golledge J. A case-control comparison of acute-phase peripheral blood gene expression in participants diagnosed with minor ischaemic stroke or stroke mimics. Hum Genomics 2023; 17:106. [PMID: 38007520 PMCID: PMC10676587 DOI: 10.1186/s40246-023-00551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/11/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Past studies suggest that there are changes in peripheral blood cell gene expression in response to ischaemic stroke; however, the specific changes which occur during the acute phase are poorly characterised. The current study aimed to identify peripheral blood cell genes specifically associated with the early response to ischaemic stroke using whole blood samples collected from participants diagnosed with ischaemic stroke (n = 29) or stroke mimics (n = 27) following emergency presentation to hospital. Long non-coding RNA (lncRNA), mRNA and micro-RNA (miRNA) abundance was measured by RNA-seq, and the consensusDE package was used to identify genes which were differentially expressed between groups. A sensitivity analysis excluding two participants with metastatic disease was also conducted. RESULTS The mean time from symptom onset to blood collection was 2.6 h. Most strokes were mild (median NIH stroke scale score 2.0). Ten mRNAs (all down-regulated in samples provided by patients experiencing ischaemic stroke) and 30 miRNAs (14 over-expressed and 16 under-expressed in participants with ischaemic stroke) were significantly different between groups in the whole cohort and sensitivity analyses. No significant over-representation of gene ontology categories by the differentially expressed genes was observed. Random forest analysis suggested a panel of differentially expressed genes (ADGRG7 and miRNAs 96, 532, 6766, 6798 and 6804) as potential ischaemic stroke biomarkers, although modelling analyses demonstrated that these genes had poor diagnostic performance. CONCLUSIONS This study provides evidence suggesting that the early response to minor ischaemic stroke is predominantly reflected by changes in the expression of miRNAs in peripheral blood cells. Further work in independent cohorts particularly in patients with more severe stroke is needed to validate these findings and investigate their clinical relevance.
Collapse
Affiliation(s)
- Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
| | - Andrew Calcino
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
| | - Ann-Katrin Kraeuter
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
- Faculty of Health and Life Sciences, Psychology, Northumbria University, Newcastle Upon Tyne, UK
| | - James Phie
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Georgina Anderson
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Glenys Standley
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Cindy Sealey
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Rhondda E Jones
- Research Division, James Cook University, Townsville, QLD, 4811, Australia
- Tropical Australian Academic Health Centre, Townsville, QLD, 4811, Australia
| | - Matt A Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
- Immunogenomics Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- Menzies School of Health Research, Darwin, NT, 0811, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia.
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, 4811, Australia.
| |
Collapse
|
3
|
Jiang Y, Zhao Y, Li ZY, Chen S, Fang F, Cai JH. Potential roles of microRNAs and long noncoding RNAs as diagnostic, prognostic and therapeutic biomarkers in coronary artery disease. Int J Cardiol 2023:S0167-5273(23)00478-3. [PMID: 37019219 DOI: 10.1016/j.ijcard.2023.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
Coronary artery disease (CAD), which is mainly caused by atherosclerotic processes in coronary arteries, became a significant health issue. MicroRNAs (miRNAs), and long noncoding RNAs (lncRNAs), have been shown to be stable in plasma and could thereby be adopted as biomarkers for CAD diagnosis and treatment. MiRNAs can regulate CAD development through different pathways and mechanisms, including modulation of vascular smooth muscle cell (VSMC) activity, inflammatory responses, myocardial injury, angiogenesis, and leukocyte adhesion. Similarly, previously studies have indicated that the causal effects of lncRNAs in CAD pathogenesis and their utility in CAD diagnosis and treatment, has been found to lead to cell cycle transition, proliferation dysregulation, and migration in favour of CAD development. Differential expression of miRNAs and lncRNAs in CAD patients has been identified and served as diagnostic, prognostic and therapeutic biomarkers for the assessment of CAD patients. Thus, in the current review, we summarize the functions of miRNAs and lncRNAs, which aimed to identify novel targets for the CAD diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Ying Zhao
- Department of Cardiology, Jilin Central Hospital, Jilin 132011, China
| | - Zheng-Yi Li
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Shuang Chen
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Fang Fang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Jian-Hui Cai
- Department of Clinical Medicine, Jilin Medical University, Jilin 132013, China; Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China.
| |
Collapse
|
4
|
Karere GM, Glenn JP, Li G, Konar A, VandeBerg JL, Cox LA. Potential miRNA biomarkers and therapeutic targets for early atherosclerotic lesions. Sci Rep 2023; 13:3467. [PMID: 36859458 PMCID: PMC9977938 DOI: 10.1038/s41598-023-29074-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
Identification of potential therapeutic targets and biomarkers indicative of burden of early atherosclerosis that occur prior to advancement to life-threatening unstable plaques is the key to eradication of CAD prevalence and incidences. We challenged 16 baboons with a high cholesterol, high fat diet for 2 years and evaluated early-stage atherosclerotic lesions (fatty streaks, FS, and fibrous plaques, FP) in formalin-fixed common iliac arteries (CIA). We used small RNA sequencing to identify expressed miRNAs in CIA and in baseline blood samples of the same animals. We found 412 expressed miRNAs in CIA and 356 in blood samples. Eight miRNAs (miR-7975, -486-5p, -451a, -191-5p, -148a-3p, -17-5p, -378c, and -144-3p) were differentially expressed between paired fatty streak lesion and no-lesion sites of the tissue, and 27 miRNAs (e.g., miR-92a-3p, -5001, -342-3p, miR-28-3p, -21-5p, -221-3p, 146a-5p, and -16-5p) in fibrous plaques. The expression of 14 blood miRNAs significantly correlated with extent of lesions and the number of plaques. We identified coordinately regulated miRNA-gene networks in which miR-17-5p and miR-146a-5p are central hubs and miR-5001 and miR-7975 are potentially novel miRNAs associated with early atherosclerosis. In summary, we have identified miRNAs expressed in lesions and in blood that correlate with lesion burden and are potential therapeutic targets and biomarkers. These findings are a first step in elucidating miRNA regulated molecular mechanisms that underlie early atherosclerosis in a baboon model, enabling translation of our findings to humans.
Collapse
Affiliation(s)
- Genesio M Karere
- Department of Internal Medicine, Section on Molecular Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Jeremy P Glenn
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ge Li
- Department of Internal Medicine, Section on Molecular Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ayati Konar
- Department of Internal Medicine, Section on Molecular Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - John L VandeBerg
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownville, Harlingen, Edinburg, TX, 78520, USA
| | - Laura A Cox
- Department of Internal Medicine, Section on Molecular Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| |
Collapse
|
5
|
Fadaei S, Zarepour F, Parvaresh M, Motamedzadeh A, Tamehri Zadeh SS, Sheida A, Shabani M, Hamblin MR, Rezaee M, Zarei M, Mirzaei H. Epigenetic regulation in myocardial infarction: Non-coding RNAs and exosomal non-coding RNAs. Front Cardiovasc Med 2022; 9:1014961. [PMID: 36440025 PMCID: PMC9685618 DOI: 10.3389/fcvm.2022.1014961] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of deaths globally. The early diagnosis of MI lowers the rate of subsequent complications and maximizes the benefits of cardiovascular interventions. Many efforts have been made to explore new therapeutic targets for MI, and the therapeutic potential of non-coding RNAs (ncRNAs) is one good example. NcRNAs are a group of RNAs with many different subgroups, but they are not translated into proteins. MicroRNAs (miRNAs) are the most studied type of ncRNAs, and have been found to regulate several pathological processes in MI, including cardiomyocyte inflammation, apoptosis, angiogenesis, and fibrosis. These processes can also be modulated by circular RNAs and long ncRNAs via different mechanisms. However, the regulatory role of ncRNAs and their underlying mechanisms in MI are underexplored. Exosomes play a crucial role in communication between cells, and can affect both homeostasis and disease conditions. Exosomal ncRNAs have been shown to affect many biological functions. Tissue-specific changes in exosomal ncRNAs contribute to aging, tissue dysfunction, and human diseases. Here we provide a comprehensive review of recent findings on epigenetic changes in cardiovascular diseases as well as the role of ncRNAs and exosomal ncRNAs in MI, focusing on their function, diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Sara Fadaei
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shabani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Anesthesiology, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mehdi Rezaee
- Department of Anesthesiology, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Zarei
- Tehran Heart Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Chen T, Zhang X, Qian W, Zhou R, Su M, Ma Y. Serum miR-497-5p serves as a diagnostic biomarker for acute coronary syndrome and predicts the occurrence of major adverse cardiovascular events after percutaneous coronary intervention. Bioengineered 2022; 13:8266-8276. [PMID: 35302437 PMCID: PMC9161957 DOI: 10.1080/21655979.2022.2051885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the diagnostic value of microRNA (miR)-497-5p in acute coronary syndrome (ACS) and its predictive value for the occurrence of adverse major adverse cardiovascular events (MACEs). Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to detect the expression of serum miR-497-5p in 110 ACS patients and 82 controls. And miR-497-5p levels were found to be significantly elevated in the patients (P < 0.001). Pearson correlation coefficient confirmed that miR-497-5p was positively correlated with Gensini scores (r = 0.684). The area under the Receiver-operating characteristic (ROC) curve was 0.861, which significantly identified patients with ACS, and was confirmed by logistic regression (OR = 8.533, 95%CI = 4.113–17.787, P < 0.001). Kaplan-Meier and Cox regression was performed to evaluate the predictive value of miR-497-5p in the occurrence of MACEs during a 6-month follow-up after percutaneous coronary intervention (PCI) in patients with ACS. The results demonstrated that miR-497-5p was an independent predictor of MACEs (HR = 4.773, 95%CI = 1.569–12.036, P = 0.013) and that patients with high level of miR-497-5p were more likely to develop MACEs after PCI (long-rank P = 0.019). Finally, miR-497-5p positively correlated with endothelial proinflammatory and adhesion factors. Our study suggests that serum miR-497-5p is a potential diagnostic marker for ACS and its elevated levels can predict a high risk of MACEs in ACS patients after PCI. And this may be associated with vascular endothelial injury.
Collapse
Affiliation(s)
- Tao Chen
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xueshan Zhang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Qian
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ran Zhou
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingyu Su
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanfeng Ma
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Wu Y, Jiang L, Zhang H, Cheng S, Wen W, Xu L, Zhang F, Yang Y, Wang L, Chen J. Integrated analysis of microRNA and mRNA expression profiles in homozygous familial hypercholesterolemia patients and validation of atherosclerosis associated critical regulatory network. Genomics 2021; 113:2572-2582. [PMID: 34052320 DOI: 10.1016/j.ygeno.2021.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/07/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a rare, life-threatening genetic disorder characterized by an extremely elevated serum level of low-density lipoprotein cholesterol (LDL-C) and accelerated premature atherosclerotic cardiovascular diseases (ASCVD). However, the detailed mechanism of how the pathogenic mutations of HoFH trigger the acceleration of ASCVD is not well understood. Therefore, we performed high-throughput RNA and small RNA sequencing on the peripheral blood RNA samples of six HoFH patients and three healthy controls. The gene and miRNA expression differences were analyzed, and seven miRNAs and six corresponding genes were screened out through regulatory network analysis. Validation through quantitative PCR of genes and miRNAs from 52 HoFH patients and 20 healthy controls revealed that the expression levels of hsa-miR-486-3p, hsa-miR-941, and BIRC5 were significantly upregulated in HoFH, while ID1, PLA2G4C, and CACNA2D2 were downregulated. Spearman correlation analysis found that the levels of ID1, hsa-miR-941, and hsa-miR-486-3p were significantly correlated with additional ASCVD risk factors in HoFH patients. This study represents the first integrated analysis of transcriptome and miRNA expression profiles in patients with HoFH, a rare disease, and as a result, six differentially expressed miRNAs/genes that may be related to atherosclerosis in HoFH are reported. The miRNA-mRNA regulatory network may be the critical regulation mechanism by which ASCVD is accelerated in HoFH.
Collapse
Affiliation(s)
- Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Atherosclerosis, Beijing AnZhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China.
| | - Long Jiang
- Department of Atherosclerosis, Beijing AnZhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China; Department of Cardiovascular, the Second Affiliated Hospital of Nanchang University, Nanchang 330006,China
| | - Huina Zhang
- Beijing AnZhen Hospital, Capital Medical University; Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Shitong Cheng
- Department of Laboratory Medicine, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wenhui Wen
- Department of Atherosclerosis, Beijing AnZhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Liyuan Xu
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Feng Zhang
- Department of Laboratory Medicine, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Ya Yang
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Luya Wang
- Department of Atherosclerosis, Beijing AnZhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China.
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
8
|
Li H, Luo Y, Liu P, Liu P, Hua W, Zhang Y, Zhang L, Li Z, Xing P, Zhang Y, Hong B, Yang P, Liu J. Exosomes containing miR-451a is involved in the protective effect of cerebral ischemic preconditioning against cerebral ischemia and reperfusion injury. CNS Neurosci Ther 2021; 27:564-576. [PMID: 33533575 PMCID: PMC8025619 DOI: 10.1111/cns.13612] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Aim To study the role of exosomes in the protective effect of cerebral ischemic preconditioning (cerebral‐IPC) against cerebral I/R injury. Method Mouse models of cerebral‐IPC and MCAO/R were established as described previously, and their behavioral, pathological, and proteomic changes were analyzed. Neuro‐2a subjected to OGD/R were treated with exosomes isolated from the plasma of sham‐operated and cerebral‐IPC mice. The differentially expressed miRNAs between exosomes derived from sham‐operated (S‐exosomes) and preconditioned (IPC‐exosomes) mice were identified through miRNA array, and their targets were identified through database search. The control and OGD/R cells were treated with the IPC‐exosomes, miRNA mimic or target protein inhibitor, and their viability, oxidative, stress and apoptosis rates were measured. The activated pathways were identified by analyzing the levels of relevant proteins. Results Cerebral‐IPC mitigated the cerebral injury following ischemia and reperfusion, and increased the number of plasma exosomes. IPC‐exosomes increased the survival of Neuro‐2a cells after OGD/R. The miR‐451a targeting Rac1 was upregulated in the IPC‐exosomes relative to S‐exosomes. The miR‐451a mimic and the Rac1 inhibitor NSC23766 reversed OGD/R‐mediated activation of Rac1 and its downstream pathways. Conclusion Cerebral‐IPC ameliorated cerebral I/R injury by inducing the release of exosomes containing miR‐451a.
Collapse
Affiliation(s)
- He Li
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Yin Luo
- Department of neurosurgery, Changhai Hospital, Shanghai, China.,Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Liu
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Pei Liu
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Weilong Hua
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Yongxin Zhang
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Lei Zhang
- Stroke Center, Changhai Hospital, Shanghai, China
| | - Zifu Li
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Pengfei Xing
- Stroke Center, Changhai Hospital, Shanghai, China
| | | | - Bo Hong
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Pengfei Yang
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Jianmin Liu
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
9
|
Sun D, Ma T, Zhang Y, Zhang F, Cui B. Overexpressed miR-335-5p reduces atherosclerotic vulnerable plaque formation in acute coronary syndrome. J Clin Lab Anal 2021; 35:e23608. [PMID: 33277957 PMCID: PMC7891542 DOI: 10.1002/jcla.23608 10.18926/amo/64123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Accepted: 09/19/2020] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Acute coronary syndrome (ACS) may induce cardiovascular death. The correlation of mast cells related microRNAs (miRs) with risk of ACS has been investigated. We explored regulatory mechanism of miR-335-5p on macrophage innate immune response, atherosclerotic vulnerable plaque formation, and revascularization in ACS in relation to Notch signaling. METHODS ACS-related gene microarray was collected from Gene Expression Omnibus database. After different agomir or antagomir, or inhibitor of Notch signaling treatment, IL-6, IL-1β, TNF-α, MCP-1, ICAM-1, and VCAM-1 levels were tested in ACS mice. Additionally, Notch signaling-related genes and matrix metalloproteinases (MMPs) were measured after miR-335-5p interference. Finally, mouse atherosclerosis, lipid accumulation, and the collagen/vessel area ratio of plaque were determined. RESULTS miR-335-5p targeted JAG1 and mediated Notch signaling in ACS. miR-335-5p up-regulation and Notch signaling inhibition reduced expression of JAG1, Notch pathway-related genes, IL-6, IL-1β, TNF-α, MCP-1, ICAM-1, VCAM-1, and MMPs, but promote TIMP1 and TIMP2 expression. Additionally, vulnerable plaques were decreased and collagen fiber contents were observed to increase after miR-335-5p overexpression and Notch signaling inhibition. CONCLUSIONS Overexpression of miR-335-5p inhibited innate immune response of macrophage, reduced atherosclerotic vulnerable plaque formation, and promoted revascularization in ACS mice targeting JAG1 through Notch signaling.
Collapse
Affiliation(s)
- Dingjun Sun
- Cardiology DepartmentCentral South University Xiangya School of Medicine Affiliated Haikou Hospital (Haikou People’s Hospital)HaikouP.R. China
| | - Tianyi Ma
- Cardiology DepartmentCentral South University Xiangya School of Medicine Affiliated Haikou Hospital (Haikou People’s Hospital)HaikouP.R. China
| | - Yixue Zhang
- Cardiology DepartmentCentral South University Xiangya School of Medicine Affiliated Haikou Hospital (Haikou People’s Hospital)HaikouP.R. China
| | - Fuwei Zhang
- Cardiology DepartmentCentral South University Xiangya School of Medicine Affiliated Haikou Hospital (Haikou People’s Hospital)HaikouP.R. China
| | - Bo Cui
- Cardiology DepartmentThe First Affiliated Hospital of Hunan Normal UniversityHunan Provincial People's HospitalChangshaP.R. China
| |
Collapse
|
10
|
Sun D, Ma T, Zhang Y, Zhang F, Cui B. Overexpressed miR-335-5p reduces atherosclerotic vulnerable plaque formation in acute coronary syndrome. J Clin Lab Anal 2021; 35:e23608. [PMID: 33277957 PMCID: PMC7891542 DOI: 10.1002/jcla.23608] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Accepted: 09/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Acute coronary syndrome (ACS) may induce cardiovascular death. The correlation of mast cells related microRNAs (miRs) with risk of ACS has been investigated. We explored regulatory mechanism of miR-335-5p on macrophage innate immune response, atherosclerotic vulnerable plaque formation, and revascularization in ACS in relation to Notch signaling. METHODS ACS-related gene microarray was collected from Gene Expression Omnibus database. After different agomir or antagomir, or inhibitor of Notch signaling treatment, IL-6, IL-1β, TNF-α, MCP-1, ICAM-1, and VCAM-1 levels were tested in ACS mice. Additionally, Notch signaling-related genes and matrix metalloproteinases (MMPs) were measured after miR-335-5p interference. Finally, mouse atherosclerosis, lipid accumulation, and the collagen/vessel area ratio of plaque were determined. RESULTS miR-335-5p targeted JAG1 and mediated Notch signaling in ACS. miR-335-5p up-regulation and Notch signaling inhibition reduced expression of JAG1, Notch pathway-related genes, IL-6, IL-1β, TNF-α, MCP-1, ICAM-1, VCAM-1, and MMPs, but promote TIMP1 and TIMP2 expression. Additionally, vulnerable plaques were decreased and collagen fiber contents were observed to increase after miR-335-5p overexpression and Notch signaling inhibition. CONCLUSIONS Overexpression of miR-335-5p inhibited innate immune response of macrophage, reduced atherosclerotic vulnerable plaque formation, and promoted revascularization in ACS mice targeting JAG1 through Notch signaling.
Collapse
Affiliation(s)
- Dingjun Sun
- Cardiology DepartmentCentral South University Xiangya School of Medicine Affiliated Haikou Hospital (Haikou People’s Hospital)HaikouP.R. China
| | - Tianyi Ma
- Cardiology DepartmentCentral South University Xiangya School of Medicine Affiliated Haikou Hospital (Haikou People’s Hospital)HaikouP.R. China
| | - Yixue Zhang
- Cardiology DepartmentCentral South University Xiangya School of Medicine Affiliated Haikou Hospital (Haikou People’s Hospital)HaikouP.R. China
| | - Fuwei Zhang
- Cardiology DepartmentCentral South University Xiangya School of Medicine Affiliated Haikou Hospital (Haikou People’s Hospital)HaikouP.R. China
| | - Bo Cui
- Cardiology DepartmentThe First Affiliated Hospital of Hunan Normal UniversityHunan Provincial People's HospitalChangshaP.R. China
| |
Collapse
|
11
|
Zhang R, Song B, Hong X, Shen Z, Sui L, Wang S. microRNA-9 Inhibits Vulnerable Plaque Formation and Vascular Remodeling via Suppression of the SDC2-Dependent FAK/ERK Signaling Pathway in Mice With Atherosclerosis. Front Physiol 2020; 11:804. [PMID: 32765295 PMCID: PMC7378740 DOI: 10.3389/fphys.2020.00804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNAs or miRs) play important roles in modulating the occurrence and progression of atherosclerosis and acute coronary syndrome (ACS). Herein, this study aimed to investigate the possible role of miR-9 in the development of atherosclerosis. Initially, the differentially expressed genes associated with ACS were screened and miRNAs that regulate syndecan-2 (SDC2) were predicted using microarray analysis. Furthermore, the biological functions of miR-9 and SDC2 on aortic plaque area, proliferation of collagen fibers, Mac-3-labeled macrophages, inflammatory response, and levels of the focal adhesion kinase/extracellular signal-regulated kinase (FAK/ERK) signaling pathway-related proteins in atherosclerosis were evaluated after ectopic miR-9 expression or SDC2 depletion in ACS mice using oil red O staining, Masson’s trichrome staining, immunohistochemistry, and Western blot analysis, respectively. SDC2 was highly-expressed, while miR-9 was poorly-expressed in atherosclerosis. Additionally, miR-9 targeted SDC2 and negatively-regulated its expression. Up-regulation of miR-9 reduced aortic plaque area, the proliferation of collagen fibers, Mac-3-labeled macrophages and levels of IL-6, IL-1β, and TNF-α by suppressing SDC2 and the FAK/ERK signaling pathway, thereby ameliorating atherosclerosis in ACS mice. In conclusion, the current study provides evidence that miR-9 retards atherosclerosis by repressing SDC2 and the FAK/ERK signaling pathway, highlighting a new theoretical basis for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ruihong Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Beibei Song
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaojian Hong
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiyuan Shen
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Sui
- Department of Emergency, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Siyu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Ji L, Lin Z, Wan Z, Xia S, Jiang S, Cen D, Cai L, Xu J, Cai X. miR-486-3p mediates hepatocellular carcinoma sorafenib resistance by targeting FGFR4 and EGFR. Cell Death Dis 2020; 11:250. [PMID: 32313144 PMCID: PMC7170966 DOI: 10.1038/s41419-020-2413-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
HCC is a common malignancy worldwide and surgery or reginal treatments are deemed insufficient for advanced-stage disease. Sorafenib is an inhibitor of many kinases and was shown to benefit advanced HCC patients. However, resistance emerges soon after initial treatment, limiting the clinical benefit of sorafenib, and the mechanisms still remain elusive. Thus, this study aims to investigate the mechanisms of sorafenib resistance and to provide possible targets for combination therapies. Through miRNA sequencing, we found that miR-486-3p was downregulated in sorafenib resistant HCC cell lines. Cell viability experiments showed increased miR-486-3p expression could induce cell apoptosis while miR-486-3p knockdown by CRISPR-CAS9 technique could reduce cell apoptosis in sorafenib treatment. Clinical data also indicated that miR-486-3p level was downregulated in tumor tissue compared with adjacent normal tissue in HCC patients. Mechanism dissections showed that FGFR4 and EGFR were the targets of miR-486-3p, which was verified by luciferase reporter assay. Importantly, FGFR4 or EGFR selective inhibitor could enhance sorafenib efficacy in the resistant cells. Moreover, in vivo sorafenib resistant model identified that over-expressing miR-486-3p by lentivirus injection could overcome sorafenib resistance by significantly suppressing tumor growth in combination with the treatment of sorafenib. In conclusion, we found miR-486-3p was an important mediator regulating sorafenib resistance by targeting FGFR4 and EGFR, thus offering a potential target for HCC treatment.
Collapse
Affiliation(s)
- Lin Ji
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Zhongjie Lin
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Zhe Wan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Shunjie Xia
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Shi Jiang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Dong Cen
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Liuxin Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.
| | - Xiujun Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.
| |
Collapse
|
13
|
Xue Y, Zhou B, Wu J, Miao G, Li K, Li S, Zhou J, Geng Y, Zhang P. Transplantation of Endothelial Progenitor Cells in the Treatment of Coronary Artery Microembolism in Rats. Cell Transplant 2020; 29:963689720912688. [PMID: 32233803 PMCID: PMC7444210 DOI: 10.1177/0963689720912688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As the impairment of myocardial microenvironments due to coronary
microembolization (CME) compromises the treatment effect of percutaneous
coronary intervention and leads to adverse prognosis, we hypothesized that
endothelial progenitor cells (EPCs) transplantation could improve cardiac
function in the condition of CME. Low- (2 × 105) and high- (2 × 106) dose rat bone
marrow-derived EPCs were transplanted in a model of CME. To develop a CME model,
rats were injected with autologous micro-blood-clots into the left ventricle.
Echocardiograph was examined before and 1, 7, and 28 days after EPC
transplantation; serum cardiac troponin I (cTNI), von Willebrand factor (vWF),
and cardiac microRNA expression were examined one day after EPCs
transplantation. Heart morphology and vascular endothelial growth factor (VEGF),
vWF, and basic fibroblast growth factor (bFGF) expression were examined one day
after EPC transplantation. After 10 days of culture inductions, BM-EPCs have high purity as confirmed by
flow cytometry. Cardiac function reflected by left ventricular ejection fraction
significantly decreased after CME treatment and rescued by low-dose EPC.
Compared to the sham group, cTNI and vWF serum levels increased significantly
after CME treatment and rescued by low-dose EPC and high-dose EPC. Low-dose EPC
treatment decreased myocardial necrosis and fibrosis and elevated cardiac
expression of VEGF and vWF, while decreasing the cardiac expression of bFGF.
Low-dose EPC treatment significantly suppressed cardiac expression of
microRNA-19a but significantly enhanced microRNA-21, microRNA-214, and
microRNA-486-3p expression. In conclusion, our results indicate that low-dose
EPC transplantation may play a proangiogenic, antifibroblast, antifibrosis, and
antinecrosis role and enhance cardiac function in a rat model of CME through a
microRNA-related pathway.
Collapse
Affiliation(s)
- Yajun Xue
- Graduate School, Tsinghua University, Beijing, China.,Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Boda Zhou
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Jian Wu
- Department of Physics, Tsinghua University, Beijing, China
| | - Guobin Miao
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Kun Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Siyuan Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Jie Zhou
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Yu Geng
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| |
Collapse
|
14
|
Noncoding RNAs as Biomarkers for Acute Coronary Syndrome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3298696. [PMID: 32337239 PMCID: PMC7154975 DOI: 10.1155/2020/3298696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
Acute coronary syndrome (ACS), consisting of acute myocardial infarction and unstable angina, is the most dangerous and fatal form of coronary heart disease. Acute coronary syndrome has sudden onset and rapid development, which may lead to malignant life-threatening conditions at any time. Therefore, early detection and diagnosis are critical for patients with ACS. Recent studies have found that noncoding RNA is of great significance in the diagnosis and treatment of cardiovascular diseases. In this review, we summarized recent data on circulating noncoding RNAs (including microRNA, long noncoding RNA, and circular RNA) as diagnostic and prognostic markers in ACS including acute myocardial infarction and unstable angina. Specifically, microRNAs (miRNAs) as diagnostic markers are divided into three types: miRNAs of increased expression in ACS, miRNAs of decreased expression in ACS, and miRNAs of contradictory expression in ACS. Moreover, we described these miRNAs of increased expression in ACS based on miRNAs family. This review may result in a great guidance of noncoding RNAs as biomarkers for ACS in clinical practice.
Collapse
|
15
|
ElKhouly AM, Youness RA, Gad MZ. MicroRNA-486-5p and microRNA-486-3p: Multifaceted pleiotropic mediators in oncological and non-oncological conditions. Noncoding RNA Res 2020; 5:11-21. [PMID: 31993547 PMCID: PMC6971376 DOI: 10.1016/j.ncrna.2020.01.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Despite historically known as "junk" DNA, nowadays non-coding RNA transcripts (ncRNAs) are considered as fundamental players in various physiological and pathological conditions. Nonetheless, any alteration in their expression level has been reported to be directly associated with the incidence and aggressiveness of several diseases. MicroRNAs (miRNAs) are the well-studied members of the ncRNAs family. Several reports have highlighted their crucial roles in the post-transcriptional manipulation of several signaling pathways in different pathological conditions. In this review, our main focus is the multifaceted microRNA-486 (miR-486). miR-486-5p and miR-486-3p have been reported to have central roles in several types oncological and non-oncological conditions such as lung, liver, breast cancers and autism, intervertebral disc degeneration and metabolic syndrome, respectively. Moreover, we spotted the light onto the pleiotropic role of miR-486-5p in acting as competing endogenous RNA with other members of ncRNAs family such as long non-coding RNAs.
Collapse
Affiliation(s)
- Aisha M ElKhouly
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - R A Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - M Z Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
16
|
Burns KE, Deane-Alder KD, Bellissima BL, Tingle MD. Circulating microRNA as biomarkers of clozapine-induced cardiotoxicity. Biomarkers 2019; 25:76-85. [PMID: 31722571 DOI: 10.1080/1354750x.2019.1693631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: This work investigated the utility of circulating microRNA (miRNA) as biomarkers of clozapine (CLZ)-induced cardiotoxicities: serious adverse events with an unusually high incidence in Australia and New Zealand.Methods: Global plasma miRNA expression was analysed by microarray in patients taking CLZ, to investigate differential expression between CLZ-induced cardiotoxicity cases (n = 6) and matched control patients (n = 12). The results were validated by RT-qPCR using a panel of 17 miRNA, and their expression was examined in both CLZ-naïve healthy volunteers (n = 12) and an expanded cohort of CLZ-taking patients (n = 21). Temporal changes were also examined in two healthy volunteers and two CLZ-induced cardiotoxicity patients.Results: No miRNA were differentially expressed between cases of CLZ-induced cardiotoxicity and control patients. Circulating levels of several miRNA were significantly altered in CLZ-taking patients compared to healthy volunteers, with miR-16-5p, miR-25-3p, miR-92a-3p, miR-320a-3p, and miR-486-3p upregulated and miR-22-3p, miR-126-3p, and miR-142-3p downregulated in the patients. Five of these (miR-16-5p, miR-22-3p, miR-92a-3p, miR-126-3p, miR-142-3p) were stably expressed over time in both CLZ-induced cardiotoxicity patients and CLZ-naïve healthy volunteers.Conclusions: Plasma miRNA are not useful biomarkers of CLZ-induced cardiotoxicity, however patients taking CLZ have significantly altered circulating miRNA compared to healthy volunteers.
Collapse
Affiliation(s)
- Kathryn E Burns
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Kieran D Deane-Alder
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Brandi L Bellissima
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Malcolm D Tingle
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Abstract
Objectives: Firefighters have elevated cancer incidence and mortality rates. MicroRNAs play prominent roles in carcinogenesis, but have not been previously evaluated in firefighters. Methods: Blood from 52 incumbent and 45 new recruit nonsmoking firefighters was analyzed for microRNA expression, and the results adjusted for age, obesity, ethnicity, and multiple comparisons. Results: Nine microRNAs were identified with at least a 1.5-fold significant difference between groups. All six microRNAs with decreased expression in incumbent firefighters have been reported to have tumor suppressor activity or are associated with cancer survival, and two of the three microRNAs with increased expression in incumbent firefighters have activities consistent with cancer promotion, with the remaining microRNA associated with neurological disease. Conclusion: Incumbent firefighters showed differential microRNA expression compared with new recruits, providing potential mechanisms for increased cancer risk in firefighters.
Collapse
|
18
|
Verjans R, Derks WJA, Korn K, Sönnichsen B, van Leeuwen REW, Schroen B, van Bilsen M, Heymans S. Functional Screening Identifies MicroRNAs as Multi-Cellular Regulators of Heart Failure. Sci Rep 2019; 9:6055. [PMID: 30988323 PMCID: PMC6465262 DOI: 10.1038/s41598-019-41491-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/04/2019] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is the leading cause of death in the Western world. Pathophysiological processes underlying HF development, including cardiac hypertrophy, fibrosis and inflammation, are controlled by specific microRNAs (miRNAs). Whereas most studies investigate miRNA function in one particular cardiac cell type, their multicellular function is poorly investigated. The present study probed 194 miRNAs -differentially expressed in cardiac inflammatory disease - for regulating cardiomyocyte size, cardiac fibroblasts collagen content, and macrophage polarization. Of the tested miRNAs, 13%, 26%, and 41% modulated cardiomyocyte size, fibroblast collagen production, and macrophage polarization, respectively. Seventeen miRNAs affected all three cellular processes, including miRNAs with established (miR-210) and unknown roles in cardiac pathophysiology (miR-145-3p). These miRNAs with a multi-cellular function commonly target various genes. In-depth analysis in vitro of previously unstudied miRNAs revealed that the observed phenotypical alterations concurred with changes in transcript and protein levels of hypertrophy-, fibrosis- and inflammation-related genes. MiR-145-3p and miR-891a-3p were identified to regulate the fibrotic response, whereas miR-223-3p, miR-486-3p, and miR-488-5p modulated macrophage activation and polarisation. In conclusion, miRNAs are multi-cellular regulators of different cellular processes underlying cardiac disease. We identified previously undescribed roles of miRNAs in hypertrophy, fibrosis, and inflammation, and attribute new cellular effects to various well-known miRNAs.
Collapse
Affiliation(s)
- Robin Verjans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands
- Former Cenix BioScience GmbH, 01307, Dresden, Saxony, Germany
| | - Wouter J A Derks
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands
- Former Cenix BioScience GmbH, 01307, Dresden, Saxony, Germany
| | - Kerstin Korn
- Former Cenix BioScience GmbH, 01307, Dresden, Saxony, Germany
| | | | - Rick E W van Leeuwen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands
| | - Blanche Schroen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands
| | - Marc van Bilsen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands.
- Center for Molecular and Cardiovascular Biology, Department of Cardiovascular Sciences, 3001, Leuven, Vlaams-Brabant, Belgium.
- Netherlands Heart Institute, 3511 EP, Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
19
|
The association between peroxisome proliferator-activated receptor Δ rs3777744, rs3798343, and rs6922548 and coronary artery disease. Biosci Rep 2019; 39:BSR20181510. [PMID: 30429241 PMCID: PMC6328892 DOI: 10.1042/bsr20181510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 11/17/2022] Open
Abstract
Objective: The aim of the present study is to investigate the association between the single nucleotide polymorphism (SNP) sites of peroxisome proliferator-activated receptor Δ (PPARD) and the risk of coronary artery disease (CAD). To this end, a prospective observational single-center study of the clinical data from 880 subjects in a Chinese population was conducted. Methods: A total of 880 subjects, including 609 CAD patients and 271 control subjects, were selected for the present study. All inpatients had 4 ml of venous blood drawn after 12 h of fasting, and then clinical tests were conducted to obtain the biochemical parameters. CAD patients and Controls were distinguished by coronary angiography. Statistical analysis was conducted with SPSS software (ver 16.0). Results: A significant association between the G-alleles of PPARD rs3777744 and rs3798343 and a decreased risk for CAD was found. Moreover, we found an interaction between high fasting high-density lipoprotein cholesterol (HDL-C) serum levels, low serum glucose levels and their genotypes, ultimately decreasing the risk of CAD. Haplotype analysis was conducted on the three SNP sites, rs3777744 and rs3798343 to form a block [r2 = 0.79, D′ = 0.99). The A-C haplotypes were associated with an increased risk of CAD (odds ratio (OR), 95% confidence interval (CI): 1.321 (1.060–1.647), P=0.013], and the G-G haplotypes were associated with a decreased risk [OR, 95% CI: 0.714 (0.567–0.849), P=0.004]. Conclusions: Our study indicates a significant association between the G-alleles of PPARD rs3777744 and rs3798343 and a decreased CAD risk. In addition, genotypes interact with high serum HDL-C levels and low serum glucose levels, resulting in decreased prevalence of CAD.
Collapse
|
20
|
Wang W, Li Z, Zheng Y, Yan M, Cui Y, Jiang J. Circulating microRNA-92a level predicts acute coronary syndrome in diabetic patients with coronary heart disease. Lipids Health Dis 2019; 18:22. [PMID: 30670045 PMCID: PMC6343303 DOI: 10.1186/s12944-019-0964-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/06/2019] [Indexed: 12/24/2022] Open
Abstract
PURPOSE This study was designed to explore the value of monitoring miR-92a in T2DM patients with coronary heart disease (CHD). MATERIALS AND METHODS 40 ACS patients with prior history of CHD and diabetes while the onset time of diabetes preceded that of CHD by more than 2 years were enrolled as the DACS group(diabetic ACS group). 40 ACS subjects who had had a definite diagnosis of CHD for more than 2 years with no history of T2DM were recuited as the CACS group(chronic CHD with ACS group). All enrolled subjects from DACS and CACS group came from an emergency basis and diagnosed with ACS by coronary angiography. Another 68 age- and sex-matched volunteers with chronic stable CHD without diabetes history were assigned as the control group (CHD group). We examined the serum levels of miR-92a and analyzed their correlations with blood pressure, glucose level, and lipid level. RESULTS The levels of miR-92a were significantly elevated in the DACS group compared with those of the CACS and CHD groups. Multivariate analysis showed that miR-92a, systolic blood pressure (SBP), and glycosylated hemoglobin (HbA1c) were significantly related to ACS events in patients with T2DM. Forward stepwise binary logistic regression analysis identified miR-92a as an independent predictive factor for ACS events in the patients with T2DM. CONCLUSION An elevated circulating miR-92a level was associated with an increased risk of ACS in CHD patients with T2DM. Thus the level of miR-92a, especially combined with elevated SBP and HbA1c, may be helpful in the detection of ACS in patients with T2DM.
Collapse
Affiliation(s)
- Wenyi Wang
- International Medical Center, Tianjin First Central Hospital, No. 24 of Fukang Road, Nankai District, Tianjin, 300192, China
| | - Zhigang Li
- International Medical Center, Tianjin First Central Hospital, No. 24 of Fukang Road, Nankai District, Tianjin, 300192, China.
| | - Yashu Zheng
- International Medical Center, Tianjin First Central Hospital, No. 24 of Fukang Road, Nankai District, Tianjin, 300192, China
| | - Meiling Yan
- Pharmacy Department, Tianjin First Central Hospital, Tianjin, China
| | - Yameng Cui
- International Medical Center, Tianjin First Central Hospital, No. 24 of Fukang Road, Nankai District, Tianjin, 300192, China
| | - Jiechun Jiang
- Medical Laboratory, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
21
|
Luo XY, Zhu XQ, Li Y, Wang XB, Yin W, Ge YS, Ji WM. MicroRNA-150 restores endothelial cell function and attenuates vascular remodeling by targeting PTX3 through the NF-κB signaling pathway in mice with acute coronary syndrome. Cell Biol Int 2018; 42:1170-1181. [PMID: 29741292 DOI: 10.1002/cbin.10985] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/05/2018] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) have been known to function as important regulators in the vascular system, with various physiopathological effects such as vascular remodeling and hypertension modulation. We aimed to explore whether microRNA-150 (miR-150) regulates endothelial cell function and vascular remodeling in acute coronary syndrome (ACS), and the involvement of PTX3 and NF-κB signaling pathway. Ten normal mice and sixty ApoE-/- mice were chosen, and their coronary artery tissues and endothelial cells were extracted. ApoE-/- mice were injected with a series of inhibitor or mimic for miR-150, or siRNA against PTX3. The miR-150 expression, NF-κB1, RELA, and PTX3 mRNA expression were assessed by reverse transcription quantitative polymerase chain reaction, and pentraxin-3, p-P50, and p-P65 protein expression by Western blot analysis. Cell viability and migration were assessed by MTT assay and scratch test. Matrigel tube formation assay was employed to determine vascular remodeling of endothelial cells. The dual-luciferase reporter assay verified that PTX3 was a target of miR-150. Mice with ACS presented with decreased miR-150 but increased PTX3. It was observed that the miR-150 mimic and siRNA against PTX3 reduced levels of PTX3, NF-κB1, and RELA in mice, and the miR-150 inhibitor reversed the tendency. The in vitro cell experimentation proved that miR-150 might facilitate endothelial cell proliferation, migration, and restrain vascular remodeling via inhibiting PTX3 expression. On the basis of the results of this study, it was hypothesized that miR-150 could possibly maintain endothelial cell function and suppress vascular remodeling by inhibiting PTX3 through the NF-κB signaling pathway in mice with ACS.
Collapse
Affiliation(s)
- Xian-Yuan Luo
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| | - Xiao-Qing Zhu
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| | - Ying Li
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| | - Xue-Bin Wang
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| | - Wei Yin
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| | - Yi-Shan Ge
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| | - Wei-Min Ji
- Department of Cardiovascular, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, P. R. China.,Department of Cardiovascular, Suzhou Science and Technology Town Hospital, Suzhou, 215153, P. R. China
| |
Collapse
|
22
|
Long noncoding RNA HEIH promotes melanoma cell proliferation, migration and invasion via inhibition of miR-200b/a/429. Biosci Rep 2017; 37:BSR20170682. [PMID: 28487474 PMCID: PMC5479024 DOI: 10.1042/bsr20170682] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are frequently dysregulated and have important roles in many diseases, particularly cancers. lncRNA-HEIH was first identified in hepatocellular carcinoma (HCC). The expression, clinical significance and roles of lncRNA-HEIH in melanoma are still unknown. In the present study, we found that lncRNA-HEIH is highly expressed in melanoma tissues and cell lines, associated with advanced clinical stages, and predicts poor outcomes in melanoma patients. Functional assays showed that ectopic expression of lncRNA-HEIH promotes melanoma cell proliferation, migration and invasion. Knockdown of lncRNA-HEIH inhibits melanoma cell proliferation, migration and invasion. Mechanistically, we revealed that lncRNA-HEIH directly binds to miR-200b/a/429 promoter and represses miR-200b/a/429 transcription. The expression of miR-200b is inversely associated with lncRNA-HEIH in melanoma tissues. Furthermore, overexpression of miR-200b/a/429 abrogates melanoma cell proliferation, migration and invasion enhanced by lncRNA-HEIH. In conclusion, we identified lncRNA-HEIH as a key oncogene in melanoma via transcriptional inhibition of miR-200b/a/429. Our data suggested that lncRNA-HEIH may serve as a promising prognostic biomarker and therapeutic target for melanoma.
Collapse
|
23
|
Circulating endothelial microparticles and miR-92a in acute myocardial infarction. Biosci Rep 2017; 37:BSR20170047. [PMID: 28213360 PMCID: PMC5469331 DOI: 10.1042/bsr20170047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 02/03/2023] Open
Abstract
Microparticles (MPs) and miRNAs have been shown to play important roles in coronary artery disease (CAD) by monitoring endothelial dysfunction. The present study aims to investigate the diagnostic value of endothelial MPs (EMPs) and miRNAs (miR-92a or miR-23a) as biomarkers in distinguishing patients with acute myocardial infarction (AMI) from those with CAD. Plasma samples from 37 patients with AMI, 42 patients with stable CAD (SCAD), and 35 healthy adults were collected for investigation in the present study. The numbers of CD31+/CD42b- MPs, CD31+/CD42b+ MPs, and CD31-/CD42b- MPs were measured by flow cytometry and the levels of miR-92a and miR-23a were analyzed using reverse transcription-quantitative PCR. Moreover, cardiac troponin I (cTnI) expression was detected by ELISA to serve as a routine diagnostic parameter. The number of CD31+/CD42b- was higher in AMI group than those in SCAD and healthy groups. Besides, the expression of miR-92a was higher in AMI group compared with two other groups. Furthermore, evidence showed that there was a positive correlation between the levels of CD31+/CD42b- MPs and miR-92a Finally, the receiver operating characteristic (ROC) curve revealed that the area value under the curve of CD31+/CD42b- MPs, miR-92a and cTnI was 0.893, 0.888, and 0.912 respectively. CD31+/CD42b- MPs and miR-92a might have great potential to provide diagnostic value for AMI and could probably regulate the endothelial dysfunction in AMI patients.
Collapse
|
24
|
Russo F, Rizzo M, Belling K, Brunak S, Folkersen L. The hunt for fatal myocardial infarction biomarkers: predictive circulating microRNAs. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S1. [PMID: 27867969 DOI: 10.21037/atm.2016.08.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Francesco Russo
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Milena Rizzo
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy; ; Tuscan Tumor Institute, Florence, Italy
| | - Kirstine Belling
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Folkersen
- Center for Biological Sequence analysis, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
25
|
Cortez-Dias N, Costa MC, Carrilho-Ferreira P, Silva D, Jorge C, Calisto C, Pessoa T, Robalo Martins S, de Sousa JC, da Silva PC, Fiúza M, Diogo AN, Pinto FJ, Enguita FJ. Circulating miR-122-5p/miR-133b Ratio Is a Specific Early Prognostic Biomarker in Acute Myocardial Infarction. Circ J 2016; 80:2183-91. [PMID: 27593229 DOI: 10.1253/circj.cj-16-0568] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are key players in cardiovascular development and disease. However, not only miRNAs of a cardiac origin have a critical role in heart function. Recent studies have demonstrated that miR-122-5p, a hepatic miRNA, increases in the bloodstream during ischemic cardiogenic shock and it is upregulated in the infarcted myocardium. The aim of the present study was to determine the potential of circulating miR-122-5p as a biomarker for early prognostic stratification of ST-segment elevation acute myocardial infarction (STEMI) patients. METHODS AND RESULTS One hundred and forty-two consecutive STEMI patients treated with primary angioplasty were included in the study. Serum levels of miR-1-3p, -122-5p, -133a-3p, -133b, -208b-3p and -499a-5p were measured at the time of cardiac catheterization by quantitative polymerase chain reaction and related to in-hospital and long-term outcome. During a follow up of 20.8 months, 9 patients died, 6 had recurrence of myocardial infarction, and 26 patients suffered an adverse cardiovascular event. Event-free survival was significantly worse in patients with a higher miR-122-5p/133b ratio (3rd tertile distribution, above 1.42 Log(10)), having almost a 9-fold higher risk of death or myocardial infarction and a 4-fold higher risk of adverse cardiovascular events. CONCLUSIONS This study showed that the miR-122-5p/133b ratio is a new prognostic biomarker for the early identification of STEMI patients at a higher risk of developing major adverse events after undergoing primary percutaneous coronary intervention. (Circ J 2016; 80: 2183-2191).
Collapse
Affiliation(s)
- Nuno Cortez-Dias
- University Hospital Santa Maria, Department of Cardiology, Lisbon Academic Medical Centre, CCUL, Lisbon University
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|