1
|
Wen X, Peng Y, Yang W, Zhu Y, Yu F, Geng L, Wang X, Wang X, Zhang X, Tang Y, Feng L, Zhou T, Jia H, Yang L. VSMC-specific TRPC1 deletion attenuates angiotensin II-induced hypertension and cardiovascular remodeling. J Mol Med (Berl) 2025:10.1007/s00109-024-02509-6. [PMID: 39743542 DOI: 10.1007/s00109-024-02509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Transient receptor potential canonical 1 (TRPC1) channel, a Ca2+-permeable ion channel widely expressed in vasculature, has been reported to be involved in various cardiovascular disorders. However, the pathophysiological function of vascular smooth muscle cell (VSMC)-derived TRPC1 in hypertension and hypertensive cardiovascular remodeling remains to be defined. In this study, we found increased TRPC1 expression in both angiotensin II (AngII)-treated VSMCs and aortas from AngII-infused mice. VSMC-specific TRPC1 deficiency strikingly attenuated AngII-induced vasoconstriction, hypertension, vascular remodeling, and cardiac hypertrophy. Mechanistically, AngII activated enhancer of zeste homolog 2 (EZH2) to stimulate TRPC1 expression, induced calcium influx and phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK-ERK), which in turn triggered VSMC proliferation and migration and exacerbated hypertension and cardiovascular remodeling. Treatment with EZH2 inhibitor reduced VSMC proliferation and migration and alleviated vasoconstriction and hypertension in AngII-infused mice. Together, we revealed the pathogenic role of the EZH2-TRPC1-MEK/ERK pathway in AngII-induced hypertension and cardiovascular damage. TRPC1 or EZH2 inhibition may represent a desirable therapeutic target for the treatment of hypertension. KEY MESSAGES: AngII activates AT1R-EZH2-TRPC1 pathway in VSMCs and aortas of hypertensive mice. TRPC1 promotes VSMC proliferation and migration via MEK/ERK signaling. Inhibition of TRPC1 or EZH2 alleviates hypertension and cardiovascular remodeling.
Collapse
Affiliation(s)
- Xin Wen
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China
| | - Yuefeng Peng
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China
| | - Wenqing Yang
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China
| | - Yuzhong Zhu
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China
| | - Li Geng
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China
| | - Xiaoyan Wang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Jiangsu Province, No.1000, He Feng Road, Wuxi, 214122, China
| | - Xiaodong Zhang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Jiangsu Province, No.1000, He Feng Road, Wuxi, 214122, China
| | - Yi Tang
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China
| | - Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China
| | - Hongliang Jia
- Department of Paediatrics, The Affiliated Hospital of Jiangnan University, Jiangsu Province, No.1000, He Feng Road, Wuxi, 214122, China
| | - Liu Yang
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China.
| |
Collapse
|
2
|
Balali MR, Taghizadeh M, Alizadeh M, Karami Y, Karimi F, Khatami SH, Taheri-Anganeh M, Ehtiati S, Movahedpour A, Mahmoudi R, Ghasemi H. MicroRNA biosensors for detection of chronic kidney disease. Clin Chim Acta 2024; 567:120081. [PMID: 39653321 DOI: 10.1016/j.cca.2024.120081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Chronic kidney disease (CKD) is a prevalent health condition characterized by gradual kidney function loss. Early detection is crucial for the effective management and treatment of CKD. A promising biomarker for various diseases, including chronic kidney disease, is microRNAs (miRNAs), which are becoming increasingly important due to their stability and differential expression in various disease-related states, including CKD. Recent developments in microRNA biosensors have made it possible to detect miRNAs associated with CKD in a sensitive and specific manner. This review article discusses the current state of microRNA biosensors for detecting CKD and highlights their potential applications in clinical settings. Various microRNA biosensors, including electrochemical, optical, and nanomaterial-based sensors, are explored for their ability to detect specific miRNAs linked to CKD progression. The advantages and limitations of these biosensors are evaluated, focusing on factors such as sensitivity, specificity, and ease of use. Overall, microRNA biosensors are promising diagnostic tools for early detection of CKD. However, challenges such as standardizing protocols, validating in large cohorts, and translating to clinical practice remain to be addressed. Future research efforts should aim to overcome these limitations to fully realize the potential of microRNA biosensors in improving the diagnosis and management of CKD.
Collapse
Affiliation(s)
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Alizadeh
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousof Karami
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
3
|
Wang Q, Lu W, Lu L, Wu R, Wu D. miR-575/RIPK4 axis modulates cell cycle progression and proliferation by inactivating the Wnt/β-catenin signaling pathway through inhibiting RUNX1 in colon cancer. Mol Cell Biochem 2024; 479:1747-1766. [PMID: 38480605 DOI: 10.1007/s11010-024-04938-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/10/2024] [Indexed: 07/18/2024]
Abstract
Receptor interacting protein serine/threonine kinase 4 (RIPK4) is widely involved in human cancer development. Nevertheless, its role in colon cancer (COAD) has not been elucidated till now. Our research aimed at exploring the function and underlying molecular mechanism of RIPK4 in COAD progression. Through bioinformatic analyses and RT-qPCR, RIPK4 was discovered to be increased in COAD cells and tissues, and its high level predicted poor prognosis. Loss-of-function assays revealed that RIPK4 silencing suppressed COAD cell growth, induced cell cycle arrest, and enhanced cell apoptosis. In vivo experiments also proved that tumor growth was inhibited by silencing of RIPK4. Luciferase reporter assay validated that RIPK4 was targeted and negatively regulated by miR-575. Western blotting demonstrated that Wnt3a, phosphorylated (p)-GSK-3β, and cytoplasmic and nuclear β-catenin protein levels, β-catenin nuclear translocation, and Cyclin D1, CDK4, Cyclin E, and c-Myc protein levels were reduced by RIPK4 knockdown, which however was reversed by treatment with LiCl, the Wnt/β-catenin pathway activator. LiCl also offset the influence of RIPK4 knockdown on COAD cell growth, cell cycle process, and apoptosis. Finally, RIPK4 downregulation reduced RUNX1 level, which was upregulated in COAD and its high level predicted poor prognosis. RIPK4 is positively associated with RUNX1 in COAD. Overexpressing RUNX1 antagonized the suppression of RIPK4 knockdown on RUNX1, Wnt3a, p-GSK-3β, cytoplasmic β-catenin, nuclear β-catenin, Cyclin D1, CDK4, Cyclin E, and c-Myc levels. Collectively, miR-575/RIPK4 axis repressed COAD progression via inactivating the Wnt/β-catenin pathway through downregulating RUNX1.
Collapse
Affiliation(s)
- Qun Wang
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China.
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China.
- Colorectal Cancer Clinical Research Center of Hubei Province, Wuhan, 430079, China.
| | - Weijun Lu
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China
| | - Li Lu
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Ruopu Wu
- Tianjin Medical University, Tianjin, 300070, China
| | - Dongde Wu
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China.
| |
Collapse
|
4
|
Fan H, Zhou D, Zhang X, Jiang M, Kong X, Xue T, Gao L, Lu D, Tao C, Wang L. hsa_circRNA_BECN1 acts as a ceRNA to promote polycystic ovary syndrome progression by sponging the miR-619-5p/Rab5b axis. Mol Hum Reprod 2023; 29:gaad036. [PMID: 37882757 DOI: 10.1093/molehr/gaad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease that affects women of reproductive age. It is also a significant cause of infertility. Circular RNAs have been found to have a crucial role in the development and progression of reproductive system diseases. In this study, we focused on circ_BECN1 and aimed to investigate its role and mechanism in PCOS, providing a foundation for early diagnosis and treatment of this condition. Our findings revealed an upregulation of circ_BECN1 expression in the ovarian granulosa cells (GCs) of PCOS patients. Additionally, the silencing of circ_BECN1 resulted in inhibited proliferation and enhanced apoptosis of the human ovarian granulosa-like tumor cell line (KGN), therefore implicating circ_BECN1 in the cell cycle process. Through a dual-luciferase reporting assay, we determined that circ_BECN1 acts as a sponge for miR-619-5p and that Rab5b is the target gene of miR-619-5p. Moreover, the expression of Rab5b was found to be upregulated in the ovarian tissue of PCOS patients. Knocking down circ_BECN1 resulted in decreased Rab5b expression, which was then restored by using a miR-619-5p inhibitor. Additionally, rescue experiments demonstrated that overexpressing Rab5b reversed the effects of circ_BECN1 knockdown on cell proliferation and apoptosis in KGN cells. In summary, our findings indicate that circ_BECN1 is upregulated in PCOS GCs and promotes cell growth and cell cycle progression, and reduces cell apoptosis by modulating the miR-619-5p/Rab5b axis. Therefore, circ_BECN1 may serve as a potential therapeutic target for PCOS treatment.
Collapse
Affiliation(s)
- Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dongjie Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaomei Zhang
- California Excellent Fertility (CEF), Anaheim, CA, USA
| | - Min Jiang
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Xiang Kong
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Tongmin Xue
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Chenyue Tao
- School of Nursing School of Public Health, Yangzhou University, Yangzhou, China
| | - Liping Wang
- Department of Biobank, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Wang Y, Wu J, Xia SW, Zhao F, Ding Q, Ye XM, Zhong JF, Chen KL, Wang HL. miR-27a-3p relieves heat stress-induced mitochondrial damage and aberrant milk protein synthesis through MEK/ERK pathway in BMECs. Cell Stress Chaperones 2023; 28:265-274. [PMID: 36881375 PMCID: PMC10167065 DOI: 10.1007/s12192-023-01334-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
With global warming, heat stress has become a primary factor that compromises the health and milk quality of dairy cows. Here, we investigated the function and underlying regulatory mechanism of miR-27a-3p in bovine mammary epithelial cells (BMECs) under heat-stress conditions. The current study showed that miR-27a-3p could prevent heat stress-induced BMEC oxidative stress and mitochondrial damage by regulating the balance between mitochondrial fission and fusion processes. Importantly, we found that miR-27a-3p could increase cell proliferation under heat stress conditions by regulating the MEK/ERK pathway and cyclin D1/E1. Interestingly, miR-27a-3p is also involved in the regulation of milk protein synthesis-related protein expression, such as CSN2 and ELF5. Inhibition of the MEK/ERK signaling pathway by AZD6244 blocked the regulatory function of miR-27a-3p in cell proliferation and milk protein synthesis in BMECs under heat stress conditions. Our findings demonstrated that miR-27a-3p protects BMECs from heat stress-induced oxidative stress and mitochondrial damage through the MEK/ERK pathway, thereby promoting BMECs proliferation and lactation in dairy cows. The potential regulatory mechanism of miR-27a-3p in attenuating heat stress-induced apoptosis and lactation defect in BMECs.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Animal Science /Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Province Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Jie Wu
- Shanghai Bright Holstan Co., Ltd, Shanghai, 200072, China
| | - Shu-Wen Xia
- Institute of Animal Science /Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Province Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Fang Zhao
- Institute of Animal Science /Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Province Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Qiang Ding
- Institute of Animal Science /Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Province Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Xiao-Mei Ye
- Institute of Animal Science /Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Province Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Ji-Feng Zhong
- Institute of Animal Science /Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Province Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Kun-Lin Chen
- Institute of Animal Science /Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- Jiangsu Province Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China.
| | - Hui-Li Wang
- Institute of Animal Science /Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- Jiangsu Province Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China.
| |
Collapse
|
6
|
Huang TL, Chang CR, Chien CY, Huang GK, Chen YF, Su LJ, Tsai HT, Lin YS, Fang FM, Chen CH. DRP1 contributes to head and neck cancer progression and induces glycolysis through modulated FOXM1/MMP12 axis. Mol Oncol 2022; 16:2585-2606. [PMID: 35313071 PMCID: PMC9251862 DOI: 10.1002/1878-0261.13212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 02/19/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
Abnormal DRP1 expression has been identified in a variety of human cancers. However, the prognostic potential and mechanistic role of DRP1 in head and neck cancer (HNC) are currently poorly understood. Here, we demonstrated a significant upregulation of DRP1 in HNC tissues, and that DRP1 expression correlates with poor survival of HNC patients. Diminished DRP1 expression suppressed tumor growth and metastasis in both in vitro and in vivo models. DRP1 expression was positively correlated with FOXM1 and MMP12 expression in HNC patient samples, suggesting pathological relevance in the context of HNC development. Moreover, DRP1 depletion affected aerobic glycolysis through the downregulation of glycolytic genes, and overexpression of MMP12 in DRP1‐depleted cells could help restore glucose consumption and lactate production. Using ChIP‐qPCR, we showed that DRP1 modulates FOXM1 expression, which can enhance MMP12 transcription by binding to its promoter. We also showed that miR‐575 could target 3’UTR of DRP1 mRNA and suppress DRP1 expression. Collectively, our study provides mechanistic insights into the role of DRP1 in HNC and highlights the potential of targeting the miR‐575/DRP1/FOXM1/MMP12 axis as a novel therapy for the prevention of HNC progression.
Collapse
Affiliation(s)
- Tai-Lin Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.,Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chuang-Rung Chang
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yen Chien
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Gong-Kai Huang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Fan Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Jhongli City, Taiwan
| | - Hsin-Ting Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Sheng Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
| | - Fu-Min Fang
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chang-Han Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Wen X, Peng Y, Gao M, Zhu Y, Zhu Y, Yu F, Zhou T, Shao J, Feng L, Ma X. Endothelial Transient Receptor Potential Canonical Channel Regulates Angiogenesis and Promotes Recovery After Myocardial Infarction. J Am Heart Assoc 2022; 11:e023678. [PMID: 35253458 PMCID: PMC9075314 DOI: 10.1161/jaha.121.023678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background
Transient receptor potential canonical (TRPC) channels play a role in angiogenesis. However, the involvement of TRPC1 in myocardial infarction (MI) remains unclear. The present study was aimed at investigating whether TRPC1 can improve the recovery of cardiac function via prompting angiogenesis following MI.
Methods and Results
In vitro, coronary artery endothelial cells from floxed TRPC1 mice and endothelial cell‐specific TRPC1 channel knockout mice were cultured to access EC angiogenesis. Both EC tube formation and migration were significantly suppressed in mouse coronary artery endothelial cells from endothelial cell‐specific TRPC1 channel knockout mice. In vivo, coronary artery endothelial cells from floxed TRPC1 and endothelial cell‐specific TRPC1 channel knockout mice were subjected to MI, then echocardiography, triphenyltetrazolium chloride staining and immunofluorescence were performed to assess cardiac repair on day 28. Endothelial cell‐specific TRPC1 channel knockout mice had higher ejection fraction change, larger myocardial infarct size, and reduced capillary density in the infarct area compared with coronary artery endothelial cells from floxed TRPC1 mice. Furthermore, we found underlying regulation by HIF‐1α (hypoxic inducible factor‐1α) and MEK‐ERK (mitogen‐activated protein kinase/extracellular signal‐regulated kinase) that could be the mechanism for the angiogenetic action of TRPC1. Significantly, treatment with dimethyloxaloylglycine, an activator of HIF‐1α, induced cardiac improvement via the HIF‐1α‐TRPC1‐MEK/ERK pathway in MI mice.
Conclusions
Our study demonstrated TRPC1 improves cardiac function after MI by increasing angiogenesis via the upstream regulator HIF‐1α and downstream MEK/ERK, and dimethyloxaloylglycine treatment has protective effect on MI through the HIF‐1α‐TRPC1‐MEK/ERK pathway.
Collapse
Affiliation(s)
- Xin Wen
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Yidi Peng
- School of Pharmaceutical Sciences Jiangnan University Wuxi China
| | - Mengru Gao
- School of Pharmaceutical Sciences Jiangnan University Wuxi China
| | - Yuzhong Zhu
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Yifei Zhu
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Fan Yu
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Tingting Zhou
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Jing Shao
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Lei Feng
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Xin Ma
- Wuxi School of Medicine Jiangnan University Wuxi China
- School of Pharmaceutical Sciences Jiangnan University Wuxi China
| |
Collapse
|
8
|
Shi J, Ren Y, Liu S, Zhao Q, Kong F, Guo Y, Xu J, Liu S, Qiao Y, Li Y, Liu Y, Liu Y, Cheng Y. Circulating miR-3656 induces human umbilical vein endothelial cell injury by targeting eNOS and ADAMTS13: a novel biomarker for hypertension. J Hypertens 2022; 40:310-317. [PMID: 34475349 DOI: 10.1097/hjh.0000000000003010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypertension, as one of the most common chronic diseases, is a major public health issue. Previous studies have shown that there are miRNAs differentially expressed in hypertensive patients. In addition, hypertension is closely related to endothelial dysfunction, and miRNAs have been identified as important molecular mediators for endothelial function. Therefore, it is necessary to identify specific miRNAs related to hypertension and explore their molecular mechanism in the progression of hypertension. METHODS We investigated the association of circulating levels of miR-3656 with hypertension. Furthermore, in-vitro studies were performed to investigate its possible mechanisms for hypertension in that the direct target genes of miR-3656 were confirmed using dual-luciferase reporter assay; moreover, the effects of miR-3656 on proliferation, migration, apoptosis, and microvascular rarefaction of HUVECs were investigated using MTS kit, wound-healing assay, FITC Annexin V apoptosis detection kit, and tube formation assay, correspondingly. RESULTS Circulating miR-3656 was upregulated in patients with hypertension. MiR-3656 suppressed the proliferation, migration, and angiogenesis of HUVECs, but promoted the apoptosis of HUVECs. In addition, eNOS and ADAMTS13 were direct target genes of miR-3656, and overexpression of eNOS and ADAMTS13 abolished the effect of miR-3656 on HUVECs. CONCLUSION MiR-3656 is a potential biomarker for hypertension. MiR-3656 is involved in endothelial cellular injury implicated in hypertension by targeting eNOS and ADAMTS13.
Collapse
Affiliation(s)
- Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yaxuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Sainan Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Qian Zhao
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Fei Kong
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yanbo Guo
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Jiayi Xu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Siyu Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yunkai Liu
- The Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yi Cheng
- The Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Wei G, Li S, Wang P, Wang S, Zhao Y. Altered Expression of miR-575 in Glioma is Related to Tumor Cell Proliferation, Migration, and Invasion. Neuromolecular Med 2021; 24:224-231. [PMID: 34272655 DOI: 10.1007/s12017-021-08679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/10/2021] [Indexed: 11/26/2022]
Abstract
Glioma is a kind of brain tumor with low overall survival and treatment success rates in the advanced stage. Evidence has shown microRNA-575 (miR-575) plays an important role in the generation and development of various cancers. This study aimed to explore the function of miR-575 in the prognosis and cell biological behavior of glioma. qRT-PCR was used to evaluate the expression of miR-575 in glioma tissues and cells, Kaplan-Meier survival analysis and Cox regression analysis were used to evaluate the prognostic value. The proliferation ability of glioma cells was determined by MTT assay; the invasion and migration abilities were determined by transwell assays. Compared with normal brain tissues, the expression of miR-575 in glioma tissue cells was significantly up-regulated (P < 0.001). The survival rate of patients in the miR-575 high expression group was significantly lower than that in the low expression group (P = 0.020). In addition, the overexpression of miR-575 promoted the proliferation, migration, and invasion of glioma cells. The results of this study suggested that miR-575 may be a new biomarker for the prognosis of glioma.
Collapse
Affiliation(s)
- Guangxin Wei
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China
| | - Shengjun Li
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China
| | - Pengcheng Wang
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China
| | - Shouxian Wang
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China
| | - Yujing Zhao
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China.
| |
Collapse
|
10
|
Smith DA, Simpson K, Lo Cicero M, Newbury LJ, Nicholas P, Fraser DJ, Caiger N, Redman JE, Bowen T. Detection of urinary microRNA biomarkers using diazo sulfonamide-modified screen printed carbon electrodes. RSC Adv 2021; 11:18832-18839. [PMID: 34123373 PMCID: PMC8144888 DOI: 10.1039/d0ra09874d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This paper describes a straightforward electrochemical method for rapid and robust urinary microRNA (miRNA) quantification using disposable biosensors that can discriminate between urine from diabetic kidney disease (DKD) patients and control subjects. Aberrant miRNA expression has been observed in several major human disorders, and we have identified a urinary miRNA signature for DKD. MiRNAs therefore have considerable promise as disease biomarkers, and techniques to quantify these transcripts from clinical samples have significant clinical and commercial potential. Current RT-qPCR-based methods require technical expertise, and more straightforward methods such as electrochemical detection offer attractive alternatives. We describe a method to detect urinary miRNAs using diazo sulfonamide-modified screen printed carbon electrode-based biosensors that is amenable to parallel analysis. These sensors showed a linear response to buffered miR-21, with a 17 fM limit of detection, and successfully discriminated between urine samples (n = 6) from DKD patients and unaffected control subjects (n = 6) by differential miR-192 detection. Our technique for quantitative miRNA detection in liquid biopsies has potential for development as a platform for non-invasive high-throughput screening and/or to complement existing diagnostic procedures in disorders such as DKD. In this study we have developed an electrochemical microRNA biosensor sensitive to 17 fM and capable of detecting an established downregulation of urinary miR-192 in diabetic kidney disease patients.![]()
Collapse
Affiliation(s)
- Daniel A Smith
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XN UK .,Cardiff Institute of Tissue Engineering and Repair Museum Place Cardiff CF10 3BG UK
| | - Kate Simpson
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XN UK
| | - Matteo Lo Cicero
- School of Chemistry, College of Physical Sciences and Engineering, Cardiff University Cardiff CF10 3AT UK
| | - Lucy J Newbury
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XN UK .,Cardiff Institute of Tissue Engineering and Repair Museum Place Cardiff CF10 3BG UK
| | | | - Donald J Fraser
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XN UK .,Cardiff Institute of Tissue Engineering and Repair Museum Place Cardiff CF10 3BG UK
| | - Nigel Caiger
- Sun Chemical Ltd Midsomer Norton, Radstock Bath BA3 4RT UK
| | - James E Redman
- Cardiff Institute of Tissue Engineering and Repair Museum Place Cardiff CF10 3BG UK.,School of Chemistry, College of Physical Sciences and Engineering, Cardiff University Cardiff CF10 3AT UK
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XN UK .,Cardiff Institute of Tissue Engineering and Repair Museum Place Cardiff CF10 3BG UK
| |
Collapse
|
11
|
Golonka RM, Cooper JK, Issa R, Devarasetty PP, Gokula V, Busken J, Zubcevic J, Hill J, Vijay-Kumar M, Menon B, Joe B. Impact of Nutritional Epigenetics in Essential Hypertension: Targeting microRNAs in the Gut-Liver Axis. Curr Hypertens Rep 2021; 23:28. [PMID: 33961141 PMCID: PMC8105193 DOI: 10.1007/s11906-021-01142-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To review the current knowledge on interactions between dietary factors and microRNAs (miRNAs) in essential hypertension (EH) pathogenesis. RECENT FINDINGS There exists an integration of maintenance signals generated by genetic, epigenetic, immune, and environmental (e.g., dietary) factors that work to sustain balance in the gut-liver axis. It is well established that an imbalance in this complex, intertwined system substantially increases the risk for EH. As such, pertinent research has been taken to decipher how each signal operates in isolation and together in EH progression. Recent literature indicates that both macro- and micronutrients interrupt regulatory miRNA expressions and thus, alter multiple cellular processes that contribute to EH and its comorbidities. We highlight how carbohydrates, lipids, proteins, salt, and potassium modify miRNA signatures during EH. The disruption in miRNA expression can negatively impact communication systems such as over activating the renin-angiotensin-aldosterone system, modulating the vascular smooth muscle cell phenotype, and promoting angiogenesis to favor EH. We also delineate the prognostic value of miRNAs in EH and discuss the pros and cons of surgical vs dietary prophylactic approaches in EH prevention. We propose that dietary-dependent perturbation of the miRNA profile is one mechanism within the gut-liver axis that dictates EH development.
Collapse
Affiliation(s)
- Rachel M Golonka
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | | | - Rochell Issa
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | - Veda Gokula
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Joshua Busken
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jasenka Zubcevic
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jennifer Hill
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | - Matam Vijay-Kumar
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | - Bindu Menon
- Department of Medical Education, University of Toledo College of Medicine and Life Sciences, Room 3105B, CCE Bldg, 2920 Arlington Ave, Toledo, OH, 43614, USA.
| | - Bina Joe
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA.
| |
Collapse
|
12
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
13
|
Liu SS, Li Y, Zhang H, Zhang D, Zhang XB, Wang X, Yu Y. The ERα-miR-575-p27 feedback loop regulates tamoxifen sensitivity in ER-positive Breast Cancer. Theranostics 2020; 10:10729-10742. [PMID: 32929377 PMCID: PMC7482812 DOI: 10.7150/thno.46297] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Breast cancer is the most common malignancy, and approximately 70% of breast cancers are estrogen receptor-α (ERα) positive. The anti-estrogen tamoxifen is a highly effective and commonly used treatment for patients with ER+ breast cancer. However, 30% of breast cancer patients fail adjuvant tamoxifen therapy and most of metastatic breast cancer patients develop tamoxifen resistance. Although increasing evidence suggests that microRNA (miRNA) dysregulation influences tamoxifen sensitivity, the mechanism of the cross-talk between miRNA and ERα signaling remains unclear. miR-575 has been reported to be involved in carcinogenesis and progression, however, the role of miR-575 in breast cancer remains limited. The aim of this study was to understand the mechanism of miR-575 in breast cancer tamoxifen resistance. Method: RT-qPCR was employed to assess miR-575 expression in breast cancer tissues and cell lines. The association of miR-575 expression with overall survival in patients with breast cancer was evaluated with KM plotter. Additionally, the effects of miR-575 on breast cancer proliferation and tamoxifen sensitivity were investigated both in vitro and in vivo. Bioinformatic analyses and luciferase reporter assays were performed to validate CDKN1B and BRCA1 as direct targets of miR-31-5p. The ERα binding sites in the miR-575 promoter region was validated with ChIP and luciferase assays. ERα interactions with CDKN1B, cyclin D1 or BRCA1 were determined by IP analysis, and protein expression levels and localization were analyzed by western blotting and immunofluorescence, respectively. Results: miR-575 levels were higher in ER+ breast cancer than in ER- breast cancer and patients with high miR-575 expression had a significantly poorer outcome than those with low miR-575 expression. ERα bound the miR-575 promoter to activate its transcription, and tamoxifen treatment downregulated miR-575 expression in ER+ breast cancer. Overexpression of miR-575 decreased tamoxifen sensitivity by targeting CDKN1B and BRCA1. CDKN1B and BRCA1 were both able to antagonize ERα activity by inhibiting ERα nuclear translocation and interaction with cyclin D1. Furthermore, miR-575 expression was found to be upregulated in ER+ breast cancer cell with acquired tamoxifen resistance, whereas depletion of miR-575 partially re-sensitized these cells to tamoxifen by regulation of CDKN1B. Conclusions: Our data reveal the ERα-miR-575-CDKN1B feedback loop in ER+ breast cancer, suggesting that miR-575 can be used as a prognostic biomarker in patients with ER+ breast cancer, as well as a predictor or a promising target for tamoxifen sensitivity.
Collapse
|
14
|
Exosomal microRNAs as a promising theragnostic tool for essential hypertension. Hypertens Res 2019; 43:74-75. [PMID: 31628438 DOI: 10.1038/s41440-019-0343-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/21/2023]
|