1
|
Zhao W, Cheng H, Zhu Y. A compound reflects the level of homocysteine based on Rhodamine B and its ability to respond to homocysteine in the plasma of diabetic patients. J Clin Lab Anal 2020; 34:e23202. [PMID: 31995653 PMCID: PMC7246376 DOI: 10.1002/jcla.23202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The level of homocysteine (Hcy) is significantly elevated in the plasma of patients with diabetes. The increased plasma Hcy level is positively correlated with the severity of the disease and is one of the important causes of diabetic complications. METHODS We designed and synthesized a compound could reflect the level of Hcy based on rhodamine B, and the structure was verified by 1H-NMR and EI-HRMS. Then, the linearity, repeatability, selectivity, and cellar toxicity, the effects of the fluid viscosity and pH of compound on Hcy were measured; meanwhile, the response of Hcy level in the plasma of diabetic patients was detected. RESULTS This is a novel compound that has never been reported. The compound showed a satisfactory linear range and repeatability at the viscosity and pH of physiological fluid. In addition, the compound was capable of evading the interference from other amino acids and metal ions, and it exhibited high selectivity toward Hcy. CONCLUSION The compound showed increased responsiveness to plasma Hcy in patients with diabetes in comparison with healthy individuals and effectively reflected plasma Hcy levels in healthy individuals and diabetic patients. Therefore, the compound is expected to be used in the diagnosis of diabetes mellitus.
Collapse
Affiliation(s)
| | - Han Cheng
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Yu Zhu
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
2
|
Wang Y, Qin S, Jia J, Huang L, Li F, Jin F, Ren Z, Wang Y. Intestinal Microbiota-Associated Metabolites: Crucial Factors in the Effectiveness of Herbal Medicines and Diet Therapies. Front Physiol 2019; 10:1343. [PMID: 31736775 PMCID: PMC6828839 DOI: 10.3389/fphys.2019.01343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Although the efficacy of herbal medicines (HMs) and traditional Chinese medicines (TCMs) in human diseases has long been recognized, their development has been hindered in part by a lack of a comprehensive understanding of their mechanisms of action. Indeed, most of the compounds extracted from HMs can be metabolized into specific molecules by host microbiota and affect pharmacokinetics and toxicity. Moreover, HMs modulate the constitution of host intestinal microbiota to maintain a healthy gut ecology. Dietary interventions also show great efficacy in treating some refractory diseases, and the commensal microbiota potentially has significant implications for the high inter-individual differences observed in such responses. Herein, we mainly discuss the contribution of the intestinal microbiota to high inter-individual differences in response to HMs and TCMs, and especially the already known metabolites of the HMs produced by the intestinal microbiota. The contribution of commensal microbiota to the inter-individual differences in response to dietary therapy is also briefly discussed. This review highlights the significance of intestinal microbiota-associated metabolites to the efficiency of HMs and dietary interventions. Our review may help further identify the mechanisms leading to the inter-individual differences in the effectiveness of HM and dietary intervention from the perspective of their interactions with the intestinal microbiota.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Lianzhou Huang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Fujun Jin
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Advances in Research on the Protective Mechanisms of Traditional Chinese Medicine (TCM) in Islet β Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7526098. [PMID: 31531118 PMCID: PMC6721377 DOI: 10.1155/2019/7526098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/16/2019] [Accepted: 07/30/2019] [Indexed: 11/17/2022]
Abstract
The dysfunction and decreased number of islet β cells are central to the main pathogenesis of diabetes. Improving islet β cell function and increasing the number of β cells are effective approaches to treat diabetes and constitute the main direction of diabetes drug development. The role of Chinese medicine in the treatment of diabetes began to be recognized. In recent years, Chinese medicine monomers have been found to increase insulin synthesis and secretion, reduce β cell-apoptosis, and protect the function of β cells. The results of in vivo animal experiments and in vitro studies on insulinoma cells also suggested TCMs could promote the proliferation of pancreatic islet β cells and induce other cells differentiation or transdifferentiation to islet β cells. Thereby, they may play a role in the treatment of diabetes. In this paper, we will review islet β cell protection with TCMs and the related mechanisms found in recent studies. An in-depth explanation of the role of TCM in islet β cell protection can provide a theoretical basis and research ideas for the development of TCM-based diabetes treatment drugs.
Collapse
|
4
|
Sobeh M, El-Raey M, Rezq S, Abdelfattah MAO, Petruk G, Osman S, El-Shazly AM, El-Beshbishy HA, Mahmoud MF, Wink M. Chemical profiling of secondary metabolites of Eugenia uniflora and their antioxidant, anti-inflammatory, pain killing and anti-diabetic activities: A comprehensive approach. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111939. [PMID: 31095981 DOI: 10.1016/j.jep.2019.111939] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The red Brazilian cherry, Eugenia uniflora, is widely used in traditional medicine. The aim of this study was to investigate the phytochemical composition of a methanol extract from leaves of E. uniflora and characterization of the isolated compounds. In addition, we aimed to determine the antioxidant activities in vitro and in a cell-based (HaCaT cell) model. We also studied the anti-inflammatory, analgesic, antipyretic and antidiabetic activities in relevant rat models. The molecular mode of action of the antidiabetic activities was also investigated. MATERIALS AND METHODS UV, MS, and NMR (1H, 13C, DEPT, COSY, HMQC, and HMBC) were used to identify the secondary metabolites. Antioxidant effects were determined in vitro and in HaCaT cells. The ani-inflammatory and antidibetic activities were studied in experimental animals. RESULTS In this work, a new compound, gallic acid 3-O-[6'-O-acetyl-β-D-glucoside], along with 16 known plant secondary metabolites (PSM) were isolated, characterized using UV, MS, and NMR (1H, 13C, DEPT, COSY, HMQC, and HMBC). Noticeable antioxidant effects were determined in HaCaT cells: The extract reduced the elevated levels of ROS and p38 phosphorylation and increased the reduced glutathione (GSH) content induced by UVA. The extract showed substantial anti-inflammatory activities in vivo: It diminished the edema thickness in carrageenan-induced hind-paw edema rat model and lowered the leukocyte migration into the peritoneal cavity. In rats, central and peripheral anti-nociceptive properties were also observed: The extract reduced the number of writhing in acid induced writhing and increased the latency time in hot plate test. Furthermore, adequate antipyretic effects were observed: The extract reduced the elevated rectal temperature in rats after intraperitoneal injection of Brewer's yeast. Moreover, the extract possessed robust anti-diabetic activity in streptozotocin (STZ) -diabetic rats: It markedly reduced the elevated serum glucose and lipid peroxidation levels and increased the insulin concentration in serum with higher potency than the positive control, glibenclamide. These effects might be associated with the interaction of PSM with the conserved amino acid residues of human pancreatic α-amylase (HPA), maltase glucoamylase (MGAM-C) and aldose reductase (ALR2) revealing considerable binding affinities. CONCLUSION A plethora of substantial pharmacological properties indicates that Eugenia uniflora is a good antioxidant and a sustainable by-product with solid therapeutic potential for treating diabetes, inflammation, pain and related oxidative stress diseases.
Collapse
Affiliation(s)
- Mansour Sobeh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany; AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben-Guerir, Morocco.
| | - Mohamed El-Raey
- Department of Phytochemistry and Plant Systematics, Division of Pharmaceutical Industries, National Research Centre, Dokki, Cairo, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A O Abdelfattah
- Department of Science, College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Naples, Italy
| | - Samir Osman
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Assem M El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hesham A El-Beshbishy
- Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, P.O. Box 2537, Jeddah, 21461, Saudi Arabia; Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11751, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|