1
|
Wang J, Ren J, Tu X, Yuan H, Ye Z, Wang X, Cui J, Wang J, Tang Y, Han P, Bai Y. ARNTL2 facilitates bladder cancer progression through potentiating ENO1-mediated glycolysis in a SLC31A1-independent and -dependent manner. Life Sci 2024; 355:122974. [PMID: 39147318 DOI: 10.1016/j.lfs.2024.122974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Basic helix-loop-helix ARNT like 2 (ARNTL2) is a transcription factor that controls the circadian rhythm. Amounts of studies have demonstrated the carcinogenic function of ARNTL2 in human malignant tumors albeit the underlying mechanisms remain poorly understood. We aimed to study the significance of ARNTL2 in bladder cancer (BLCA). METHODS Immunohistochemical staining, immunoblotting and the database from TCGA were used to analyze the clinical relevance of ARNTL2, enolase 1 (ENO1) and solute carrier family 31 member 1 (SLC31A1) in BLCA. The function of ARNTL2 was explored by cell proliferation assay, apoptosis, colony formation and xenografted tumorigenesis. The molecular mechanisms of ARNTL2-driving BLCA development were investigated by RT-qPCR, immunoblotting and luciferase assays. Glycolysis was checked by measuring glucose consumption and lactate production. ENO1 activity was assessed by using indicated assay kit. RESULTS Overexpression of ARNTL2 facilitates the proliferation and tumorigenesis of BLCA cells through suppression of apoptosis and enhancement of glycolysis. Up-regulation of SLC31A1, ENO1, and enhancement of SLC31A1-mediated ENO1 activity were critical for ARNTL2-triggered glycolysis and malignant growth in BLCA cells. ARNTL2 was positively correlated with SLC31A1 and ENO1 in BLCA patients. High expression of ARNTL2, SLC31A1 or ENO1 predicted the poor prognosis of BLCA patients. Depletion of SLC31A1 and inhibition of glycolysis completely blunted the growth ability of BLCA cells. CONCLUSION In summary, ARNTL2 facilitates the progression of BLCA via activating ENO1-mediated glycolysis in a SLC31A1-independent and -dependent manner. Inhibiting SLC31A1 and glycolysis may be an aspirational approach for the treatment of BLCA patients with overexpression of ARNTL2.
Collapse
Affiliation(s)
- Jiahao Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junwei Ren
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Tu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haichao Yuan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhenyang Ye
- Department of Urology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Xiaoming Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianwei Cui
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jia Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yin Tang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ping Han
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yunjin Bai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Jo H, Shin S, Agura T, Jeong S, Ahn H, Lee J, Kim Y, Kang JS. The Role of α-Enolase on the Production of Interleukin (IL)-32 in Con A-Mediated Inflammation and Rheumatoid Arthritis (RA). Pharmaceuticals (Basel) 2024; 17:531. [PMID: 38675491 PMCID: PMC11054489 DOI: 10.3390/ph17040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukin (IL)-32 is produced by T lymphocytes, natural killer cells, monocytes, and epithelial cells. IL-32 induces the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, IL-1β, IL-6, and IL-8, and IL-32 expression is highly increased in rheumatoid arthritis (RA) patients. Enolase-1 (ENO1) is a glycolytic enzyme and the stimulation of ENO1 induces high levels of pro-inflammatory cytokines in concanavalin A (Con A)-activated peripheral blood mononuclear cells (PBMCs) and macrophages in RA patients. In addition, there are many reports that anti-ENO1 antibody is correlated with the disease progression of RA. It implies that ENO1 could regulate IL-32 production during inflammation related to the pathogenesis of RA. Therefore, we investigated the role of ENO1 in IL-32 production using Con A-activated PBMCs and RA PBMCs. IL-32 expression is increased by ENO1 stimulation using real-time PCR and ELISA. In addition, we confirmed that IL-32 production was decreased in Con A-activated PBMCs and RA PBMCs pre-treated with NF-κB or p38 MAPK pathway inhibitors. Taken together, these results suggest that ENO1 plays an important role in inflammation through the induction of IL-32 production by the activation of the NF-κB and p38 MAPK pathways.
Collapse
Affiliation(s)
- Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Seulgi Shin
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea;
| | - Tomoyo Agura
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Seoyoun Jeong
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Hyovin Ahn
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Junmyung Lee
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea;
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea;
- Artificial Intelligence Institute, Seoul National University, Seoul 08826, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Luo Y, Pang B, Hao J, Li Q, Qiao P, Zhang C, Bai Y, Xiao C, Chen J, Zhi D, Liu Y, Dang E, Wang G, Li B. Keratin 17 covalently binds to alpha-enolase and exacerbates proliferation of keratinocytes in psoriasis. Int J Biol Sci 2023; 19:3395-3411. [PMID: 37497003 PMCID: PMC10367554 DOI: 10.7150/ijbs.83141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/16/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulated glucose metabolism is an important characteristic of psoriasis. Cytoskeletal protein keratin 17 (K17) is highly expressed in the psoriatic epidermis and contributes to psoriasis pathogenesis. However, whether K17 is involved in the dysregulated glucose metabolism of keratinocytes (KCs) in psoriasis remains unclear. In the present study, loss- and gain-of-function studies showed that elevated K17 expression was critically involved in glycolytic pathway activation in psoriatic KCs. The level of α-enolase (ENO1), a novel potent interaction partner of K17, was also elevated in psoriatic KCs. Knockdown of ENO1 by siRNA or inhibition of ENO1 activity by the inhibitor ENOBlock remarkably suppressed KCs glycolysis and proliferation. Moreover, ENO1 directly interacted with K17 and maintained K17-Ser44 phosphorylation to promote the nuclear translocation of K17, which promoted the transcription of the key glycolysis enzyme lactic dehydrogenase A (LDHA) and resulted in enhanced KCs glycolysis and proliferation in vitro. Finally, either inhibiting the expression and activation of ENO1 or repressing K17-Ser44 phosphorylation significantly alleviated the IMQ-induced psoriasis-like phenotype in vivo. These findings provide new insights into the metabolic profile of psoriatic KCs and suggest that modulation of the ENO1-K17-LDHA axis is a potentially innovative therapeutic approach to psoriasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Gang Wang
- ✉ Corresponding author: Bing Li, MD, PhD, Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an 710032, China. Tel: 86-29-84775401, E-mail: . Gang Wang, MD, PhD, Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an 710032, China. Tel: 86-29-84775401, E-mail:
| | - Bing Li
- ✉ Corresponding author: Bing Li, MD, PhD, Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an 710032, China. Tel: 86-29-84775401, E-mail: . Gang Wang, MD, PhD, Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an 710032, China. Tel: 86-29-84775401, E-mail:
| |
Collapse
|
4
|
Agrawal K, Chauhan S, Kumar D. Expression analysis and regulation of GLI and its correlation with stemness and metabolic alteration in human brain tumor. 3 Biotech 2023; 13:10. [PMID: 36532860 PMCID: PMC9755437 DOI: 10.1007/s13205-022-03419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
GLI gene-mediated hedgehog (Hh) signaling pathway plays a substantial role in brain cancer development and growth including glioblastoma multiforme (GBM), lower-grade glioma (LGG), and medulloblastoma (MB). GLI2 and GLI3 gene expression levels are extremely enhanced in these cancers with poor patient survival. Moreover, GLI genes are correlated with stemness-related factors SOX2, SOX9, POU5F1, and NANOG that work as the driving factors for brain cancer stem cells (CSCs) progression. It's critical to find new ways to combat this deadly malignancy and CSCs. Using in silico approaches, our study explored the role of GLI genes (GLI1, GLI2, and GLI3), the primary transcription factors of the sonic hedgehog (SHH) signaling pathway, in GBM, LGG, MB, and glioblastoma stem-like cells (GSCs). Additionally, we found strong association of angiogenic-related gene VEGFA, metabolic genes ENO1, ENO2, and pluripotency-related genes SOX2, SOX9, NANOG, POU5F1 with GLI genes, suggesting their role in brain tumor initiation and progression. We also studied their transcriptional network and functional category enrichment analysis about brain tumor development to find a better therapeutic strategy against brain cancer and their stem cells. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03419-5.
Collapse
Affiliation(s)
- Kirti Agrawal
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, Uttarakhand 248007 India
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec 125, Noida, 201303 India
| | - Saumya Chauhan
- Amity Global School, Sector 46, Gurugram, Haryana 122018 India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, Uttarakhand 248007 India
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec 125, Noida, 201303 India
| |
Collapse
|
5
|
Zhang K, Tian R, Zhang W, Li Y, Zeng N, Liang Y, Tang S. α-Enolase inhibits apoptosis and promotes cell invasion and proliferation of skin cutaneous melanoma. Mol Biol Rep 2022; 49:8241-8250. [PMID: 35925486 PMCID: PMC9463226 DOI: 10.1007/s11033-022-07540-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 04/28/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND The glycolytic enzyme, α-Enolase (ENO1), catalyzes the production of phosphoenolpyruvate from 2-phosphoglycerate, thereby enhancing glycolysis and contributing to tumor progression. In the present study, we aimed to determine the role of ENO1 in skin cutaneous melanoma (SKCM) and the potential underlying mechanism. METHODS The Sangerbox database was used to analyze the mRNA expression of ENO1 in SKCM. Western blotting was used to assess the levels of ENO1, c-Myc, β-catenin, MMP-9, PGAM1, and MMP-13 in SKCM-derived cell lines or tumor tissues from patients with SKCM. The pCMV-SPORT6-ENO1 and pET-28a-ENO1siRNA plasmids were used to overexpress and knockdown ENO1 in SKCM cells, respectively. To determine the function of ENO1 in the malignant behavior of SKCM cells, we performed a wound-healing assay, cell counting kit 8 assay, and transwell chamber analyses. The production of pyruvate and lactic acid in tumor cells was evaluated using their respective kits. RESULTS Compared with non-tumor tissues, ENO1 was found to be overexpressed in SKCM tissues. In SKCM cells, ENO1 overexpression promoted invasion, migration, and proliferation of tumor cells; increased pyruvate and lactate production; and increased β-catenin, MMP-9, MMP-13, and c-Myc levels. The opposite effects were observed in SKCM cells silenced for ENO1. CONCLUSIONS These results indicate that ENO1 is involved in SKCM progression by enhancing the invasion and proliferation of tumor cells. In addition, ENO1 might have an important function in tumor cell glycolysis. Therefore, ENO1 represents a potential therapeutic target for treatment of SKCM.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Ruoxi Tian
- School of Basic Medicine, Tianjin Medical University, Tianjin, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, Hebei, China
| | - Ning Zeng
- Department of Nephrology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yan Liang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
6
|
TRIM50 Inhibits Proliferation and Metastasis of Gastric Cancer via Promoting β-Catenin Degradation. JOURNAL OF ONCOLOGY 2022; 2022:5936753. [PMID: 36046365 PMCID: PMC9423946 DOI: 10.1155/2022/5936753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022]
Abstract
Background Gastric cancer (GC) is a common malignancy with a poor prognosis. Tripartite motif-containing 50 (TRIM50) belongs to the TRIM family and is reported to be related to numerous cancers. This study aimed to investigate the function of TRIM50 in GC. Methods Three microarray datasets (GSE13911, GSE79973, and GSE19826) containing GC and adjacent nontumor tissues were used for bioinformatics analysis to screen GC-related genes and assess the associations between GC development and TRIM50 expression. Then, TRIM50 expression in GC cells was detected at mRNA and protein levels. After TRIM50 was knockdown or overexpressed, the effect of TRIM50 on the proliferation and metastasis of GC cells was analyzed using Cell Counting Kit-8 (CCK-8), flow cytometry, scratch, and Transwell assays. The interaction between TRIM50 and β-catenin was analyzed. The expression of cell cycle-, migration-, invasion-, and Wnt/β-catenin signaling pathway-related proteins was detected by Western blot. Furthermore, we measured the role of TRIM50 overexpression on tumor growth as well as the Wnt/β-catenin signaling pathway in vivo. In addition, XAV939 (a WNT/β-catenin signaling pathway inhibitor) was used to clarify the mechanism of TRIM50 on GC. Results Bioinformatics revealed that TRIM50 expression was decreased in GC samples and associated with GC development. In vitro study revealed that TRIM50 overexpression impeded the GC cell proliferation and metastasis, while TRIM50 knockdown presented the opposite results. In addition, TRIM50 interacted with β-catenin to induce the degradation of β-catenin. In in vivo assay, TRIM50 overexpression inhibited tumor growth and blocked the Wnt/β-catenin signaling pathway. In addition, TRIM50 knockdown-promoted cell proliferation and metastasis in GC cells were inverted by XAV939. Conclusion TRIM50 overexpression may inhibit cell proliferation and metastasis in GC via β-catenin degradation, indicating that TRIM50 could be a target for the treatment of GC.
Collapse
|
7
|
Peng J, Pei S, Cui Y, Xia Y, Huang Y, Wu X, Zheng M, Weng M, Han X, Fu H, Yang L, Zhou W, Fu Z, Wang S, Xie H. Comparative analysis of transient receptor potential channel 5 opposite strand-induced gene expression patterns and protein-protein interactions in triple-negative breast cancer. Oncol Lett 2022; 24:259. [PMID: 35765270 PMCID: PMC9219028 DOI: 10.3892/ol.2022.13379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/04/2022] [Indexed: 11/06/2022] Open
Abstract
In patients with triple-negative breast cancer (TNBC), high tumour mutation burden and aberrant oncogene expression profiles are some of the causes of poor prognosis. Therefore, it is necessary to identify aberrantly expressed oncogenes, since they have the potential to serve as therapeutic targets. Transient receptor potential channel 5 opposite strand (TRPC5OS) has been previously shown to function as a novel tumour inducer. However, the underlying mechanism of TRPC5OS function in TNBC remain to be elucidated. Therefore, in the present study TRPC5OS expression was first measured in tissue samples of patients with TNBC and a panel of breast cancer cell lines (ZR-75-1, MDA-MB-453, SK-BR-3, JIMT-1, BT474 and HCC1937) by using qRT-PCR and Western blotting. Subsequently, the possible effects of TRPC5OS on MDA-MB-231 cells proliferation were determined using Cell Counting Kit-8 and 5-Ethynyl-2′-deoxyuridine assays after Lentiviral transfection of MDA-MB-231. In addition, potential interaction partners of TRPC5OS were explored using liquid chromatography-mass spectrometry (LC-MS)/MS. Gene expression patterns following TRPC5OS overexpression were also detected in MDA-MB-231 cells by using High-throughput sequencing. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis were then used to systematically verify the potential interactions among the TRPC5OS-regulated genes. The potential relationship between TRPC5OS-interacting proteins and gene expression patterns were studied using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis. TRPC5OS expression was found to be significantly higher in TNBC tumour tissues and breast cancer cell lines compared with luminal tumour tissues and ZR-75-1. In addition, the overexpression of TRPC5OS significantly increased cell proliferation. High-throughput sequencing results revealed that 5,256 genes exhibited differential expression following TRPC5OS overexpression, including 3,269 upregulated genes and 1,987 downregulated genes. GO analysis results indicated that the functions of these differentially expressed genes were enriched in the categories of ‘cell division’ and ‘cell proliferation’ regulation. KEGG analysis showed that the TRPC5OS-regulated genes were associated with processes of ‘homologous recombination’ and ‘TNF signalling pathways’. Subsequently, 17 TRPC5OS-interacting proteins were found using LC-MS/MS and STRING analysis. The most important protein among interacting proteins was ENO1 which was associated with glycolysis and regulated proliferation of cancer. In summary, data from the present study suggest that TRPC5OS overexpression can increase TNBC cell proliferation and ENO1 may be a potential target protein mediated by TRPC5OS. Therefore, TRPC5OS may serve as a novel therapeutic target for TNBC.
Collapse
Affiliation(s)
- Jinghui Peng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Breast Disease Laboratory, Women and Children Central Laboratory, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Breast Disease Laboratory, Women and Children Central Laboratory, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yangyang Cui
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yiqin Xia
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yue Huang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaowei Wu
- Breast Disease Laboratory, Women and Children Central Laboratory, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingjie Zheng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Miaomiao Weng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xu Han
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Breast Disease Laboratory, Women and Children Central Laboratory, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hongtao Fu
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Breast Disease Laboratory, Women and Children Central Laboratory, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lili Yang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenbin Zhou
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyi Fu
- Breast Disease Laboratory, Women and Children Central Laboratory, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
8
|
Prognostic value of metabolic genes in lung adenocarcinoma via integrative analyses. Genomics 2022; 114:110425. [PMID: 35803451 DOI: 10.1016/j.ygeno.2022.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/12/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common malignant lung tumor. Metabolic pathway reprogramming is an important hallmark of physiologic changes in cancers. However, the mechanisms through which these metabolic genes and pathways function in LUAD as well as their prognostic values have not been fully established. METHODS Four publicly available datasets from GEO and TCGA were used to identify differentially expressed genes (DEGs) in LUAD, which were then subjected to GO and KEGG pathway enrichment analysis. Associations between metabolic gene expressions with overall survival, tumor stage, TP53 mutation status, and infiltrated immune cells were investigated. Protein-protein interactions were evaluated using GeneMANIA and Metascape. RESULTS By integrating four public datasets, 247 DEGs were identified in LUAD. These DEGs were significantly enriched in regulation of chromosome segregation, centromeric region, and histone kinase activity GO terms, as well as in cell cycle, p53 signaling pathway, metabolic pathways, and other KEGG pathways. Elevated expressions of ten metabolic genes in LUAD were significantly associated with poor survival outcomes. These metabolic genes were highly expressed in more advanced tumor stage and TP53 mutated patients. Moreover, expression levels were significantly correlated with tumor-infiltrating immune cells. PPI interaction analysis revealed that the top 20 genes interacting with each metabolic gene were significantly enriched in DNA replication, response to radiation, and central carbon metabolism in cancer. CONCLUSION This study elucidates on molecular changes in metabolic genes in LUAD, which may inform the development of genetically oriented diagnostic approaches and effective treatment options.
Collapse
|
9
|
Akkour K, Alanazi IO, Alfadda AA, Alhalal H, Masood A, Musambil M, Rahman AMA, Alwehaibi MA, Arafah M, Bassi A, Benabdelkamel H. Tissue-Based Proteomic Profiling in Patients with Hyperplasia and Endometrial Cancer. Cells 2022; 11:cells11132119. [PMID: 35805203 PMCID: PMC9265283 DOI: 10.3390/cells11132119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Uterine cancers are among the most prevalent gynecological malignancies, and endometrial cancer (EC) is the most common in this group. This study used tissue-based proteomic profiling analysis in patients with endometrial cancer and hyperplasia, and control patients. Conventional 2D gel electrophoresis, followed by a mass spectrometry approach with bioinformatics, including a network pathway analysis pipeline, was used to identify differentially expressed proteins and associated metabolic pathways between the study groups. Thirty-six patients (twelve with endometrial cancer, twelve with hyperplasia, and twelve controls) were enrolled in this study. The mean age of the participants was 46–75 years. Eighty-seven proteins were significantly differentially expressed between the study groups, of which fifty-three were significantly differentially regulated (twenty-eight upregulated and twenty-five downregulated) in the tissue samples of EC patients compared to the control (Ctrl). Furthermore, 26 proteins were significantly dysregulated (8 upregulated and 18 downregulated) in tissue samples of hyperplasia (HY) patients compared to Ctrl. Thirty-two proteins (nineteen upregulated and thirteen downregulated) including desmin, peptidyl prolyl cis-trans isomerase A, and zinc finger protein 844 were downregulated in the EC group compared to the HY group. Additionally, fructose bisphosphate aldolase A, alpha enolase, and keratin type 1 cytoskeletal 10 were upregulated in the EC group compared to those in the HY group. The proteins identified in this study were known to regulate cellular processes (36%), followed by biological regulation (16%). Ingenuity pathway analysis found that proteins that are differentially expressed between EC and HY are linked to AKT, ACTA2, and other signaling pathways. The panels of protein markers identified in this study could be used as potential biomarkers for distinguishing between EC and HY and early diagnosis and progression of EC from hyperplasia and normal patients.
Collapse
Affiliation(s)
- Khalid Akkour
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Ibrahim O. Alanazi
- The National Center for Biotechnology (NCB), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hani Alhalal
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
| | - Moudi A. Alwehaibi
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11461, Saudi Arabia
| | - Maria Arafah
- Department of Pathology, College of Medicine, King Saud University, King Saud University Medical City, Riyadh 11461, Saudi Arabia;
| | - Ali Bassi
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Correspondence:
| |
Collapse
|
10
|
Stroggilos R, Frantzi M, Zoidakis J, Mokou M, Moulavasilis N, Mavrogeorgis E, Melidi A, Makridakis M, Stravodimos K, Roubelakis MG, Mischak H, Vlahou A. Gene Expression Monotonicity across Bladder Cancer Stages Informs on the Molecular Pathogenesis and Identifies a Prognostic Eight-Gene Signature. Cancers (Basel) 2022; 14:cancers14102542. [PMID: 35626146 PMCID: PMC9140126 DOI: 10.3390/cancers14102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Despite advancements in molecular classification, tumor stage and grade still remain the most relevant prognosticators used by clinicians to decide on patient management. Here, we leverage publicly available data to characterize bladder cancer (BLCA)’s stage biology based on increased sample sizes, identify potential therapeutic targets, and extract putative biomarkers. A total of 1135 primary BLCA transcriptomes from 12 microarray studies were compiled in a meta-cohort and analyzed for monotonal alterations in pathway activities, gene expression, and co-expression patterns with increasing stage (Ta–T1–T2–T3–T4), starting from the non-malignant tumor-adjacent urothelium. The TCGA-2017 and IMvigor-210 RNA-Seq data were used to validate our findings. Wnt, MTORC1 signaling, and MYC activity were monotonically increased with increasing stage, while an opposite trend was detected for the catabolism of fatty acids, circadian clock genes, and the metabolism of heme. Co-expression network analysis highlighted stage- and cell-type-specific genes of potentially synergistic therapeutic value. An eight-gene signature, consisting of the genes AKAP7, ANLN, CBX7, CDC14B, ENO1, GTPBP4, MED19, and ZFP2, had independent prognostic value in both the discovery and validation sets. This novel eight-gene signature may increase the granularity of current risk-to-progression estimators.
Collapse
Affiliation(s)
- Rafael Stroggilos
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (R.S.); (J.Z.); (E.M.); (A.M.); (M.M.)
| | - Maria Frantzi
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (M.F.); (M.M.); (H.M.)
| | - Jerome Zoidakis
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (R.S.); (J.Z.); (E.M.); (A.M.); (M.M.)
| | - Marika Mokou
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (M.F.); (M.M.); (H.M.)
| | - Napoleon Moulavasilis
- 1st Department of Urology, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.M.); (K.S.)
| | - Emmanouil Mavrogeorgis
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (R.S.); (J.Z.); (E.M.); (A.M.); (M.M.)
| | - Anna Melidi
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (R.S.); (J.Z.); (E.M.); (A.M.); (M.M.)
| | - Manousos Makridakis
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (R.S.); (J.Z.); (E.M.); (A.M.); (M.M.)
| | - Konstantinos Stravodimos
- 1st Department of Urology, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.M.); (K.S.)
| | - Maria G. Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Cell and Gene Therapy Laboratory, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (M.F.); (M.M.); (H.M.)
| | - Antonia Vlahou
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (R.S.); (J.Z.); (E.M.); (A.M.); (M.M.)
- Correspondence: ; Tel.: +30-210-659-7506; Fax: +30-210-659-7545
| |
Collapse
|
11
|
Xiao W, Geng W, Zhou M, Xu J, Wang S, Huang Q, Sun Y, Li Y, Yang G, Jin Y. POU6F1 cooperates with RORA to suppress the proliferation of lung adenocarcinoma by downregulation HIF1A signaling pathway. Cell Death Dis 2022; 13:427. [PMID: 35504868 PMCID: PMC9065044 DOI: 10.1038/s41419-022-04857-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Lung adenocarcinoma (LUAD) represents the most frequently diagnosed histological subtype of non-small cell lung cancer with the highest mortality worldwide. Transcriptional dysregulation is a hallmark of nearly all kinds of cancers. In the study, we identified that the POU domain, class 6, transcription factor 1 (POU6F1), a member of the POU family of transcription factors, was closely associated with tumor stage and death in LUAD. We revealed that POU6F1 was downregulated in LUAD tissues and downregulated POU6F1 was predictive of an unfavorable prognosis in LUAD patients. In vitro assays, including CCK8, soft agar, transwell, clone formation, wound-healing assay, and nude mouse xenograft model all revealed that POU6F1 inhibited the growth and invasion of LUAD cells. Mechanistically, POU6F1 bound and stabilized retinoid-related orphan receptor alpha (RORA) to exert the transcriptional inhibition of hypoxia-inducible factor 1-alpha (HIF1A) and alter the expression of HIF1A signaling pathway-associated genes, including ENO1, PDK1, and PRKCB, thereby leading to the suppression of LUAD cells. Collectively, these results demonstrated the suppressive role of POU6F1/RORA in the progression of LUAD and may potentially be used as a target for the treatment of LUAD.
Collapse
Affiliation(s)
- Wenjing Xiao
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Wei Geng
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Mei Zhou
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Juanjuan Xu
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Sufei Wang
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Qi Huang
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Yice Sun
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Yumei Li
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Guanghai Yang
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yang Jin
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| |
Collapse
|
12
|
Abstract
α-Enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a glycolytic enzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid during glycolysis. It is a multifunctional oncoprotein that is present both in cell surface and cytoplasm, contributing to hit seven out of ten “hallmarks of cancer.” ENO1's glycolytic function deregulates cellular energetic, sustains tumor proliferation, and inhibits cancer cell apoptosis. Moreover, ENO1 evades growth suppressors and helps tumors to avoid immune destruction. Besides, ENO1 “moonlights” on the cell surface and acts as a plasminogen receptor, promoting cancer invasion and metastasis by inducing angiogenesis. Overexpression of ENO1 on a myriad of cancer types together with its localization on the tumor surface makes it a great prognostic and diagnostic cancer biomarker as well as an accessible oncotherapeutic target. This review summarizes the up-to-date knowledge about the relationship between ENO1 and cancer, examines ENO1's potential as a cancer biomarker, and discusses ENO1's role in novel onco-immunotherapeutic strategies.
Collapse
|
13
|
Qiao G, Wu A, Chen X, Tian Y, Lin X. Enolase 1, a Moonlighting Protein, as a Potential Target for Cancer Treatment. Int J Biol Sci 2021; 17:3981-3992. [PMID: 34671213 PMCID: PMC8495383 DOI: 10.7150/ijbs.63556] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Enolase 1 (ENO1) is a moonlighting protein, function as a glycolysis enzyme, a plasminogen receptor and a DNA binding protein. ENO1 play an important role in the process of cancer development. The transcription, translation, post-translational modifying activities and the immunoregulatory role of ENO1 at the cancer development is receiving increasing attention. Some function model studies have shown that ENO1 is a potential target for cancer treatment. In this review, we provide a comprehensive overview of the characterization, function, related transduction cascades of ENO1 and its roles in the pathophysiology of cancers, which is a consequence of ENO1 signaling dysregulation. And the development of novels anticancer agents that targets ENO1 may provide a more attractive option for the treatment of cancers. The data of sarcoma and functional cancer models indicates that ENO1 may become a new potential target for anticancer therapy.
Collapse
Affiliation(s)
- Gan Qiao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China (Q.G, ).,School of Pharmacy, Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.,Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoliang Chen
- Schools of Medicine; Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Ye Tian
- The Eighth Affiliated Hospital Sun Yat-sen University,Shenzhen, Guangdong, China
| | - Xiukun Lin
- College of Life Sci., Shandong University of Technology, Zibo, Shandong, China
| |
Collapse
|
14
|
Yang YF, Chuang HW, Kuo WT, Lin BS, Chang YC. Current Development and Application of Anaerobic Glycolytic Enzymes in Urothelial Cancer. Int J Mol Sci 2021; 22:ijms221910612. [PMID: 34638949 PMCID: PMC8508954 DOI: 10.3390/ijms221910612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Urothelial cancer is a malignant tumor with metastatic ability and high mortality. Malignant tumors of the urinary system include upper tract urothelial cancer and bladder cancer. In addition to typical genetic alterations and epigenetic modifications, metabolism-related events also occur in urothelial cancer. This metabolic reprogramming includes aberrant expression levels of genes, metabolites, and associated networks and pathways. In this review, we summarize the dysfunctions of glycolytic enzymes in urothelial cancer and discuss the relevant phenotype and signal transduction. Moreover, we describe potential prognostic factors and risks to the survival of clinical cancer patients. More importantly, based on several available databases, we explore relationships between glycolytic enzymes and genetic changes or drug responses in urothelial cancer cells. Current advances in glycolysis-based inhibitors and their combinations are also discussed. Combining all of the evidence, we indicate their potential value for further research in basic science and clinical applications.
Collapse
Affiliation(s)
- Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
| | - Hao-Wen Chuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wei-Ting Kuo
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Bo-Syuan Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Correspondence: ; Tel.: +886-2-2826-7064
| |
Collapse
|
15
|
The Indication of Poor Prognosis by High Expression of ENO1 in Squamous Cell Carcinoma of the Lung. JOURNAL OF ONCOLOGY 2021; 2021:9910962. [PMID: 34504528 PMCID: PMC8423576 DOI: 10.1155/2021/9910962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/27/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022]
Abstract
The purpose of this study is to investigate the significance of alpha-enolase (ENO1) expression in squamous cell carcinoma of the lung (LUSC), its prognostic value, and prospective molecular mechanism. Using multiplatforms data, including in-house immunohistochemistry, in-house real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), in-house microarray, and public high-throughput data, the expression significance and prognostic role of ENO1 in LUSC tissues were analyzed comprehensively. With the combination of all eligible cases, compared with 941 non-LUSC lung tissues, ENO1 was significantly overexpressed in 1163 cases of LUSC (standardized mean difference (SMD) = 1.23, 95% confidence interval (CI) = 0.76–1.70, P < 0.001). ENO1 also displayed a great ability to differentiate LUSC tissues from non-LUSC lung tissues (AUC = 0.8705) with the comprehensive sensitivity being 0.88 [0.83–0.92], and comprehensive specificity being 0.89 [0.84–0.94]). Moreover, in 1860 cases of LUSC with survival information, patients with higher expression of ENO1 had poorer prognosis (hazard ratio (HR) = 1.20, 95% CI = 1.01–1.43, P = 0.043). ENO1 and its related genes mainly participated in the pathways of cell division and proliferation. In conclusion, the upregulation of ENO1 could affect the carcinogenesis and unfavorable outcome of LUSC.
Collapse
|
16
|
Wang YT, Lin MR, Chen WC, Wu WH, Wang FS. Optimization of a modeling platform to predict oncogenes from genome-scale metabolic networks of non-small-cell lung cancers. FEBS Open Bio 2021. [PMID: 34137202 PMCID: PMC8329960 DOI: 10.1002/2211-5463.13231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer cell dysregulations result in the abnormal regulation of cellular metabolic pathways. By simulating this metabolic reprogramming using constraint-based modeling approaches, oncogenes can be predicted, and this knowledge can be used in prognosis and treatment. We introduced a trilevel optimization problem describing metabolic reprogramming for inferring oncogenes. First, this study used RNA-Seq expression data of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) samples and their healthy counterparts to reconstruct tissue-specific genome-scale metabolic models and subsequently build the flux distribution pattern that provided a measure for the oncogene inference optimization problem for determining tumorigenesis. The platform detected 45 genes for LUAD and 84 genes for LUSC that lead to tumorigenesis. A high level of differentially expressed genes was not an essential factor for determining tumorigenesis. The platform indicated that pyruvate kinase (PKM), a well-known oncogene with a low level of differential gene expression in LUAD and LUSC, had the highest fitness among the predicted oncogenes based on computation. By contrast, pyruvate kinase L/R (PKLR), an isozyme of PKM, had a high level of differential gene expression in both cancers. Phosphatidylserine synthase 1 (PTDSS1), an oncogene in LUAD, was inferred to have a low level of differential gene expression, and overexpression could significantly reduce survival probability. According to the factor analysis, PTDSS1 characteristics were close to those of the template, but they were unobvious in LUSC. Angiotensin-converting enzyme 2 (ACE2) has recently garnered widespread interest as the SARS-CoV-2 virus receptor. Moreover, we determined that ACE2 is an oncogene of LUSC but not of LUAD. The platform developed in this study can identify oncogenes with low levels of differential expression and be used to identify potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- You-Tyun Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Min-Ru Lin
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Wei-Chen Chen
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Wu-Hsiung Wu
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
17
|
Gou Y, Li F, Huo X, Hao C, Yang X, Pei Y, Li N, Liu H, Zhu B. ENO1 monoclonal antibody inhibits invasion, proliferation and clone formation of cervical cancer cells. Am J Cancer Res 2021; 11:1946-1961. [PMID: 34094663 PMCID: PMC8167678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023] Open
Abstract
α-enolase (ENO1), highly expressing in cell membranes, cytoplasm and nuclei of cervical cancer and other tumors, acts as a plasminogen receptor and a glycolytic enzyme. ENO1 is found to be associated with tumorigenesis, invasion and migration, and proves to be an ideal target of tumor therapy. In this study, ENO1 monoclonal antibodies (ENO1mAb) was prepared to blockade ENO1 and the therapeutic role was observed in cervical cancer cells. First, ENO1mAb was prepared and screened by evaluating the inhibitory effect on migration and invasion of cervical cancer cells, which is supposed to block ENO1 expressed on cell membrane. Second, folic acid (FA) conjugated PLGA nanoparticles (FA-SS-PLGA) targeting tumor cells were prepared to mediate ENO1mAb entry into cells and its anti-tumor effects were investigated in vitro. We found that PLGA/FA-SS-PLGA nanoparticles-mediated ENO1mAb could antagonize the activity of ENO1 enzyme, significantly decreased the contents of lactic acid and pyruvate, and inhibited the proliferation, migration and clone formation of cervical cancer cells compared with the sham control (P < 0.05). In summary, ENO1mAb could specifically block ENO1 expressed on cell membrane and inhibit ENO1 glycolysis enzyme activity inside tumor cells, and plays a therapeutic role against cervical cancer cells. It suggests that ENO1mAb has promising anti-tumor effects.
Collapse
Affiliation(s)
- Yuanfeng Gou
- Department of Gynecology and Obstetrics, Gansu Provincial HospitalLanzhou 730000, China
- Department of Clinical Medicine, Gansu University of Traditional Chinese MedicineLanzhou 730000, China
| | - Fei Li
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou UniversityLanzhou 730000, China
| | - Xiaqin Huo
- Department of Gynecology and Obstetrics, Gansu Provincial HospitalLanzhou 730000, China
- Department of Clinical Medicine, Gansu University of Traditional Chinese MedicineLanzhou 730000, China
| | - Chunyan Hao
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou UniversityLanzhou 730000, China
| | - Xiaojuan Yang
- Department of Gynecology and Obstetrics, Gansu Provincial HospitalLanzhou 730000, China
- Department of Clinical Medicine, Gansu University of Traditional Chinese MedicineLanzhou 730000, China
| | - Yaping Pei
- Department of Gynecology and Obstetrics, Gansu Provincial HospitalLanzhou 730000, China
- Department of Clinical Medicine, Gansu University of Traditional Chinese MedicineLanzhou 730000, China
| | - Na Li
- Department of Gynecology and Obstetrics, Gansu Provincial HospitalLanzhou 730000, China
- Department of Clinical Medicine, Gansu University of Traditional Chinese MedicineLanzhou 730000, China
| | - Huiling Liu
- Department of Gynecology and Obstetrics, Gansu Provincial HospitalLanzhou 730000, China
- Department of Clinical Medicine, Gansu University of Traditional Chinese MedicineLanzhou 730000, China
| | - Bingdong Zhu
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou UniversityLanzhou 730000, China
| |
Collapse
|
18
|
Xu W, Yang W, Wu C, Ma X, Li H, Zheng J. Enolase 1 Correlated With Cancer Progression and Immune-Infiltrating in Multiple Cancer Types: A Pan-Cancer Analysis. Front Oncol 2021; 10:593706. [PMID: 33643901 PMCID: PMC7902799 DOI: 10.3389/fonc.2020.593706] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Enolase 1 (ENO1) is an oxidative stress protein expressed in endothelial cells. This study aimed to investigate the correlation of ENO1 with prognosis, tumor stage, and levels of tumor-infiltrating immune cells in multiple cancers. ENO1 expression and its influence on tumor stage and clinical prognosis were analyzed by UCSC Xena browser, Gene Expression Profiling Interactive Analysis (GEPIA), The Cancer Genome Atlas (TCGA), and GTEx Portal. The ENO1 mutation analysis was performed by cBio Portal, and demonstrated ENO1 mutation (1.8%) did not impact on tumor prognosis. The relationship between ENO1 expression and tumor immunity was analyzed by Tumor Immune Estimation Resource (TIMER) and GEPIA. The potential functions of ENO1 in pathways were investigated by Gene Set Enrichment Analysis. ENO1 expression was significantly different in tumor and corresponding normal tissues. ENO1 expression in multiple tumor tissues correlated with prognosis and stage. ENO1 showed correlation with immune infiltrates including B cells, CD8+ and CD4+ T cells, macrophages, neutrophils, and dendritic cells, and tumor purity. ENO1 was proved to be involved in DNA replication, cell cycle, apoptosis, glycolysis process, and other processes. These findings indicate that ENO1 is a potential prognostic biomarker that correlates with cancer progression immune infiltration.
Collapse
Affiliation(s)
- Wenhua Xu
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Wenna Yang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Chunfeng Wu
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaocong Ma
- Graduate School, Guangxi University of Chinese Medicine, Nanning City, China
| | - Haoyu Li
- Department of Ophthalmology, Jingliang Eye Hospital Affiliated to Guangxi Medical University, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jinghui Zheng
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
19
|
Almaguel FA, Sanchez TW, Ortiz-Hernandez GL, Casiano CA. Alpha-Enolase: Emerging Tumor-Associated Antigen, Cancer Biomarker, and Oncotherapeutic Target. Front Genet 2021; 11:614726. [PMID: 33584813 PMCID: PMC7876367 DOI: 10.3389/fgene.2020.614726] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Alpha-enolase, also known as enolase-1 (ENO1), is a glycolytic enzyme that “moonlights” as a plasminogen receptor in the cell surface, particularly in tumors, contributing to cancer cell proliferation, migration, invasion, and metastasis. ENO1 also promotes other oncogenic events, including protein-protein interactions that regulate glycolysis, activation of signaling pathways, and resistance to chemotherapy. ENO1 overexpression has been established in a broad range of human cancers and is often associated with poor prognosis. This increased expression is usually accompanied by the generation of anti-ENO1 autoantibodies in some cancer patients, making this protein a tumor associated antigen. These autoantibodies are common in patients with cancer associated retinopathy, where they exert pathogenic effects, and may be triggered by immunodominant peptides within the ENO1 sequence or by posttranslational modifications. ENO1 overexpression in multiple cancer types, localization in the tumor cell surface, and demonstrated targetability make this protein a promising cancer biomarker and therapeutic target. This mini-review summarizes our current knowledge of ENO1 functions in cancer and its growing potential as a cancer biomarker and guide for the development of novel anti-tumor treatments.
Collapse
Affiliation(s)
- Frankis A Almaguel
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Tino W Sanchez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Medicine, Division of Rheumatology, Loma Linda University Health, Loma Linda, CA, United States
| |
Collapse
|
20
|
Tang C, Wang M, Dai Y, Wei X. Krüppel-like factor 12 suppresses bladder cancer growth through transcriptionally inhibition of enolase 2. Gene 2020; 769:145338. [PMID: 33279628 DOI: 10.1016/j.gene.2020.145338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023]
Abstract
Krüppel-like factors (KLFs) are transcription factors and play important roles in bladder cancer (BC). Clarifying the function of KLFs will provide new strategies for clinical treatment of BC. In this study, we found that Krüppel-like factor 12 (KLF12) was decreased in BC tissues and cells. Knockdown of KLF12 by siRNA dramatically elevated the proliferation and colony formation of BC cells. By contrast, overexpressing KLF12 suppressed the cell viability and the number of clones. Overexpression of KLF12 also regulated cell cycle progression, apoptosis and migration of BC cells. Furthermore, KLF12 bound to the promoter of enolase 2 (ENO2) and transcriptionally inhibited the expression of ENO2, which was highly expressed in BC tissues. KLF12 suppressed, while ENO2 promoted glycolysis. Lastly, ENO2 overexpression and knockdown promoted and suppressed the proliferation and migration of BC cells, respectively. These results suggest that KLF12 acts as a tumor suppressor by negatively regulated ENO2. Targeting ENO2 is a promising treatment strategy for this malignancy.
Collapse
Affiliation(s)
- Cai Tang
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Miao Wang
- Public affairs department, West China Hospital, Sichuan University, China
| | - Yi Dai
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, China.
| | - Xin Wei
- Department of Urology, West China Hospital, Sichuan University, China.
| |
Collapse
|
21
|
Wang L, Li H, Qiao Q, Ge Y, Ma L, Wang Q. Circular RNA circSEMA5A promotes bladder cancer progression by upregulating ENO1 and SEMA5A expression. Aging (Albany NY) 2020; 12:21674-21686. [PMID: 33176280 PMCID: PMC7695386 DOI: 10.18632/aging.103971] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Bladder cancer (BC) is one of the most commonly diagnosed urologic carcinomas, with high recurrence and death rates. Circular RNAs (circRNAs) are a class of noncoding RNAs which are anomalously expressed in cancers and involved in the progression of cancers. In this study, we found that circSEMA5A was upregulated in BC tissues and cell lines. The overexpressed circSEMA5A was correlated with malignant characteristics of BC. In vitro data indicated that circSEMA5A promoted proliferation, suppressed apoptosis, facilitated migration, accelerated invasion, enhanced angiogenesis and promotes glycolysis of BC. Mechanistically, circSEMA5A served as a miRNA sponge for miR-330-5p to upregulates Enolase 1 (ENO1) expression and facilitated the activation of Akt and β-catenin signaling pathways. Then, we showed that circSEMA5A exerted its biological functions partially via miR-330-5p/ENO1 signaling. Moreover, circSEMA5A raised SEMA5A expression by recruiting EIF4A3 to enhance the mRNA stability of SEMA5A, and thereby accelerated BC angiogenesis. To sum up, circSEMA5A is upregulated in BC and facilitates BC progression by mediating miR-330-5p/ENO1 signaling and upregulating SEMA5A expression.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Haoran Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qingdong Qiao
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Yukun Ge
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Ling Ma
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Qiang Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Digging deeper through glucose metabolism and its regulators in cancer and metastasis. Life Sci 2020; 264:118603. [PMID: 33091446 DOI: 10.1016/j.lfs.2020.118603] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Glucose metabolism enzymes and transporters play major role in cancer development and metastasis. In this study, we discuss glucose metabolism, transporters, receptors, hormones, oncogenes and tumor suppressors which interact with glucose metabolism and we try to discuss their major role in cancer development and cancer metabolism. We try to highlight the. Metabolic changes in cancer and metastasis upregulation of glycolysis is observed in many primary and metastatic cancers and aerobic glycolysis is the most favorable mechanism for glucose metabolism in cancer cells, and it is a kind of evolutionary change. The question that is posed at this juncture is: Can we use aerobic glycolysis phenotype and enzymes beyond this mechanism in estimating cancer prognosis and metastasis? Lactate is a metabolite of glucose metabolism and it is a key player in cancer and metastasis in both normoxic and hypoxic condition so lactate dehydrogenase can be a good prognostic biomarker. Furthermore, monocarboxylic transporter which is the main lactate transporter can be good target in therapeutic studies. Glycolysis enzymes are valuable enzymes in cancer and metastasis diagnosis and can be used as therapeutic targets in cancer treatment. Designing a diagnostic and prognostic profile for cancer metastasis seems to be possible base on glycolysis enzymes and glucose transporters. Also, glucose metabolism enzymes and agents can give us a clear vision in estimating cancer metastasis. We can promote a panel of genes that detect genetic changes in glucose metabolism agents to diagnose cancer metastasis.
Collapse
|
23
|
Abstract
BACKGROUND Colorectal cancer (CRC), the most common gastrointestinal cancer, is associated with high mortality rates. Enolase is a major enzyme present in the glycolytic pathway. However, the functional significance of the enolase (ENO) gene family in the pathogenesis of CRC has been unclear. MATERIAL AND METHODS The data associated with 438 CRC patients from The Cancer Genome Atlas database were extracted for analysis. Survival analyses with Cox regression was performed to construct a prognostic signature. We investigated the processes that underlies the correlation between ENO genes and overall survival (OS) using gene set enrichment analysis (GSEA). We then developed a connectivity map to identify candidate target drugs for CRC. RESULTS The multivariate survival analysis showed that low expression of ENO2 and ENO3 had a significant correlation with longer OS. The joint-effects survival analysis indicated that the combined low expression of ENO2 and ENO3 was highly correlated with favorable OS. As indicated by the gene set enrichment analysis (GSEA), the ENO gene is involved in various biological pathways and has multiple roles. Potential pharmacological targets of ENO2 and ENO3 were constructed as well. CONCLUSIONS Low expression levels of both ENO2 and ENO3 were linked to a positive prognosis for CRC. Both ENO2 and ENO3 show promise as prognostic biomarkers for colon cancer patients.
Collapse
Affiliation(s)
- Xiaohang Pan
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang, China (mainland)
| | - Huawen Wu
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang, China (mainland)
| | - Guofu Chen
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang, China (mainland)
| | - Wenhuan Li
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang, China (mainland)
| |
Collapse
|
24
|
Zhang X, Li J, Ghoshal K, Fernandez S, Li L. Identification of a Subtype of Hepatocellular Carcinoma with Poor Prognosis Based on Expression of Genes within the Glucose Metabolic Pathway. Cancers (Basel) 2019; 11:E2023. [PMID: 31847435 PMCID: PMC6966574 DOI: 10.3390/cancers11122023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary cancer and a highly aggressive liver malignancy. Liver cancer cells reprogram their metabolism to meet their needs for rapid proliferation and tumor growth. In the present study, we investigated the alterations in the expression of the genes involved in glucose metabolic pathways as well as their association with the clinical stage and survival of HCC patients. We found that the expressions of around 30% of genes involved in the glucose metabolic pathway are consistently dysregulated with a predominant down-regulation in HCC tumors. Moreover, the differentially expressed genes are associated with an advanced clinical stage and a poor prognosis. More importantly, unsupervised clustering analysis with the differentially expressed genes that were also associated with overall survival (OS) revealed a subgroup of patients with a worse prognosis including reduced OS, disease specific survival, and recurrence-free survival. This aggressive subtype had significantly increased expression of stemness-related genes and down-regulated metabolic genes, as well as increased immune infiltrates that contribute to a poor prognosis. Collectively, this integrative study indicates that expressions of the glucose metabolic genes could be used as potential prognostic markers and/or therapeutic targets, which might be helpful in developing precise treatment for patients with HCC.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43201, USA; (J.L.); (S.F.); (L.L.)
| | - Jin Li
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43201, USA; (J.L.); (S.F.); (L.L.)
| | - Kalpana Ghoshal
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43201, USA;
| | - Soledad Fernandez
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43201, USA; (J.L.); (S.F.); (L.L.)
| | - Lang Li
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43201, USA; (J.L.); (S.F.); (L.L.)
| |
Collapse
|