1
|
Sallam IE, Rolle-Kampczyk U, Schäpe SS, Zaghloul SS, El-Dine RS, Shao P, von Bergen M, Farag MA. Evaluation of Antioxidant Activity and Biotransformation of Opuntia Ficus Fruit: The Effect of In Vitro and Ex Vivo Gut Microbiota Metabolism. Molecules 2022; 27:7568. [PMID: 36364395 PMCID: PMC9653959 DOI: 10.3390/molecules27217568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 09/05/2023] Open
Abstract
Opuntia ficus-indica biological effects are attributed to several bioactive metabolites. However, these actions could be altered in vivo by biotransformation reactions mainly via gut microbiota. This study assessed gut microbiota effect on the biotransformation of O. ficus-indica metabolites both in vitro and ex vivo. Two-time aliquots (0.5 and 24 h) from the in vitro assay were harvested post incubation of O. ficus-indica methanol extract with microbial consortium, while untreated and treated samples with fecal bacterial culture from the ex vivo assay were prepared. Metabolites were analyzed using UHPLC-QTOF-MS, with flavonoid glycosides completely hydrolyzed in vitro at 24 h being converted to two major metabolites, 3-(4-hydroxyphenyl)propanoic acid and phloroglucinol, concurrent with an increase in the gallic acid level. In case of the ex vivo assay, detected flavonoid glycosides in untreated sample were completely absent from treated counterpart with few flavonoid aglycones and 3-(4-hydroxyphenyl)propanoic acid in parallel to an increase in piscidic acid. In both assays, fatty and organic acids were completely hydrolyzed being used as energy units for bacterial growth. Chemometric tools were employed revealing malic and (iso)citric acids as the main discriminating metabolites in vitro showing an increased abundance at 0.5 h, whereas in ex vivo assay, (iso)citric, aconitic and mesaconic acids showed an increase at untreated sample. Piscidic acid was a significant marker for the ex vivo treated sample. DPPH, ORAC and FRAP assays were further employed to determine whether these changes could be associated with changes in antioxidant activity, and all assays showed a decline in antioxidant potential post biotransformation.
Collapse
Affiliation(s)
- Ibrahim E. Sallam
- Pharmacognosy Department, College of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza 12566, Egypt
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ GmbH, 04318 Leipzig, Germany
| | - Stephanie Serena Schäpe
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ GmbH, 04318 Leipzig, Germany
| | - Soumaya S. Zaghloul
- Pharmacognosy Department, College of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza 12566, Egypt
| | - Riham S. El-Dine
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ GmbH, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
2
|
Efficacy of Acupoint Application on In Vitro Fertilization Outcome in Patients with Polycystic Ovary Syndrome: A UHPLC-MS-Based Metabolomic Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9568417. [PMID: 36276871 PMCID: PMC9586737 DOI: 10.1155/2022/9568417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Objective To explore the clinical effect of acupoint application on the outcome of in vitro fertilization-embryo transfer (IVF-ET) in patients with polycystic ovary syndrome (PCOS) of the phlegm-dampness type and elucidate its possible mechanism of action from the perspective of follicular fluid metabolomics. Methods A total of 90 patients undergoing IVF-ET due to infertility were selected and divided into three groups: the treatment group (PCOS with acupoint application, n = 30), the control group (PCOS without acupoint application, n = 30), and the normal group (non-PCOS, n = 30). All patients received a gonadotropin-releasing hormone agonist (GnRH-a) long protocol for controlled ovarian hyperstimulation (COH). Among them, the treatment group was also given the acupoint application from the day of pituitary downregulation to the day of the human chorionic gonadotrophin (hCG) trigger. Ultrahigh-performance liquid chromatography connected with quadrupole time-of-flight mass spectrometry (UHPLC-MS) was adopted for untargeted metabolomic analysis of follicular fluid collected from the three groups of patients on the day of oocyte pick-up (OPU). The significantly differential metabolites were screened using univariate and multivariate statistical analysis, and the related metabolic pathways were identified by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results Metabolomic analysis showed that the treatment group's follicular fluid samples were aggregated with the normal group and separated from the control group. A total of 34 significantly differential metabolites were found in the follicular fluid of patients with phlegm-dampness PCOS and normal people. With the intervention of acupoint application, seven metabolites (pseudouridine, phenol, 2-oxoadipic acid, 9R,10S-EpOME, DL-lactate, nicotinamide, and DL-indole-3-lactic acid) were all downregulated, mainly involving the pathways of pyruvate metabolism, nicotinate and nicotinamide metabolism, protein digestion and absorption, biosynthesis of amino acids, and pyrimidine metabolism. Conclusions Acupoint application can effectively improve the clinical symptoms and the outcome of IVF-ET treatment in patients with PCOS of the phlegm-dampness type, and its mechanism of action may be related to the regulation of the pathways of pyruvate metabolism, nicotinate and nicotinamide metabolism, protein digestion and absorption, biosynthesis of amino acids, and pyrimidine metabolism.
Collapse
|
3
|
Yu J, Xie X, Ma Y, Yang Y, Wang C, Xia G, Ding X, Liu X. Effects and potential mechanism of Ca 2+/calmodulin‑dependent protein kinase II pathway inhibitor KN93 on the development of ovarian follicle. Int J Mol Med 2022; 50:121. [PMID: 35929517 PMCID: PMC9387563 DOI: 10.3892/ijmm.2022.5177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Adequate regulation of the speed of follicular development has been reported to prolong the reproductive life of the ovary. The aim of the present study was to assess the potential effects and mechanism of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathway on the development of ovarian follicle. In the present study, the expression of CaMKII was measured in the ovary of mice at different developmental stages by immunofluorescence, confirming that CaMKII has a role in follicular development. Subsequently, the 17.5 days post-coitus (dpc) embryonic ovaries were collected and cultured with KN93 for 4 days in vitro. It was revealed that KN93 inhibited the development of follicles, where it reduced the expression levels of oocyte and granulosa cell markers DEAD-box helicase 4 (DDX4) and forkhead box L2 (FOXL2). These results suggested that KN93 could delay follicular development. Proteomics technology was then used to find that 262 proteins of KN93 treated 17.5 dpc embryonic ovaries were significantly altered after in vitro culture. Bioinformatics analysis was used to analyze these altered proteins. In total, four important Kyoto Encyclopedia of Genes and Genome pathways, namely steroid biosynthesis, p53 signaling pathway and retinol metabolism and metabolic pathways, were particularly enriched. Further analysis revealed that the upregulated proteins NADP-dependent steroid dehydrogenase-like (Nsdhl), lanosterol synthase (Lss), farnesyl-diphosphate farnesyltransferase 1 (Fdft1), cytochrome P450 family 51 family A member 1 (Cyp51a1), hydroxymethylglutaryl-CoA synthase 1 (Hmgcs1), fatty acid synthase (Fasn) and dimethylallyltranstransferase (Fdps) were directly interacting with each other in the four enriched pathways. In summary, the potential mechanism of KN93 in slowing down follicular development most likely lies in its inhibitory effects on CaMKII, which upregulated the expression of Nsdhl, Lss, Fdft1, Cyp51a1, Hmgcs1, Fasn and Fdps. This downregulated the expression of oocyte and granulosa cell markers DDX4 and FOXL2 in the follicles, thereby delaying follicular development. Overall, these results provide novel insight into the potential mechanism by which KN93 and CaMKII can delay follicular development.
Collapse
Affiliation(s)
- Jianjie Yu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Xianguo Xie
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Yabo Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Chao Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R.China
| | - Guoliang Xia
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, P.R. China
| | - Xinfeng Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| |
Collapse
|
4
|
Cordeiro FB, Jarmusch AK, León M, Ferreira CR, Pirro V, Eberlin LS, Hallett J, Miglino MA, Cooks RG. Mammalian ovarian lipid distributions by desorption electrospray ionization-mass spectrometry (DESI-MS) imaging. Anal Bioanal Chem 2020; 412:1251-1262. [PMID: 31953714 DOI: 10.1007/s00216-019-02352-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 02/03/2023]
Abstract
Merging optical images of tissue sections with the spatial distributions of molecules seen by imaging mass spectrometry is a powerful approach to better understand the metabolic roles of the mapped molecules. Here, we use histologically friendly desorption electrospray ionization-mass spectrometry (DESI-MS) to map the lipid distribution in tissue sections of ovaries from cows (N = 8), sows (N = 3), and mice (N = 12). Morphologically friendly DESI-MS imaging allows the same sections to be examined for morphological information. Independent of the species, ovarian follicles, corpora lutea, and stroma could be differentiated by principal component analysis, showing that lipid profiles are well conserved among species. As examples of specific findings, arachidonic acid and the phosphatidylinositol PI(38:4), were both found concentrated in the follicles and corpora lutea, structures that promoted ovulation and implantation, respectively. Adrenic acid was spatially located in the corpora lutea, suggesting the importance of this fatty acid in the ovary luteal phase. In summary, lipid information captured by DESI-MS imaging could be related to ovarian structures and data were all conserved among cows, sows, and mice. Further application of DESI-MS imaging to either physiological or pathophysiological models of reproductive conditions will likely expand knowledge of the roles of specific lipids and pathways in ovarian activity and mammalian fertility. Graphical abstract Desorption electrospray ionization-mass spectrometry (DESI-MS) is performed directly from frozen ovarian tissue sections placed onto glass slides. Because the desorption and ionization process of small molecules is so gentle, the tissue architecture is preserved. The sample can then be stained and tissue morphology information can be overlaid with the chemical information obtained by DESI-MS.
Collapse
Affiliation(s)
- Fernanda Bertuccez Cordeiro
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, 090112, Guayaquil, Ecuador
| | - Alan K Jarmusch
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Marisol León
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, 05508-270, Brazil
| | - Christina Ramires Ferreira
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907-1393, USA.
| | - Valentina Pirro
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Judy Hallett
- Purdue Center for Cancer Research Transgenic Mouse Core Facility, Purdue University, 201 S. University Street, West Lafayette, IN, 47907, USA
| | - Maria Angelica Miglino
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, 05508-270, Brazil
| | - Robert Graham Cooks
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|