1
|
Hussain Y, Abdullah, Alsharif KF, Aschner M, Theyab A, Khan F, Saso L, Khan H. Therapeutic Role of Carotenoids in Blood Cancer: Mechanistic Insights and Therapeutic Potential. Nutrients 2022; 14:1949. [PMID: 35565917 PMCID: PMC9104383 DOI: 10.3390/nu14091949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
Blood cancers are characterized by pathological disorders causing uncontrolled hematological cell division. Various strategies were previously explored for the treatment of blood cancers, including chemotherapy, Car-T therapy, targeting chimeric antigen receptors, and platelets therapy. However, all these therapies pose serious challenges that limit their use in blood cancer therapy, such as poor metabolism. Furthermore, the solubility and stability of anticancer drugs limit efficacy and bio-distribution and cause toxicity. The isolation and purification of natural killer cells during Car-T cell therapy is a major challenge. To cope with these challenges, treatment strategies from phyto-medicine scaffolds have been evaluated for blood cancer treatments. Carotenoids represent a versatile class of phytochemical that offer therapeutic efficacy in the treatment of cancer, and specifically blood cancer. Carotenoids, through various signaling pathways and mechanisms, such as the activation of AMPK, expression of autophagy biochemical markers (p62/LC3-II), activation of Keap1-Nrf2/EpRE/ARE signaaling pathway, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), increased level of reactive oxygen species, cleaved poly (ADP-ribose) polymerase (c-PARP), c-caspase-3, -7, decreased level of Bcl-xL, cycle arrest at the G0/G1 phase, and decreasing STAT3 expression results in apoptosis induction and inhibition of cancer cell proliferation. This review article focuses the therapeutic potential of carotenoids in blood cancers, addressing various mechanisms and signaling pathways that mediate their therapeutic efficacy.
Collapse
Affiliation(s)
- Yaseen Hussain
- Lab of Controlled Release and Drug Delivery System, College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, China;
- Department of Pharmacy, Bashir Institute of Health Sciences, Bharakahu, Islamabad 44000, Pakistan
| | - Abdullah
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA;
| | - Abdulrahman Theyab
- Department of Laboratory and Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia;
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Fazlullah Khan
- Faculty of Pharmacy, Capital University of Science & Technology, Islamabad 44000, Pakistan;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
2
|
Saleh OM, Albakri KA, Alabdallat YJ, Dajani MH, El Gazzar WB. The safety and efficacy of CAR-T cells in the treatment of prostate cancer: review. Biomarkers 2021; 27:22-34. [PMID: 34882051 DOI: 10.1080/1354750x.2021.2016973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE A new breakthrough development in cancer treatment is chimeric antigen receptor (CAR)-T cell therapy. In this review, we focussed on its efficacy & safety in prostate cancer, obstacles impeding its clinical use, and some strategies trying to overcome them. METHODS Searching for relevant articles was done using the PubMed and Cochrane Library databases. Studies had to be published in full-text in English in order to be considered. RESULTS Many factors can limit optimal CAR-T cell outcomes, including the hostile Prostate microenvironment, age, comorbidities, and tumour grade. The adverse effects of the therapy, particularly the cytokine release syndrome, are a major source of worry after treatment administration. Attempts to alter gamma/delta T-cells and NK cells with CAR, on the other hand, have demonstrated higher effectiveness and safety than conventional CAR-T cells. CONCLUSION To improve the use of immunotherapies, a greater understanding of the prostate cancer microenvironment is required. Concerning toxicity, more research is needed to find the most specific and highly expressed prostate antigens. Furthermore, discovering predictive biomarkers for toxicities, as well as choosing the correct patient for therapy, might decrease immune-related side effects and achieve a greater response.
Collapse
Affiliation(s)
| | | | | | - Majd Hamdi Dajani
- Medical Student, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Walaa Bayoumie El Gazzar
- Department of Basic medical sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan.,Department of Medical Biochemistry and molecular biology, Faculty of Medicine, Benha University, Benha city, Egypt
| |
Collapse
|
3
|
Lin Z, Wu Z, Luo W. A Novel Treatment for Ewing's Sarcoma: Chimeric Antigen Receptor-T Cell Therapy. Front Immunol 2021; 12:707211. [PMID: 34566963 PMCID: PMC8461297 DOI: 10.3389/fimmu.2021.707211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Ewing's sarcoma (EWS) is a malignant and aggressive tumor type that predominantly occurs in children and adolescents. Traditional treatments such as surgery, radiotherapy and chemotherapy, while successful in the early disease stages, are ineffective in patients with metastases and relapses who often have poor prognosis. Therefore, new treatments for EWS are needed to improve patient's outcomes. Chimeric antigen receptor (CAR)-T cells therapy, a novel adoptive immunotherapy, has been developing over the past few decades, and is increasingly popular in researches and treatments of various cancers. CAR-T cell therapy has been approved by the Food and Drug Administration (FDA) for the treatment of leukemia and lymphoma. Recently, this therapeutic approach has been employed for solid tumors including EWS. In this review, we summarize the safety, specificity and clinical transformation of the treatment targets of EWS, and point out the directions for further research.
Collapse
Affiliation(s)
| | | | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Dana H, Chalbatani GM, Jalali SA, Mirzaei HR, Grupp SA, Suarez ER, Rapôso C, Webster TJ. CAR-T cells: Early successes in blood cancer and challenges in solid tumors. Acta Pharm Sin B 2021; 11:1129-1147. [PMID: 34094824 PMCID: PMC8144892 DOI: 10.1016/j.apsb.2020.10.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
New approaches to cancer immunotherapy have been developed, showing the ability to harness the immune system to treat and eliminate cancer. For many solid tumors, therapy with checkpoint inhibitors has shown promise. For hematologic malignancies, adoptive and engineered cell therapies are being widely developed, using cells such as T lymphocytes, as well as natural killer (NK) cells, dendritic cells, and potentially others. Among these adoptive cell therapies, the most active and advanced therapy involves chimeric antigen receptor (CAR)-T cells, which are T cells in which a chimeric antigen receptor is used to redirect specificity and allow T cell recognition, activation and killing of cancers, such as leukemia and lymphoma. Two autologous CAR-T products have been approved by several health authorities, starting with the U.S. Food and Drug Administration (FDA) in 2017. These products have shown powerful, inducing, long-lasting effects against B cell cancers in many cases. In distinction to the results seen in hematologic malignancies, the field of using CAR-T products against solid tumors is in its infancy. Targeting solid tumors and trafficking CAR-T cells into an immunosuppressive microenvironment are both significant challenges. The goal of this review is to summarize some of the most recent aspects of CAR-T cell design and manufacturing that have led to successes in hematological malignancies, allowing the reader to appreciate the barriers that must be overcome to extend CAR-T therapies to solid tumors successfully.
Collapse
Affiliation(s)
- Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 13145-158, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717434, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717434, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Stephan A. Grupp
- Division of Oncology, Department of Pediatrics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eloah Rabello Suarez
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP 09210-580, Brazil
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Dong Y, Wan Z, Gao X, Yang G, Liu L. Reprogramming Immune Cells for Enhanced Cancer Immunotherapy: Targets and Strategies. Front Immunol 2021; 12:609762. [PMID: 33968014 PMCID: PMC8097044 DOI: 10.3389/fimmu.2021.609762] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death and a major public health problem all over the world. Immunotherapy is becoming a revolutionary clinical management for various cancer types. Restoration of aberrant immune surveillance on cancers has achieved markable progress in the past years by either in vivo or ex vivo engineering of the immune cells. Here, we summarized the central roles of immune cells in tumor progression and regression, and the existing and emerging strategies for different immune cell-based immunotherapies. In addition, the current challenges and the potential solutions in translating the immunotherapies into the clinic are also discussed.
Collapse
Affiliation(s)
- Yan Dong
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaotong Gao
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Inflammatory Cells in Diffuse Large B Cell Lymphoma. J Clin Med 2020; 9:jcm9082418. [PMID: 32731512 PMCID: PMC7463675 DOI: 10.3390/jcm9082418] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL), known as the most common non-Hodgkin lymphoma (NHL) subtype, is characterized by high clinical and biological heterogeneity. The tumor microenvironment (TME), in which the tumor cells reside, is crucial in the regulation of tumor initiation, progression, and metastasis, but it also has profound effects on therapeutic efficacy. The role of immune cells during DLBCL development is complex and involves reciprocal interactions between tumor cells, adaptive and innate immune cells, their soluble mediators and structural components present in the tumor microenvironment. Different immune cells are recruited into the tumor microenvironment and exert distinct effects on tumor progression and therapeutic outcomes. In this review, we focused on the role of macrophages, Neutrophils, T cells, natural killer cells and dendritic cells in the DLBCL microenvironment and their implication as target for DLBCL treatment. These new therapies, carried out by the induction of adaptive immunity through vaccination or passive of immunologic effectors delivery, enhance the ability of the immune system to react against the tumor antigens inducing the destruction of tumor cells.
Collapse
|
7
|
Hallaj S, Meshkini F, Chaleshtari MG, Ghorbani A, Namdar A, Soleimanpour H, Jadidi-niaragh F. Conjugated CAR T cell one step beyond conventional CAR T cell for a promising cancer immunotherapy. Cell Immunol 2019; 345:103963. [DOI: 10.1016/j.cellimm.2019.103963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/07/2019] [Accepted: 08/08/2019] [Indexed: 02/04/2023]
|
8
|
Galvano A, Guarini A, Iacono F, Castiglia M, Rizzo S, Tarantini L, Gori S, Novo G, Bazan V, Russo A. An update on the conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting TKI-based therapy. Expert Opin Drug Saf 2019; 18:485-496. [PMID: 31062991 DOI: 10.1080/14740338.2019.1613371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The angiogenesis mechanism is considered a crucial point in neoplastic development. A growing number of multi-targeted tyrosine kinase inhibitors (TKI) has been developed and approved for cancer treatment during the last few years. Cardiac side effects still remain an issue to manage nowadays. These drugs mechanisms and toxicities have already been discussed, hence the authors will report updates on these already available drugs. AREAS COVERED This manuscript provides an updated review on the new mechanisms involved in angiogenesis and cardiotoxicity that are TKI-related. Here is reported an overview of the already available and the most recent TKIs under investigation in the oncology field. A literature review has been performed, focusing on the most relevant phase II and phase III trial results. EXPERT OPINION TKIs represent a new and important resource in the oncology field. Since the use and the number of VEGFR-TKI is constantly increasing, a specific focus on cardiotoxicity development and management appears as justified. Oncologists must record cardiovascular risk factors at baseline in order to stratify patients' risk before undergoing TKI-VEGFRs. A collaboration between oncologists and cardio-oncologists is strongly recommended to earlier manage cardiovascular events (i.e. arterial hypertension) that could interfere with oncological results.
Collapse
Affiliation(s)
- Antonio Galvano
- a Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences , University of Palermo , Palermo , Italy
| | - Aurelia Guarini
- a Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences , University of Palermo , Palermo , Italy
| | - Federica Iacono
- a Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences , University of Palermo , Palermo , Italy
| | - Marta Castiglia
- a Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences , University of Palermo , Palermo , Italy
| | - Sergio Rizzo
- a Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences , University of Palermo , Palermo , Italy
| | - Luigi Tarantini
- b Department of Cardiology , San Martino Hospital, ASL , Belluno , Italy
| | - Stefania Gori
- c Medical Oncology , Ospedale Sacro Cuore don Calabria , Verona , Italy
| | - Giuseppina Novo
- d Department of Cardiology , University Hospital Paolo Giaccone , Palermo , Italy
| | - Viviana Bazan
- e Department of Biomedicine, Neuroscience and Advanced Diagnostics - BIND , University of Palermo , Palermo , Italy
| | - Antonio Russo
- a Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences , University of Palermo , Palermo , Italy
| |
Collapse
|
9
|
Margolis N, Markovits E, Markel G. Reprogramming lymphocytes for the treatment of melanoma: From biology to therapy. Adv Drug Deliv Rev 2019; 141:104-124. [PMID: 31276707 DOI: 10.1016/j.addr.2019.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
This decade has introduced drastic changes in melanoma therapy, predominantly due to the materialization of the long promise of immunotherapy. Cytotoxic T cells are the chief component of the immune system, which are targeted by different strategies aimed to increase their capacity against melanoma cells. To this end, reprogramming of T cells occurs by T cell centered manipulation, targeting the immunosuppressive tumor microenvironment or altering the whole patient. These are enabled by delivery of small molecules, functional monoclonal antibodies, different subunit vaccines, as well as living lymphocytes, native or genetically engineered. Current FDA-approved therapies are focused on direct T cell manipulation, such as immune checkpoint inhibitors blocking CTLA-4 and/or PD-1, which paves the way for an effective immunotherapy backbone available for combination with other modalities. Here we review the biology and clinical developments that enable melanoma immunotherapy today and in the future.
Collapse
|
10
|
Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed Pharmacother 2018; 110:775-785. [PMID: 30554116 DOI: 10.1016/j.biopha.2018.12.022] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is a critical step in the progression of almost all human malignancies and some other life-threatening diseases. Anti-angiogenic therapy is a novel and effective approach for treatment of angiogenesis-dependent diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. In this article, we will review the main strategies developed for anti-angiogenic therapies beside their clinical applications, the major challenges, and the latest advances in the development of anti-angiogenesis-based targeted therapies.
Collapse
|
11
|
CAR-T Cells: Next Generation Cancer Therapeutics. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Köhler M, Greil C, Hudecek M, Lonial S, Raje N, Wäsch R, Engelhardt M. Current developments in immunotherapy in the treatment of multiple myeloma. Cancer 2018; 124:2075-2085. [PMID: 29409124 DOI: 10.1002/cncr.31243] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/28/2017] [Accepted: 12/23/2017] [Indexed: 12/29/2022]
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy and represents approximately 10% of all hematological neoplasms. Standard therapy consists of induction therapy followed by high-dose chemotherapy and autologous stem cell transplantation (ASCT) or, if ASCT cannot be performed, standard doublet, triplet, or quadruplet, novel agent-containing induction treatment until progression. Although MM is still regarded as mostly incurable by current standards, the development of several novel compounds, combination therapies, and immunotherapy approaches has raised great hopes about transforming MM into an indolent, chronic disease and possibly achieving a cure for individual patients. Several new inhibitory and immunological agents have been approved or are under intensive investigation and may lead to new therapeutic options for patients with relapsed/refractory MM, for patients ineligible for ASCT, and for patients after ASCT. Especially in the field of immunotherapy, including monoclonal antibodies, checkpoint inhibition, and chimeric antigen receptor T cells, current advances are rapid and highly promising. This review aims to summarize the newest and most promising immunotherapeutic agents for MM, their clinical efficacy, their adverse event (AE) profiles, and the ways in which these AEs can best be overcome or avoided. Cancer 2018;124:2075-85. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Martin Köhler
- Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Early Clinical Trial Unit, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Christine Greil
- Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Early Clinical Trial Unit, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | | | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Noopur Raje
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Ralph Wäsch
- Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Early Clinical Trial Unit, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Monika Engelhardt
- Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Early Clinical Trial Unit, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Abstract
Chimeric antigen receptor redirected T cells (CAR-T cells) have achieved inspiring outcomes in patients with B cell malignancies, and are now being investigated in other hematologic malignancies and solid tumors. CAR-T cells are generated by the T cells from patients’ or donors’ blood. After the T cells are expanded and genetically modified, they are reinfused into the patients. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. In this review, we first discuss the structure and evolution of chimeric antigen receptors. We then report on the tools used for production of CAR-T cells. Finally, we address the challenges posed by CAR-T cells.
Collapse
|