1
|
Khokhar M, Dey S, Tomo S, Jaremko M, Emwas AH, Pandey RK. Unveiling Novel Drug Targets and Emerging Therapies for Rheumatoid Arthritis: A Comprehensive Review. ACS Pharmacol Transl Sci 2024; 7:1664-1693. [PMID: 38898941 PMCID: PMC11184612 DOI: 10.1021/acsptsci.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease, that causes joint damage, deformities, and decreased functionality. In addition, RA can also impact organs like the skin, lungs, eyes, and blood vessels. This autoimmune condition arises when the immune system erroneously targets the joint synovial membrane, resulting in synovitis, pannus formation, and cartilage damage. RA treatment is often holistic, integrating medication, physical therapy, and lifestyle modifications. Its main objective is to achieve remission or low disease activity by utilizing a "treat-to-target" approach that optimizes drug usage and dose adjustments based on clinical response and disease activity markers. The primary RA treatment uses disease-modifying antirheumatic drugs (DMARDs) that help to interrupt the inflammatory process. When there is an inadequate response, a combination of biologicals and DMARDs is recommended. Biological therapies target inflammatory pathways and have shown promising results in managing RA symptoms. Close monitoring for adverse effects and disease progression is critical to ensure optimal treatment outcomes. A deeper understanding of the pathways and mechanisms will allow new treatment strategies that minimize adverse effects and maintain quality of life. This review discusses the potential targets that can be used for designing and implementing precision medicine in RA treatment, spotlighting the latest breakthroughs in biologics, JAK inhibitors, IL-6 receptor antagonists, TNF blockers, and disease-modifying noncoding RNAs.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru, 560066 Karnataka, India
| | - Sojit Tomo
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
2
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
3
|
Huang Y, Liu Q, Liu M, Xu L, Li Y, Chen Q, Guan D, Xu J, Lin C, Wang S. System pharmacology-based determination of the functional components and mechanisms in chronic heart failure treatment: an example of Zhenwu decoction. J Biomol Struct Dyn 2023:1-19. [PMID: 37921741 DOI: 10.1080/07391102.2023.2274515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Chronic heart failure (CHF) is the primary cause of death among patients with cardiovascular diseases, representing the advanced stage in the development of several cardiovascular conditions. Zhenwu decoction (ZWD) has gained widespread recognition as an efficacious remedy for CHF due to its potent therapeutic properties and absence of adverse effects. Nevertheless, the precise molecular mechanisms underlying its actions remain elusive. This study endeavors to unravel the intricate pharmacological underpinnings of five herbs within ZWD concerning CHF through an integrated approach. Initially, pertinent data regarding ZWD and CHF were compiled from established databases, forming the foundation for constructing an intricate network of active component-target interactions. Subsequently, a pioneering method for evaluating node significance was formulated, culminating in the creation of core functional association space (CFAS). To discern vital components, a novel dynamic programming algorithm was devised and used to determine the core component group (CCG) within the CFAS. Enrichment analysis of the CCG targets unveiled the potential coordinated molecular mechanisms of ZWD, illuminating its capacity to ameliorate CHF by modulating genes and related signaling pathways involved in pathological remodeling. Notable pathways encompass PI3K-Akt, diabetic cardiomyopathy, cAMP and MAPK signaling. Concluding the computational analyses, in vitro experiments were executed to assess the effects of vanillic acid, paradol, 10-gingerol and methyl cinnamate. Remarkably, these compounds demonstrated efficacy in reducing the production of ANP and BNP within isoprenaline-induced AC 16 cells, further validating their potential therapeutic utility. This investigation underscores the efficacy of the proposed model in enhancing the precision and reliability of CCG selection within ZWD, thereby presenting a novel avenue for mechanistic inquiries, compound refinement and the secondary development of TCM herbs.
Collapse
Affiliation(s)
- Yisheng Huang
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Meiyu Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liqian Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Quanlin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Jindong Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Chunshui Lin
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Sheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Arias C, Salazar LA. Ethanolic Extract of Propolis Modulates Autophagy-Related microRNAs in Osteoarthritic Chondrocytes. Int J Mol Sci 2023; 24:14767. [PMID: 37834215 PMCID: PMC10573165 DOI: 10.3390/ijms241914767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoarthritis is a multifactorial joint disease characterized by degeneration, and aging stands as a significant risk factor. Autophagy, a crucial cellular homeostasis mechanism, is influenced by aging and closely linked to cartilage health. This correlation between autophagy, cell death, and OA underscores its relevance in disease progression. MicroRNAs have emerged as autophagy regulators, with miRNA-based interventions showing promise in preclinical models. Remarkably, the ethanolic extract of propolis exhibits positive effects on autophagy-related proteins and healthy cartilage markers in an in vitro osteoarthritis model. The aim of this brief report was to evaluate through in silico analysis and postulate five microRNAs that could regulate autophagy proteins (AKT1, ATG5, and LC3) and assess whether the ethanolic extract of propolis could regulate the expression of these microRNAs. Among the examined miRNAs (miR-19a, miR-125b, miR-181a, miR-185, and miR-335), the ethanolic extract of propolis induced significant changes in four of them. Specifically, miR-125b responded to EEP by counteracting IL-1β-induced effects, while miR-181a, miR-185, and miR-335 exhibited distinct patterns of expression under EEP treatment. These findings unveil a potential link between miRNAs, EEP, and autophagy modulation in OA, offering promising therapeutic insights. Nevertheless, further validation and clinical translation are warranted to substantiate these promising observations.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 8380000, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
5
|
Pulik Ł, Łęgosz P, Motyl G. Matrix metalloproteinases in rheumatoid arthritis and osteoarthritis: a state of the art review. Reumatologia 2023; 61:191-201. [PMID: 37522140 PMCID: PMC10373173 DOI: 10.5114/reum/168503] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Although the pathological mechanisms involved in osteoarthritis (OA) and rheumatoid arthritis (RA) are different, the onset and progression of both diseases are associated with several analogous clinical manifestations, inflammation, and immune mechanisms. In both diseases, cartilage destruction is mediated by matrix metalloproteinases (MMPs) synthesized by chondrocytes and synovium fibroblasts. This review aims to summarize recent articles regarding the role of MMPs in OA and RA, as well as the possible methods of targeting MMPs to alleviate the degradation processes taking part in OA and RA. The novel experimental MMP-targeted treatments in OA and RA are MMP inhibitors eg. 3-B2, taraxasterol, and naringin, while other treatments aim to silence miRNAs, lncRNAs, or transcription factors. Additionally, other recent MMP-related developments include gene polymorphism of MMPs, which have been linked to OA susceptibility, and the MMP-generated neoepitope of CRP, which could serve as a biomarker of OA progression.
Collapse
Affiliation(s)
- Łukasz Pulik
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Poland
| | - Gabriela Motyl
- Scientific Association of Reconstructive and Oncological Orthopedics of the Department of Orthopedics and Traumatology, Medical University of Warsaw, Poland
| |
Collapse
|
6
|
Peng X, Wang Q, Li W, Ge G, Peng J, Xu Y, Yang H, Bai J, Geng D. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res 2023; 11:8. [PMID: 36690624 PMCID: PMC9870909 DOI: 10.1038/s41413-023-00244-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous single-stranded short noncoding RNAs, have emerged as vital epigenetic regulators of both pathological and physiological processes in animals. They direct fundamental cellular pathways and processes by fine-tuning the expression of multiple genes at the posttranscriptional level. Growing evidence suggests that miRNAs are implicated in the onset and development of rheumatoid arthritis (RA). RA is a chronic inflammatory disease that mainly affects synovial joints. This common autoimmune disorder is characterized by a complex and multifaceted pathogenesis, and its morbidity, disability and mortality rates remain consistently high. More in-depth insights into the underlying mechanisms of RA are required to address unmet clinical needs and optimize treatment. Herein, we comprehensively review the deregulated miRNAs and impaired cellular functions in RA to shed light on several aspects of RA pathogenesis, with a focus on excessive inflammation, synovial hyperplasia and progressive joint damage. This review also provides promising targets for innovative therapies of RA. In addition, we discuss the regulatory roles and clinical potential of extracellular miRNAs in RA, highlighting their prospective applications as diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaole Peng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Qing Wang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Wenming Li
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Gaoran Ge
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiachen Peng
- grid.413390.c0000 0004 1757 6938Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, P. R. China
| | - Yaozeng Xu
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Huilin Yang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiaxiang Bai
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Dechun Geng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| |
Collapse
|
7
|
Lin S, Wang S, Zhang Z, Lu Y, Yang M, Chen P, Chen L, Wang M. MiRNA-6089 inhibits rheumatoid arthritis fibroblast-like synoviocytes proliferation and induces apoptosis by targeting CCR4. Arch Physiol Biochem 2022; 128:1426-1433. [PMID: 32552050 DOI: 10.1080/13813455.2020.1773862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several studies have suggested that fibroblast-like synoviocytes (FLSs) and miRNAs are implicated in the pathogenesis of rheumatoid arthritis (RA). This study was aimed to evaluate the function of miR-6089 in the regulation of RA-FLSs. The levels of miR-6089 were detected to be significantly lower in the synovial tissues and FLSs of RA than in the healthy synovial tissues and FLSs. The miR-6089 up-regulation in RA-FLSs significantly inhibited the proliferation and promoted cell apoptosis accompany with an increase protein expression of cleaved-Caspase-3, -8 and -9. Furthermore, CCR4 was determined to target miR-6089 directly, and its expression was significantly increased in the synovial tissues of RA than in the healthy synovial tissues. The overexpression of CCR4 reversed the effect of miR-6089 on proliferation and apoptosis in RA-FLSs effectively. In conclusion, our study suggests that the miR-6089 may be a potential target for prevention and treatment of RA.
Collapse
Affiliation(s)
- Suxian Lin
- Department of Rheumatology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Shengnan Wang
- Department of Rheumatology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Zhiyong Zhang
- Department of Rheumatology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yang Lu
- Department of Rheumatology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Meilv Yang
- Department of Rheumatology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Ping Chen
- Department of Rheumatology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Lianguo Chen
- Department of Pharmacy, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Mudan Wang
- Department of Nephrology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| |
Collapse
|
8
|
PI3K/AKT/mTOR Signaling Pathway Is Downregulated by Runzaoling (RZL) in Sjögren’s Syndrome. Mediators Inflamm 2022; 2022:7236118. [PMID: 36133744 PMCID: PMC9484952 DOI: 10.1155/2022/7236118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Infiltration and aggregation of lymphocytes in exocrine glands are the basic pathological manifestations of Sjögren’s syndrome (SS), and the incidence of SS has been increasing year by year in recent years. To explore the potential signaling pathway of Runzaoling (RZL) in alleviating SS, the possible targets of RZL in SS were firstly explored through network pharmacology, and then, the regulation of PI3K/AKT/mTOR signaling in NOD mice and Th17 cells was verified. 75 8-week-old NOD mice were casually classified into 5 groups: model; hydroxychloroquine; high, medium, and low dose RZL groups, with 15 in each; and 15 BALB/c mice were employed as control group. After 10 weeks of continuous intragastric administration in mice and 24 hours of drugs intervention in Th17 cells, histopathology was observed by HE staining, and the gene transcription levels were identified by real-time quantitative PCR (RT-qPCR). The protein expressions were detected by western blotting (WB). The findings showed that high and medium dose RZL group could attenuate the submandibular gland tissue damage. The results indicated that the mRNA expressions of PI3K, AKT, mTOR, STAT3, and IL-17 in SS mice and in IL-17 stimulation of Th17 cells were dramatically increased compared with control group and decreased to varying degrees after RZL intervention. The trend of phosphorylated PI3K/AKT/mTOR and STAT3 and IL-17 protein expression in NOD mice and Th17 cells were consistent with mRNA. RZL can downregulate STAT3 and IL-17 expressions in the submandibular gland of NOD mice and in Th17 cells via regulating the PI3K/AKT/mTOR signaling pathway. Moreover, RZL could reduce the activation of CD4+ T lymphocyte differentiation to Th17 cells.
Collapse
|
9
|
Baicalein Induces Apoptosis of Rheumatoid Arthritis Synovial Fibroblasts through Inactivation of the PI3K/Akt/mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3643265. [PMID: 36118088 PMCID: PMC9473868 DOI: 10.1155/2022/3643265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
Purpose Rheumatoid arthritis (RA) shows abnormal proliferation, apoptosis, and invasion in fibroblast-like synoviocytes (FLSs). Baicalein (BAI), extracted from Scutellaria baicalensis, is used as an anticancer drug through inducing cancer cells apoptosis. However, the mechanism of BAI in RA progression still remains unknown. Here, we demonstrated that BAI inhibited FLS proliferation and migration, whereas it enhanced apoptosis via the PI3K/Akt/mTOR pathway in vitro. Methods Cell viability and colony formation were analyzed by MTT and plate colony formation assays in SW982 cells, respectively. Apoptosis was detected by flow cytometry and western blotting. Epithelial-mesenchymal transition (EMT), MMP family proteins (MMP2/9), and the PI3K/Akt/mTOR pathway were detected by western blot. Cell migration was detected by scratch healing assay under BAI treatment in SW982 cells. Results BAI dose-dependently inhibited cell viability and colony forming in SW982 cells. BAI upregulated apoptotic proteins and downregulated EMT-related proteins, resulting in enhanced cell apoptosis and inhibited cell migration in SW982 cells. BAI also dose-dependently inhibited the phosphorylation of PI3K, Akt, and mTOR. Conclusions These results indicated that BAI inhibited FLSs proliferation and EMT, whereas induced cell apoptosis through blocking the PI3K/Akt/mTOR pathway, supporting clinical application for RA progression.
Collapse
|
10
|
Wu J, Wang K, Liu Q, Li Y, Huang Y, Liu Y, Cai J, Yin C, Li X, Yu H, Meng W, Wang H, Lu A, Li Y, Guan D. An Integrative Pharmacology Model for Decoding the Underlying Therapeutic Mechanisms of Ermiao Powder for Rheumatoid Arthritis. Front Pharmacol 2022; 13:801350. [PMID: 35281924 PMCID: PMC8905663 DOI: 10.3389/fphar.2022.801350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
As a systemic inflammatory arthritis disease, rheumatoid arthritis (RA) is complex and hereditary. Traditional Chinese medicine (TCM) has evident advantages in treating complex diseases, and a variety of TCM formulas have been reported that have effective treatment on RA. Clinical and pharmacological studies showed that Ermiao Powder, which consists of Phellodendron amurense Rupr. (PAR) and Atractylodes lancea (Thunb.) DC. (ALD), can be used in the treatment of RA. Currently, most studies focus on the anti-inflammatory mechanism of PAR and ALD and are less focused on their coordinated molecular mechanism. In this research, we established an integrative pharmacological strategy to explore the coordinated molecular mechanism of the two herbs of Ermiao Powder in treating RA. To explore the potential coordinated mechanism of PAR and ALD, we firstly developed a novel mathematical model to calculate the contribution score of 126 active components and 85 active components, which contributed 90% of the total contribution scores that were retained to construct the coordinated functional space. Then, the knapsack algorithm was applied to identify the core coordinated functional components from the 85 active components. Finally, we obtained the potential coordinated functional components group (CFCG) with 37 components, including wogonin, paeonol, ethyl caffeate, and magnoflorine. Also, functional enrichment analysis was performed on the targets of CFCG to explore the potential coordinated molecular mechanisms of PAR and ALD. The results indicated that the CFCG could treat RA by coordinated targeting to the genes involved in immunity and inflammation-related signal pathways, such as phosphatidylinositol 3‑kinase/protein kinase B signaling pathway, mitogen-activated protein kinase signaling pathway, tumor necrosis factor signaling pathway, and nuclear factor-kappa B signaling pathway. The docking and in vitro experiments were used to predict the affinity and validate the effect of CFCG and further confirm the reliability of our method. Our integrative pharmacological strategy, including CFCG identification and verification, can provide the methodological references for exploring the coordinated mechanism of TCM in treating complex diseases and contribute to improving our understanding of the coordinated mechanism.
Collapse
Affiliation(s)
- Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Kexin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingying Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Jieqi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Chuanhui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Xiaowei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Hailang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Handuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yazi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| |
Collapse
|
11
|
Han JJ, Wang XQ, Zhang XA. Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol 2022; 13:810317. [PMID: 35197980 PMCID: PMC8858953 DOI: 10.3389/fimmu.2022.810317] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Juan-Juan Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| | - Xin-An Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| |
Collapse
|
12
|
Wu N, Yuan T, Yin Z, Yuan X, Sun J, Wu Z, Zhang Q, Redshaw C, Yang S, Dai X. Network Pharmacology and Molecular Docking Study of the Chinese Miao Medicine Sidaxue in the Treatment of Rheumatoid Arthritis. Drug Des Devel Ther 2022; 16:435-466. [PMID: 35221674 PMCID: PMC8865873 DOI: 10.2147/dddt.s330947] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to investigate the molecular mechanisms of Compound Sidaxue (SX), a prescription of Chinese Miao medicine, in treating rheumatoid arthritis (RA) using network pharmacology and in vivo experimental approaches. Methods Network pharmacology was adopted to detect the active components of four Traditional Chinese herbal medicine (TCM) of SX, and the key targets and signaling pathways in the treatment of RA were predicted, and the key components and targets were screened for molecular docking. The predicted targets and pathways were validated in bovine type II collagen and incomplete Freund’s adjuvant emulsifier-induced rat RA model. Results In this study, we identified 33 active components from SX, predicted to act on 44 RA-associated targets by network pharmacology. PPI network demonstrated that TNF-α, VEGF-A, IL-2, IL-6, AKT, PI3K, STAT1 may serve as the key targets of SX for the treatment of RA. The main functional pathways involving these key targets include PI3K-AKT signaling pathway, TNF signaling pathway, NF-κB signaling pathway. Molecular docking analysis found that the active components β-amyrin, cajanin, eleutheroside A have high affinity for TNF-α, VEGFA, IL-2, AKT, and PI3K, etc. SX can improve joint swelling in Collagen-induced arthritis (CIA) rats, reduce inflammatory cell infiltration and angiogenesis in joint synovial tissue, and down-regulate IL-2, IL-6, TNF-α, VEGF, PI3K, AKT, p-AKT, NF-κBp65, the expression of p-NF-κBp65, STAT1, and PTGS2 are used to control the exacerbation of inflammation and alleviate the proliferation of synovial pannus, and at the same time play the role of cartilage protection to achieve the effect of treating RA. Conclusion Through a network pharmacology approach and animal study, we predicted and validated the active compounds of SX and their potential targets for RA treatment. The results suggest that SX can markedly alleviate CIA rat by modulating the VEGF/PI3K/AKT signaling pathway, TNF-α signaling pathway, IL/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ning Wu
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Taohua Yuan
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - ZhiXin Yin
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Xiaotian Yuan
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Jianfei Sun
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Zunqiu Wu
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Qilong Zhang
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Hull, Yorkshire, HU6 7RX, UK
| | - Shenggang Yang
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Correspondence: Shenggang Yang, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China, Tel/Fax +86 13158000576, Email
| | - Xiaotian Dai
- Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada
- Xiaotian Dai, Department of Mathematics and Statistics, University of Calgary, Calgary, AB, T2N 1N4, Canada, Tel/Fax +1 435 754 4980, Email
| |
Collapse
|
13
|
Guo RB, Zhang XY, Yan DK, Yu YJ, Wang YJ, Geng HX, Wu YN, Liu Y, Kong L, Li XT. Folate-modified triptolide liposomes target activated macrophages for safe rheumatoid arthritis therapy. Biomater Sci 2021; 10:499-513. [PMID: 34904598 DOI: 10.1039/d1bm01520f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial joint hyperplasia, joint inflammation, cartilage erosion and bone destruction. Macrophages play an essential role in the pathogenesis of RA, and folate receptor β (FR-β) is highly expressed on the surface of activated synovial macrophages in RA patients. Triptolide (TP) has anti-inflammatory properties, and it can protect the cartilage matrix, but its clinical application has been limited due to poor solubility, low bioavailability and systemic toxicity. Therefore, we constructed folate-modified triptolide liposomes (FA-TP-Lips) to target macrophages, thereby treating RA in a safe and effective way. The experiments indicated that FA-TP-Lips had properties of small particle size, uniform particle size distribution, high drug encapsulation and long circulation. Furthermore, FA-TP-Lips showed reduced cytotoxicity, increased cellular uptake and significant anti-inflammatory effects in vitro. It also inhibited osteoclastogenesis. In vivo experiments revealed that liposomes could prolong the circulation of TP in the body, as well as exhibit significant cartilage-protective and anti-inflammatory effects with lower toxicity compared with the free TP group, thereby providing a promising new approach for the treatment of RA.
Collapse
Affiliation(s)
- Rui-Bo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Xin-Yue Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - De-Kang Yan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Ying-Jie Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Yu-Jia Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Hong-Xia Geng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Ya-Nan Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| |
Collapse
|
14
|
Boehi F, Manetsch P, Hottiger MO. Interplay between ADP-ribosyltransferases and essential cell signaling pathways controls cellular responses. Cell Discov 2021; 7:104. [PMID: 34725336 PMCID: PMC8560908 DOI: 10.1038/s41421-021-00323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Signaling cascades provide integrative and interactive frameworks that allow the cell to respond to signals from its environment and/or from within the cell itself. The dynamic regulation of mammalian cell signaling pathways is often modulated by cascades of protein post-translational modifications (PTMs). ADP-ribosylation is a PTM that is catalyzed by ADP-ribosyltransferases and manifests as mono- (MARylation) or poly- (PARylation) ADP-ribosylation depending on the addition of one or multiple ADP-ribose units to protein substrates. ADP-ribosylation has recently emerged as an important cell regulator that impacts a plethora of cellular processes, including many intracellular signaling events. Here, we provide an overview of the interplay between the intracellular diphtheria toxin-like ADP-ribosyltransferase (ARTD) family members and five selected signaling pathways (including NF-κB, JAK/STAT, Wnt-β-catenin, MAPK, PI3K/AKT), which are frequently described to control or to be controlled by ADP-ribosyltransferases and how these interactions impact the cellular responses.
Collapse
Affiliation(s)
- Flurina Boehi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Cancer Biology PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Patrick Manetsch
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Tong X, Yu D, Yu L, Chen W, Wen Y, Gu P. Exploring the role of monocyte chemoattractant protein-1 in fibroblast-like synovial cells in rheumatoid arthritis. PeerJ 2021; 9:e11973. [PMID: 34447637 PMCID: PMC8364321 DOI: 10.7717/peerj.11973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/23/2021] [Indexed: 01/18/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease with persistent synovitis. In the present study, the impact of monocyte chemoattractant protein-1 (MCP-1) was explored to determine methods for the diagnosis and treatment of RA. Methods First, fibroblast-like synoviocytes (FLSs) were obtained from a collagen-induced rat RA model. Next, MCP-1-overexpression plasmid and small interfering RNA were transfected into human and rat FLSs. Cell Counting Kit-8 (CCK-8), Transwell migration and flow cytometry assays were used to analyze cell proliferation, migration and apoptosis of FLSs following MCP-1 transfections, respectively. Furthermore, western blotting was used to analyze the expression levels of p-P38, p-PI3K, PI3K, CD31, VEGF, TNF-α and IL-β in FLSs following MCP-1 transfection. In addition, reverse transcription-quantitative PCR and ELISAs were used to analyze the expression levels of C-reactive protein (CRP), estrogen receptor, MCP-1 and pentraxin-3 in patients with clinical RA, followed by correlation analysis of clinical data. Finally, expression validation, diagnostic and protein-protein interaction (PPI) network analysis of MCP-1 were performed. Results MCP-1 promoted FLS proliferation and migration, and affected the apoptosis of FLSs. In addition, the expression levels of p-P38, p-PI3K, PI3K, CD31, VEGF, TNF-α and IL-β were also affected by MCP-1. In patients with clinical RA, the expression level of MCP-1 was increased. Moreover, CRP expression level was significantly up-regulated in RA. Clinically, MCP-1 was strongly correlated with tender joint count, swollen joint count, visual analog scale for general health and disease activity score 28 (DAS28)-MCP-1, and was moderately correlated with DAS28 and DAS28-CRP. PPI analysis showed that MCP-1 mainly interacted with other inflammatory cytokines. Conclusion In conclusion, MCP-1 may play a significant regulatory role in RA, and could be used as a measurement index of clinical RA activity.
Collapse
Affiliation(s)
- Xiang Tong
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongdong Yu
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Yu
- Operating Room, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiqian Chen
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanling Wen
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pengcheng Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:686155. [PMID: 34305919 PMCID: PMC8299711 DOI: 10.3389/fimmu.2021.686155] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both existing and emerging targets, including the proteins, small molecular metabolites, and epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that result in inflammation and the development of new drugs for blocking the various modulators in RA.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
17
|
Orchestrated modulation of rheumatoid arthritis via crosstalking intracellular signaling pathways. Inflammopharmacology 2021; 29:965-974. [PMID: 33740220 DOI: 10.1007/s10787-021-00800-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/06/2021] [Indexed: 01/18/2023]
Abstract
Cell signaling is considered a part of a network for communication that regulates basic cellular activities. The ability of cells to communicate correctly to the surrounding environment has an important role in development, tissue repair, and immunity as well as normal tissue homeostasis. Dysregulated activation and crosstalk between many intracellular signaling pathways are implicated in the pathogenesis of rheumatoid arthritis (RA), such as the Janus Kinase/signal transducers and activators of transcription (JAK/STAT), Toll-like receptor/nuclear factor kappa B (TLR/NF-κB), phosphatidylinositide-3Kinase/protein kinase B/mammalian target of rapamycin (PI-3K/AKT/mTOR), the stress activated protein kinase/mitogen-activated protein kinase (SAPK/MAPK), and spleen tyrosine kinase (SYK) pathways. Other interrelated pathways that can be targeted to halt the inflammatory status in the disease are purinergic 2X7 receptor (P2X7R)/nucleotide binding oligomerization domain-like receptor family pyrin domain containing 3 or inflammasome (NLRP-3)/NF-κB and Notch pathways. In this review, we will show the orchestrated modulation in the pathogenesis of RA via the crossregulation between dysregulated signaling pathways which can mediate a sustained loop of activation for these signaling pathways as well as aggrevate the inflammatory condition. Also, this review will highlight many targets that can be useful in the development of more effective therapeutic options.
Collapse
|
18
|
Long non-coding RNA GAS5 suppresses rheumatoid arthritis progression via miR-128-3p/HDAC4 axis. Mol Cell Biochem 2021; 476:2491-2501. [PMID: 33611674 DOI: 10.1007/s11010-021-04098-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a highly relevant public health problem. RA fibroblast-like synoviocytes (RAFLSs) play an important role in RA progression. Long non-coding RNA growth arrest-specific transcript 5 (GAS5) could improve RA by inducing RAFLSs apoptosis. However, the mechanism of GAS5 in RA remains unclear. RT-qPCR detected the expressions of GAS5, microRNA-128-3p (miR-128-3p), and histone deacetylase 4 (HDAC4) in RA synovial tissues and RAFLSs. Proliferation, apoptosis, migration, and invasion were measured by Cell Counting Kit-8 assay (CCK-8), flow cytometry, and transwell assays, severally. The protein levels of B-cell lymphoma-2 (Bcl-2), C-caspase 3, Bcl-2 related X protein (Bax), Tumor Necrosis factor-α (TNF-α), Interleukin 6 (IL-6), Interleukin 17 (IL-17), HDAC4, phosphorylation-protein kinase B (p-AKT), AKT, a phosphorylation-mechanistic target of rapamycin (p-mTOR), and mTOR were assessed by western blot assay. The interaction between miR-128-3p and GAS5 or HDAC4 was predicted by ENCORI or TargetScan Human and verified by the dual-luciferase reporter, RNA Immunoprecipitation (RIP), and RNA pull-down assays. GAS5 and HDAC4 were downregulated, and miR-128-3p was upregulated in RA synovial tissues and RAFLSs. Function analysis indicated that GAS5 curbed proliferation, migration, invasion, inflammation, and facilitated apoptosis of RAFLSs. Rescue assay confirmed that miR-128-3p overexpression or HDAC4 knockdown weakened the inhibitory effect of GAS5 or anti-miR-128-3p on RA development. GAS5 acted as a miR-128-3p sponge to upregulate HDAC4 expression. Besides, GAS5/miR-128-3p/HDAC4 axis regulated RA progression partially through the AKT/mTOR pathway. Our studies disclosed that GAS5 restrained inflammation in synovial tissue partly through regulating HDAC4 via miR-128-3p, suggesting a potential lncRNA-targeted therapy for RA treatment.
Collapse
|
19
|
Ahn C, Lee S, Park SK. Causal Inference between Rheumatoid Arthritis and Breast Cancer in East Asian and European Population: A Two-Sample Mendelian Randomization. Cancers (Basel) 2020; 12:cancers12113272. [PMID: 33167385 PMCID: PMC7694331 DOI: 10.3390/cancers12113272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Rheumatoid arthritis (RA) is one of the chronic autoimmune diseases that affects about 0.5 to 1.0% of the general population worldwide. The main symptom of RA is the destruction of the synovial joint, leading to a reduced quality of life and increased mortality. RA may be accompanied by several comorbidities, on which several studies have been conducted on the association between RA and breast cancer. However, the association between RA and breast cancer has shown different directions and has not been clearly established. In this study, we tried to determine whether RA had a causal effect on breast cancer using Mendelian randomization (MR) analysis, but causal evidence was not found. Therefore, additional studies are needed to determine whether RA patients are at high risk of breast cancer, based on large-scale cohorts to validate these results. Abstract Previous studies have been reported that the association between rheumatoid arthritis (RA) and breast cancer remains inconclusive. A two-sample Mendelian randomization (MR) analysis can reveal the potential causal association between exposure and outcome. A two-sample MR analysis using the penalized robust inverse variance weighted (PRIVW) method was performed to analyze the association between RA and breast cancer risk based on the summary statistics of six genome-wide association studies (GWAS) targeting RA in an East Asian population along with summary statistics of the BioBank Japan (BBJ), Breast Cancer Association Consortium (BCAC), and Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) targeting breast cancer. We found that the direction of the effect of RA on breast cancer varied among GWAS-summary data from BBJ, BCAC, and CIMBA. Significant horizontal pleiotropy based on a penalized robust MR-Egger regression was observed only for BBJ and CIMBA BRCA2 carriers. As the results of the two-sample MR analyses were inconsistent, the causal association between RA and breast cancer was inconclusive. The biological mechanisms explaining the relationship between RA and breast cancer were unclear in Asian as well as in Caucasians. Further studies using large-scale patient cohorts are required for the validation of these results.
Collapse
Affiliation(s)
- Choonghyun Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (C.A.); (S.L.)
- Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080, Korea
- Tokyo University Hospital, Tokyo 1130033, Japan
| | - Sangjun Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (C.A.); (S.L.)
- Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (C.A.); (S.L.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Convergence Graduate Program in Innovative Medicine Science, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-740-8338
| |
Collapse
|
20
|
Yu Y, Cai W, Zhou J, Lu H, Wang Y, Song Y, He R, Pei F, Wang X, Zhang R, Liu H, Wei F. Anti-arthritis effect of berberine associated with regulating energy metabolism of macrophages through AMPK/ HIF-1α pathway. Int Immunopharmacol 2020; 87:106830. [PMID: 32738596 DOI: 10.1016/j.intimp.2020.106830] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Berberine (BBR) is the effective constituent of Cortex phellodendri and was characterized as an excellent anti-microbial agent with significant anti-inflammatory effects. Previously, we had demonstrated that BBR alleviated the inflammatory response in adjuvant-induced arthritis (AA) rats by regulating polarization of macrophages. However, the exact mechanics by which BBR regulates macrophage polarization remained unclear. Here, we showed that BBR treatment had little influence on total number of macrophages in joints of AA rats, but increased the proportion of M2 macrophages and decreased the proportion of M1 macrophages. Meanwhile, we found BBR up-regulated the expression of AMP-activated protein kinase phosphorylation (p-AMPK) and down-regulated the expression of Hypoxia inducible factor 1α (HIF-1α) in synovial macrophages of AA rats. In vitro, using LPS-stimulated peritoneal macrophages from normal rats, we also verified that pretreatment with BBR promoted transition from M1 to M2 by up-regulating the expression of p-AMPK and suppressing the expression of HIF-1α. Compound C (an AMPK inhibitor) could abrogate the inhibition of BBR on migration of macrophages. Glycolysis of M1 suppressed by BBR through decreasing lactate export, glucose consumption, and increasing intracellular ATP content, which was remarkably reversed by Compound C. These findings indicated that anti-arthritis effect of BBR is associated with regulating energy metabolism of macrophages through AMPK/HIF-1α pathway.
Collapse
Affiliation(s)
- Yun Yu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Weiwei Cai
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Jing Zhou
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Huaqiu Lu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Yining Song
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Rui He
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Feilong Pei
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Xiaodie Wang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Renhao Zhang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China; Anhui BBCA Pharmaceuticals Co., Ltd, No.6288, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China; Anhui BBCA Pharmaceuticals Co., Ltd, No.6288, Donghai Avenue, Bengbu 233000, Anhui, China; School of Chemistry and Chemical Engineering, Anhui University, No.3, Feixi Rode, Hefei 230039, Anhui, China.
| |
Collapse
|
21
|
Wang X, Gong S, Pu D, Hu N, Wang Y, Fan P, Zhang J, Lu X. Up-regulation of miR-365 promotes the apoptosis and restrains proliferation of synoviocytes through downregulation of IGF1 and the inactivation of the PI3K/AKT/mTOR pathway in mice with rheumatoid arthritis. Int Immunopharmacol 2020; 79:106067. [DOI: 10.1016/j.intimp.2019.106067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/11/2019] [Accepted: 11/18/2019] [Indexed: 01/08/2023]
|
22
|
Wang J, Zhao Q. Kaempferitrin inhibits proliferation, induces apoptosis, and ameliorates inflammation in human rheumatoid arthritis fibroblast-like synoviocytes. Phytother Res 2019; 33:1726-1735. [PMID: 31155798 DOI: 10.1002/ptr.6364] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) is a complex chronic inflammatory disease that is associated with the aberrant activation of fibroblast-like synoviocytes (FLS). Kaempferitrin is a natural flavonoid glycoside that possesses anti-inflammatory bioactivity. However, the effect of kaempferitrin on RA has not yet been revealed. The aim of the present study was to investigate the effect of kaempferitrin on human RA-FLS MH7A cell line. We found that kaempferitrin inhibited proliferation and induced apoptosis of MH7A cells. Kaempferitrin decreased the levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, matrix metalloproteinase (MMP)-1, and MMP-3 in MH7A cells. Moreover, kaempferitrin blocked the activation of nuclear factor-κB (NF-κB) and protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathways. Furthermore, treatment with kaempferitrin decreased paw thickness and arthritis scores, and reduced the serum levels of IL-1β, IL-6, and TNF-α in a collagen-induced arthritis mouse model. In conclusion, kaempferitrin inhibited cell proliferation, induced cell apoptosis, and ameliorated inflammation of RA-FLS by suppressing the NF-κB and Akt/mTOR pathways.
Collapse
Affiliation(s)
- Jing Wang
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Qing Zhao
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| |
Collapse
|