1
|
Hong X, Xu Y, Pang SW. Effects of Confined Microenvironments with Protein Coating, Nanotopography, and TGF-β Inhibitor on Nasopharyngeal Carcinoma Cell Migration through Channels. J Funct Biomater 2024; 15:263. [PMID: 39330238 PMCID: PMC11433299 DOI: 10.3390/jfb15090263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
Distant metastasis is the primary cause of unsuccessful treatment in nasopharyngeal carcinoma (NPC), suggesting the crucial need to comprehend this process. A tumor related to NPC does not have flat surfaces, but consists of confined microenvironments, proteins, and surface topography. To mimic the complex microenvironment, three-dimensional platforms with microwells and connecting channels were designed and developed with a fibronectin (FN) coating or nanohole topography. The potential of the transforming growth factor-β (TGF-β) inhibitor (galunisertib) for treating NPC was also investigated using the proposed platform. Our results demonstrated an increased traversing probability of NPC43 cells through channels with an FN coating, which correlated with enhanced cell motility and dispersion. Conversely, the presence of nanohole topography patterned on the platform bottom and the TGF-β inhibitor led to a reduced cell traversing probability and decreased cell motility, likely due to the decrease in the F-actin concentration in NPC43 cells. This study highlights the significant impact of confinement levels, surface proteins, nanotopography, and the TGF-β inhibitor on the metastatic probability of cancer cells, providing valuable insights for the development of novel treatment therapies for NPC. The developed platforms proved to be useful tools for evaluating the metastatic potential of cells and are applicable for drug screening.
Collapse
Affiliation(s)
- Xiao Hong
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (X.H.); (Y.X.)
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| | - Yuanhao Xu
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (X.H.); (Y.X.)
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| | - Stella W. Pang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (X.H.); (Y.X.)
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Zhang X, Liu J, Ji M, Qi G, Qiao R. Long Noncoding RNA GUSBP11 Knockdown Alleviates Nasopharyngeal Carcinoma via Regulating miR-1226-3p/ TM9SF4 Axis. Cancer Biother Radiopharm 2024; 39:133-143. [PMID: 35675666 DOI: 10.1089/cbr.2021.0391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose: Long noncoding RNAs (lncRNAs) have been confirmed related to the occurrence and progress of multiple cancers, including cervical cancer nasopharyngeal carcinoma (NPC). This study focused on assessing GUSBP11 effects on NPC progression and exploring possible mechanisms. Materials and Methods: RT-qPCR was conducted for assessing GUSBP11 levels within NPC tissues and cells. CCK-8, colony formation, and Transwell were adopted for examining GUSBP11 impacts on NPC cell proliferation and cell metastasis. RT-qPCR analysis and dual-luciferase reporter assay were conducted for judging the expression interrelation of GUSBP11 and its potential target miR-1226-3p. The same methods were carried out for verifying the inhibiting influences of miR-1226-3p upregulation and its potential target TM9SF4. Results: GUSBP11 levels were upregulated within NPC tissues and cells. GUSBP11 downregulation repressed NPC cell proliferation and cell metastasis. In addition, GUSBP11 targeted and negatively regulated miR-1226-3p. Furthermore, miR-1226-3p targeted TM9SF4 and mediated GUSBP11's impacts on TM9SF4 levels. At last, the authors proved the critical role of the GUSBP11/miR-1226-3p/TM9SF4 axis in regulating NPC progression. Conclusion: These findings indicate that downregulation of GUSBP11 alleviates NPC development by regulating the miR-1226-3p/TM9SF4 axis.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Otolaryngology, Head and Neck Surgery, Weihai Maternal and Child Health Hospital, Affiliated Weihai Hospital of Qingdao University, Weihai, China
| | - Jinzhi Liu
- Department of the First Internal Medicine, Dongying District People's Hospital, Dongying, China
| | - MengMeng Ji
- Blood Purifying Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - GuiQin Qi
- Department of Outpatient, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Renling Qiao
- Department of Otolaryngology, Laiyang Central Hospital, Yantai, China
| |
Collapse
|
3
|
Li J, Xu Z. NR3C2 suppresses the proliferation, migration, invasion and angiogenesis of colon cancer cells by inhibiting the AKT/ERK signaling pathway. Mol Med Rep 2022; 25:133. [PMID: 35191517 PMCID: PMC8908346 DOI: 10.3892/mmr.2022.12649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/23/2021] [Indexed: 11/05/2022] Open
Abstract
Nuclear receptor subfamily 3, group C, member 2 (NR3C2) serves an antitumorigenic role in several types of cancer; however, its role and mechanisms of action in colon cancer remains to be elucidated. The aim of the present study was to explore the effects of NR3C2 on the proliferation, migration, invasion and angiogenesis of colon cancer cells. The expression levels of NR3C2 in human colon epithelial NCM460 cells (spontaneously immortalized cell line) and colon cancer cell lines was detected using reverse transcription-quantitative PCR and western blotting. Cell Counting Kit-8 (CCK-8) and colony formation assays were used to assess cell viability and wound healing and Transwell assays were used to detect cell invasion and migration. ELISA was used to detect the expression levels of VEGF and tube formation assays were used to assess angiogenesis. The expression levels of angiogenesis-related proteins and AKT/ERK signaling pathway-related proteins were detected by western blotting. NR3C2 expression was downregulated in colon cancer cells and overexpression of NR3C2 inhibited proliferation, colony formation, migration and invasion of colon cancer cells. Overexpression of NR3C2 inhibited angiogenesis and activity of the AKT/ERK signaling pathway in colon cancer cells. Thus, it was demonstrated that NR3C2 inhibited the proliferation, colony formation, migration, invasion and angiogenesis of colon cancer cells through the AKT/ERK signaling pathway. These results may highlight novel targets for the treatment of colon cancer.
Collapse
Affiliation(s)
- Jia Li
- Nanchang University Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Zhao Xu
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| |
Collapse
|
4
|
Zhang L, Wang C, Ma M. LncRNA POU3F3 Promotes Cancer Cell Proliferation, Migration, and Invasion in Renal Cell Carcinoma by Downregulating LncRNA GAS5. Kidney Blood Press Res 2021; 46:613-619. [PMID: 34352801 DOI: 10.1159/000511174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND LncRNAs play regulatory roles in diverse nephrological disorders, including renal cancer. Overexpression of lncRNA POU3F3 (POU3F3) has only been reported in esophageal squamous-cell carcinomas, indicating POU3F3 may be an oncogene in this disease. LncRNA GAS5 (GAS5) was reported to be a suppressor in various tumors. However, the roles and underlying mechanism of POU3F3 and GAS5 involved in renal cell carcinoma (RCC) remain unknown. METHODS Real-time quantitative PCR and in situ hybridization were performed to determine the expression of POU3F3 and GAS5 in paired tumor and adjacent healthy tissues donated by 68 RCC patients. The prognostic values of POU3F3 and GAS5 for RCC were analyzed by performing a 5-year follow-up study. Overexpression of POU3F3 and GAS5 was achieved in RCC cells to explore the interactions between them. Transwell assay and cell proliferation assay were performed to evaluate the role of POU3F3 and GAS5 in regulating RCC cell proliferation, migration, and invasion. RESULTS In the present study, we found that POU3F3 was upregulated while GAS5 was downregulated in tumor tissues than that in adjacent healthy tissues of patients with RCC. In situ hybridization analysis showed that POU3F3 was mostly expressed in tumor tissues, while GAS5 was mostly expressed in adjacent healthy tissues. High level of POU3F3 and low level of GAS5 were closely correlated with poor prognosis of RCC patients. Expression levels of POU3F3 and GAS5 were significantly and inversely correlated in tumor tissues but not in adjacent healthy tissues of RCC patients. Overexpression of POU3F3 mediated the downregulation of GAS5 in RCC cells, while GAS5 overexpression failed to significantly affect POU3F3 expression. Overexpression of POU3F3 led to promoted, while GAS5 overexpression led to inhibited proliferation, migration, and invasion of RCC cells. In addition, GAS5 overexpression attenuated the enhancing effects of POU3F3 overexpression on cancer cell proliferation, migration, and invasion. CONCLUSION POU3F3 promoted cell proliferation, migration, and invasion in RCC possibly by downregulating GAS5.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, China
| | - Cezheng Wang
- Department of Urology, Zibo Central Hospital, Zibo City, China
| | - Min Ma
- Department of Urology, Jinhua Central Hospital, Jinhua City, China
| |
Collapse
|
5
|
Rey F, Marcuzzo S, Bonanno S, Bordoni M, Giallongo T, Malacarne C, Cereda C, Zuccotti GV, Carelli S. LncRNAs Associated with Neuronal Development and Oncogenesis Are Deregulated in SOD1-G93A Murine Model of Amyotrophic Lateral Sclerosis. Biomedicines 2021; 9:biomedicines9070809. [PMID: 34356873 PMCID: PMC8301400 DOI: 10.3390/biomedicines9070809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease caused in 10% of cases by inherited mutations considered “familial”. An ever-increasing amount of evidence is showing a fundamental role for RNA metabolism in ALS pathogenesis, and long non-coding RNAs (lncRNAs) appear to play a role in ALS development. Here, we aim to investigate the expression of a panel of lncRNAs (linc-Enc1, linc–Brn1a, linc–Brn1b, linc-p21, Hottip, Tug1, Eldrr, and Fendrr) which could be implicated in early phases of ALS. Via Real-Time PCR, we assessed their expression in a murine familial model of ALS (SOD1-G93A mouse) in brain and spinal cord areas of SOD1-G93A mice in comparison with that of B6.SJL control mice, in asymptomatic (week 8) and late-stage disease (week 18). We highlighted a specific area and pathogenetic-stage deregulation in each lncRNA, with linc-p21 being deregulated in all analyzed tissues. Moreover, we analyzed the expression of their human homologues in SH-SY5Y-SOD1-WT and SH-SY5Y-SOD1-G93A, observing a profound alteration in their expression. Interestingly, the lncRNAs expression in our ALS models often resulted opposite to that observed for the lncRNAs in cancer. These evidences suggest that lncRNAs could be novel disease-modifying agents, biomarkers, or pathways affected by ALS neurodegeneration.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.M.); (S.B.); (C.M.)
| | - Silvia Bonanno
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.M.); (S.B.); (C.M.)
| | - Matteo Bordoni
- Centro di Eccellenza Sulle Malattie Neurodegenerative, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Toniella Giallongo
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
| | - Claudia Malacarne
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.M.); (S.B.); (C.M.)
- PhD Program in Neuroscience, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
- Department of Pediatrics, Children’s Hospital “V. Buzzi”, Via Lodovico Castelvetro 32, 20154 Milano, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
- Correspondence: ; Tel.: +39-02-50319825
| |
Collapse
|
6
|
Liu Y, Zhuang Y, Fu X, Li C. LncRNA POU3F3 promotes melanoma cell proliferation by downregulating lncRNA MEG3. Discov Oncol 2021; 12:21. [PMID: 35201451 PMCID: PMC8777492 DOI: 10.1007/s12672-021-00414-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND LncRNA POU3F3 (POU3F3) is overexpressed and plays oncogenic roles in esophageal squamous-cell carcinomas. LncRNA MEG3 (MEG3) has been characterized as a tumor suppressive lncRNA in different types of cancer. Our preliminary deep sequencing analysis revealed the inverse correlation between POU3F3 and MEG2 across melanoma tissues, indicating the interaction between them in melanoma. Therefore, this study was performed to investigate the crosstalk between POU3F3 and MEG3 in melanoma. METHODS Tumor and adjacent healthy tissues collected from 60 melanoma patients were subjected to RNA extractions and RT-qPCRs to analyze the differential expression of POU3F3 and MEG2 in melanoma. In melanoma cells, POU3F3 and MEG2 were overexpressed to study the interactions between them. CCK-8 assays were performed to analyze the roles of POU3F3 and MEG2 in regulating melanoma cell proliferation. RESULTS We found that POU3F3 was upregulated, while lncRNA MEG3 was downregulated in melanoma. Expression levels of POU3F3 and MEG3 were inversely correlated across tumor tissues. In vitro experiments showed that POU3F3 overexpression decreased MEG3 expression in melanoma cells, while MEG3 overexpression failed to affect POU3F3. POU3F3 overexpression increased melanoma cell proliferation, while MEG3 overexpression decreased melanoma cell proliferation. In addition, rescue experiments showed that MEG3 overexpression attenuated the enhancing effects of POU3F3 overexpression. CONCLUSION POU3F3 may promote melanoma cell proliferation by downregulating MEG3.
Collapse
Affiliation(s)
- Yingnan Liu
- Department of Hand and Microvascular Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518000, Guangdong, China
- Department of Hand and Microvascular Surgery, Shenzhen People's Hospital, The First Affiliated Hospital,Southern University of Science and Technology, Shenzhen, 518000, Guangdong, China
| | - Yongqing Zhuang
- Department of Hand and Microvascular Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518000, Guangdong, China
- Department of Hand and Microvascular Surgery, Shenzhen People's Hospital, The First Affiliated Hospital,Southern University of Science and Technology, Shenzhen, 518000, Guangdong, China
| | - Xiaokuan Fu
- Department of Hand and Microvascular Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518000, Guangdong, China
- Department of Hand and Microvascular Surgery, Shenzhen People's Hospital, The First Affiliated Hospital,Southern University of Science and Technology, Shenzhen, 518000, Guangdong, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 12th floor, Building 9, No. 197, Ruijin 2nd Road, Huangpu District, Shanghai, 200025, China.
| |
Collapse
|
7
|
Wolf J, Auw-Haedrich C, Schlecht A, Boneva S, Mittelviefhaus H, Lapp T, Agostini H, Reinhard T, Schlunck G, Lange CAK. Transcriptional characterization of conjunctival melanoma identifies the cellular tumor microenvironment and prognostic gene signatures. Sci Rep 2020; 10:17022. [PMID: 33046735 PMCID: PMC7550331 DOI: 10.1038/s41598-020-72864-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
This study characterizes the transcriptome and the cellular tumor microenvironment (TME) of conjunctival melanoma (CM) and identifies prognostically relevant biomarkers. 12 formalin-fixed and paraffin-embedded CM were analyzed by MACE RNA sequencing, including six cases each with good or poor clinical outcome, the latter being defined by local recurrence and/or systemic metastases. Eight healthy conjunctival specimens served as controls. The TME of CM, as determined by bioinformatic cell type enrichment analysis, was characterized by the enrichment of melanocytes, pericytes and especially various immune cell types, such as plasmacytoid dendritic cells, natural killer T cells, B cells and mast cells. Differentially expressed genes between CM and control were mainly involved in inhibition of apoptosis, proteolysis and response to growth factors. POU3F3, BIRC5 and 7 were among the top expressed genes associated with inhibition of apoptosis. 20 genes, among them CENPK, INHA, USP33, CASP3, SNORA73B, AAR2, SNRNP48 and GPN1, were identified as prognostically relevant factors reaching high classification accuracy (area under the curve: 1.0). The present study provides new insights into the TME and the transcriptional profile of CM and additionally identifies new prognostic biomarkers. These results add new diagnostic tools and may lead to new options of targeted therapy for CM.
Collapse
Affiliation(s)
- Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Claudia Auw-Haedrich
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Anja Schlecht
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Hans Mittelviefhaus
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Thabo Lapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Clemens A K Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| |
Collapse
|
8
|
Asgharzadeh S, Tafvizi F, Chaleshi V, Iravani S. Lack of association between LincRNA-Pou3f gene expression and clinicopathological features in gastric cancer tissue. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Papoutsoglou P, Moustakas A. Long non-coding RNAs and TGF-β signaling in cancer. Cancer Sci 2020; 111:2672-2681. [PMID: 32485023 PMCID: PMC7419046 DOI: 10.1111/cas.14509] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is driven by genetic mutations in oncogenes and tumor suppressor genes and by cellular events that develop a misregulated molecular microenvironment in the growing tumor tissue. The tumor microenvironment is guided by the excessive action of specific cytokines including transforming growth factor-β (TGF-β), which normally controls embryonic development and the homeostasis of young or adult tissues. As a consequence of the genetic alterations generating a given tumor, TGF-β can preserve its homeostatic function and attempt to limit neoplastic expansion, whereas, once the tumor has progressed to an aggressive stage, TGF-β can synergize with various oncogenic stimuli to facilitate tumor invasiveness and metastasis. TGF-β signaling mechanisms via Smad proteins, various ubiquitin ligases, and protein kinases are relatively well understood. Such mechanisms regulate the expression of genes encoding proteins or non-coding RNAs. Among non-coding RNAs, much has been understood regarding the regulation and function of microRNAs, whereas the role of long non-coding RNAs is still emerging. This article emphasizes TGF-β signaling mechanisms leading to the regulation of non-coding genes, the function of such non-coding RNAs as regulators of TGF-β signaling, and the contribution of these mechanisms in specific hallmarks of cancer.
Collapse
Affiliation(s)
| | - Aristidis Moustakas
- Department of Medical Biochemistry and MicrobiologyScience for Life LaboratoryUppsala UniversityUppsalaSweden
| |
Collapse
|
10
|
Seles M, Hutterer GC, Foßelteder J, Svoboda M, Resel M, Barth DA, Pichler R, Bauernhofer T, Zigeuner RE, Pummer K, Slaby O, Klec C, Pichler M. Long Non-Coding RNA PANTR1 is Associated with Poor Prognosis and Influences Angiogenesis and Apoptosis in Clear-Cell Renal Cell Cancer. Cancers (Basel) 2020; 12:E1200. [PMID: 32397610 PMCID: PMC7281347 DOI: 10.3390/cancers12051200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
POU3F3 adjacent non-coding transcript 1 (PANTR1) is an oncogenic long non-coding RNA with significant influence on numerous cellular features in different types of cancer. No characterization of its role in renal cell carcinoma (RCC) is yet available. In this study, PANTR1 expression was confined to human brain and kidney tissue and was found significantly up-regulated in clear-cell renal cell carcinoma tissue (ccRCC) compared to non-cancerous kidney tissue in two independent cohorts (p < 0.001 for both cohorts). In uni- and multivariate Cox regression analysis, ccRCC patients with higher levels of PANTR1 showed significantly poorer disease-free survival in our own respective cohort (n = 175, hazard ratio: 4.3, 95% confidence interval: 1.45-12.75, p = 0.008) in accordance with significantly poorer overall survival in a large The Cancer Genome Atlas database (TCGA) cohort (n = 530, hazard ratio: 2.19, 95% confidence interval: 1.59-3.03, p ≤ 0.001). To study the underlying cellular mechanisms mediated by varying levels of PANTR1 in kidney cancer cells, we applied siRNA-mediated knock-down experiments in three independent ccRCC cell lines (RCC-FG, RCC-MF, 769-P). A decrease in PANTR1 levels led to significantly reduced cellular growth through activation of apoptosis in all tested cell lines. Moreover, as angiogenesis is a critical driver in ccRCC pathogenesis, we identified that PANTR1 expression is critical for in vitro tube formation and endothelial cell migration (p < 0.05). On the molecular level, knock-down of PANTR1 led to a decrease in Vascular Endothelial growth factor A (VEGF-A) and cell adhesion molecule laminin subunit gamma-2 (LAMC2) expression, corroborated by a positive correlation in RCC tissue (for VEGF-A R = 0.19, p < 0.0001, for LAMC2 R = 0.13, p = 0.0028). In conclusion, this study provides first evidence that PANTR1 has a relevant role in human RCC by influencing apoptosis and angiogenesis.
Collapse
Affiliation(s)
- Maximilian Seles
- Department of Urology, Medical University of Graz, 8036 Graz, Austria; (M.S.); (G.C.H.); (R.E.Z.); (K.P.)
| | - Georg C. Hutterer
- Department of Urology, Medical University of Graz, 8036 Graz, Austria; (M.S.); (G.C.H.); (R.E.Z.); (K.P.)
| | - Johannes Foßelteder
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
| | - Marek Svoboda
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic; (M.S.); (O.S.)
| | - Margit Resel
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
| | - Dominik A. Barth
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Renate Pichler
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Thomas Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
| | - Richard E. Zigeuner
- Department of Urology, Medical University of Graz, 8036 Graz, Austria; (M.S.); (G.C.H.); (R.E.Z.); (K.P.)
| | - Karl Pummer
- Department of Urology, Medical University of Graz, 8036 Graz, Austria; (M.S.); (G.C.H.); (R.E.Z.); (K.P.)
| | - Ondrej Slaby
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic; (M.S.); (O.S.)
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Christiane Klec
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Chen M, Xu Z, Zhang Y, Zhang X. LINC00958 Promotes The Malignancy Of Nasopharyngeal Carcinoma By Sponging microRNA-625 And Thus Upregulating NUAK1. Onco Targets Ther 2019; 12:9277-9290. [PMID: 31819474 PMCID: PMC6842770 DOI: 10.2147/ott.s216342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose The aberrant expression of long noncoding RNAs (lncRNAs) indicates progression of various diseases. LINC00958 has been well studied in several types of human cancer; however, the expression profile, functions, and potential mechanism of action of this lncRNA in nasopharyngeal carcinoma (NPC) remain largely unclear and still need to be elucidated. In the present study, we aimed to measure LINC00958 expression in NPC, determine its clinical value, and explore its roles in NPC progression as well as the mechanisms behind these processes. Methods The expression profile of LINC00958 in NPC was evaluated by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). A series of functional assays, including the Cell Counting Kit-8 assay, flow cytometry, a Transwell assay, and an in vivo nude mouse model, were utilized to determine the participation of LINC00958 in the malignancy of NPC. Results LINC00958 was found to be upregulated in NPC tissue specimens and cell lines. The LINC00958 overexpression significantly correlated with tumor size, lymph node status, TNM stage, and worse overall survival among NPC patients. Downregulation of LINC00958 suppressed NPC cell proliferation, migration, and invasion and induced apoptosis in vitro. Additionally, the LINC00958 knockdown impaired tumor growth in vivo. Mechanistically, LINC00958 was found to serve as a molecular sponge of microRNA-625 (miR-625), thereby upregulating NUAK family SNF1-like kinase 1 (NUAK1) in NPC cells. Lastly, rescue experiments validated the involvement of the miR-625–NUAK1 axis in LINC00958-mediated biological functions in NPC. Conclusion Our results demonstrated that LINC00958 works as an oncogene in NPC and plays a key role in the malignant phenotype of NPC cells by sponging miR-625 and increasing NUAK1 expression. The LINC00958–miR-625–NUAK1 pathway might be a target for anticancer therapy in patients with NPC.
Collapse
Affiliation(s)
- Meijuan Chen
- Department of Ophthalmology and Otorhinolaryngology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Zhina Xu
- Department of Ophthalmology and Otorhinolaryngology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Yingyao Zhang
- Department of Ophthalmology and Otorhinolaryngology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Xiujuan Zhang
- Weifang People's Hospital, Weifang, Shandong 262737, People's Republic of China
| |
Collapse
|
12
|
Chang S, Sun L, Feng G. SP1-mediated long noncoding RNA POU3F3 accelerates the cervical cancer through miR-127-5p/FOXD1. Biomed Pharmacother 2019; 117:109133. [PMID: 31252264 DOI: 10.1016/j.biopha.2019.109133] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence supports the critical roles of long noncoding RNA (lncRNA) in cervical cancer. However, the pathological roles of lncRNA POU3 F3 in the cervical cancer tumorigenesis are still elusive. POU3 F3 was validated to be up-regulated in the cervical cancer tissue specimens and cells comparing with normal controls. Moreover, the ectopic overexpression of POU3 F3 was closely correlated with poor prognosis. In vitro, POU3 F3 promoted the proliferation, invasion of cervical cancer cells. In vivo, POU3 F3 knockdown repressed the tumor growth of cervical cancer cells. The transcriptional expression of POU3 F3 was activated by the transcription factor SP1. Mechanically, POU3 F3 acted as the sponge to target miR-127-5p, while miR-127-5p bind with the 3'-UTR of FOXD1 gene. In conclusion, our data verifies that lncRNA POU3 F3, induced by transcription factor SP1, acts as an oncogene in the cervical cancer tumorigenesis via regulating miR-127-5p/FOXD1 axis, providing a possible therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Suwen Chang
- Department of Obstetrics and Gynecology, Yuhuangding Hospital, Yantai, Shandong Province, 264000, China
| | - Liping Sun
- Department of Obstetrics and Gynecology, Yuhuangding Hospital, Yantai, Shandong Province, 264000, China
| | - Guijiao Feng
- Department of Obstetrics and Gynecology, Yuhuangding Hospital, Yantai, Shandong Province, 264000, China.
| |
Collapse
|
13
|
Zhang J, Gao F, Ni T, Lu W, Lin N, Zhang C, Sun Z, Guo H, Chi J. Linc-POU3F3 is overexpressed in in-stent restenosis patients and induces VSMC phenotypic transformation via POU3F3/miR-449a/KLF4 signaling pathway. Am J Transl Res 2019; 11:4481-4490. [PMID: 31396351 PMCID: PMC6684896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND With the extensive application of stent implantation in patients undergoing percutaneous coronary interventions (PCI), there are chances that in-stent restenosis (ISR)-a major vascular complication caused by vascular smooth muscle cell (VSMC) phenotypic transformation-might occur. OBJECTIVES This study sought to evaluate the role of lincRNA-POU3F3 on VSMC phenotypic transformation and the underlying mechanism. METHODS VSMCs were used in our research. We first constructed a gene delivery system through an assembly of lipofectamine and a functional plasmid DNA (pDNA) encoding lincRNA-POU3F3 or MicroRNA-449a, and then, transfected it to VSMCs. Moreover, lentivirus-mediated KLF4 inhibitor (KLF4 siRNA) was also used in these cells. Expression of relevant proteins, such as smooth muscle myosin heavy chain (SM-MHC), alpha smooth muscle actin (α-SMA), osteopontin (OPN), and kruppel-like factor 4 (KLF4), was examined by western blot or immunofluorescence (IF) assay. CCK-8 and wound healing assays were performed to assess the growth and migration of VSMCs. qRT-PCR was used to assess linc-POU3F3 and miR-449a levels. Luciferase reporter assay was also performed. RESULTS POU3F3 levels were significantly higher in ISR patients compared to controls. We observed that linc-POU3F3 promoted VSMC proliferation and migration, and induced VSMC phenotypic transformation via POU3F3/miR-449a/KLF4 signaling pathway. CONCLUSION Linc-POU3F3 promotes phenotypic transformation of VSMCs via POU3F3/miR-449a/KLF4 pathway. It may provide a theoretical basis to attenuate ISR via pharmacological inhibition of this biomarker or at least serve as a predictor of diagnosis or prognosis of patients with restenosis.
Collapse
Affiliation(s)
- Jie Zhang
- The First Clinical Medical College, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Feidan Gao
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Tingjuan Ni
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Wenqiang Lu
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Na Lin
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Chuanjing Zhang
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Zhenzhu Sun
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Hangyuan Guo
- The First Clinical Medical College, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Jufang Chi
- The First Clinical Medical College, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| |
Collapse
|
14
|
Yang J, Meng X, Yu Y, Pan L, Zheng Q, Lin W. LncRNA POU3F3 promotes proliferation and inhibits apoptosis of cancer cells in triple-negative breast cancer by inactivating caspase 9. Biosci Biotechnol Biochem 2019; 83:1117-1123. [PMID: 30843771 DOI: 10.1080/09168451.2019.1588097] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It has been reported that lncRNA POU3F3 was upregulated in esophageal squamous-cell carcinomas, indicating its role as an oncogene in this disease. However, the mechanism of its function and its involvement in other malignancies is unknown. In the present study we found that expression levels of lncRNA POU3F3 were higher in tumor tissues than in adjacent healthy tissues of triple negative breast cancer (TNBC) patients and were significantly and inversely correlated with levels of cleaved caspase 9 only in tumor tissues. In addition, plasma levels of lncRNA POU3F3 were higher in TNBC patients than in healthy controls and were significantly and inversely correlated with levels of cleaved caspase 9 only in TNBC patients. In addition, treatment of exogenous Cleaved Caspase-9 significantly attenuated the effects of lncRNA POU3F3 overexpression on cancer cell proliferation and apoptosis. lncRNA POU3F3 may promote proliferation and inhibit apoptosis of cancer cells in triple-negative breast cancer.
Collapse
Affiliation(s)
- Jun Yang
- a Department of breast and thyroid surgery , Tongde Hospital , Zhejiang Province , PR. China
| | - Xuli Meng
- a Department of breast and thyroid surgery , Tongde Hospital , Zhejiang Province , PR. China
| | - Yong Yu
- a Department of breast and thyroid surgery , Tongde Hospital , Zhejiang Province , PR. China
| | - Lei Pan
- a Department of breast and thyroid surgery , Tongde Hospital , Zhejiang Province , PR. China
| | - Qinghui Zheng
- a Department of breast and thyroid surgery , Tongde Hospital , Zhejiang Province , PR. China
| | - Wei Lin
- b Department of Breast and Thyroid Surgery , People's hospital of Quzhou City , Zhejiang Province , PR. China
| |
Collapse
|