1
|
Lv Y, Du J, Xiong H, Feng L, Zhang D, Zhou H, Feng S. Machine learning-based analysis of programmed cell death types and key genes in intervertebral disc degeneration. Apoptosis 2024:10.1007/s10495-024-02047-z. [PMID: 39633111 DOI: 10.1007/s10495-024-02047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Intervertebral disc degeneration (IVDD) is intricately associated with various forms of programmed cell death (PCD). Identifying key PCD types and associated genes is essential for understanding the molecular mechanisms underlying IVDD and discovering potential therapeutic targets. This study aimed to elucidate core PCD types, related genes, and potential drug interactions in IVDD using comprehensive bioinformatic and experimental approaches. Using datasets GSE167199, GSE176205, GSE34095, GSE56081, and GSE70362, relevant gene expression and clinical data were analyzed. Differential expression gene (DEG) analysis identified upregulated genes linked to 15 PCD types. Gene Set Variation Analysis (GSVA) was employed to pinpoint key PCD types contributing to disc degeneration. Core genes were identified through machine learning techniques, while immune infiltration and single-cell analysis helped identify apoptosis-related cell types. Molecular docking, along with in vivo and in vitro experiments using a murine IVDD model, validated potential drug interactions. The results identified apoptosis, autophagy, ferroptosis, and necroptosis as key PCD types in IVDD. A gene module associated with apoptosis showed a strong correlation with the severity of disc degeneration, revealing 34 central genes in the gene network. Drug screening identified Glibenclamide as effectively interacting with PDCD6 and UBE2K. Subsequent in vitro and in vivo experiments demonstrated that Glibenclamide reduced apoptosis and delayed disc degeneration progression. This study provides a comprehensive bioinformatics analysis of PCD in IVDD, identifying four primary PCD types contributing to the disease's progression. The findings offer novel insights into the molecular pathology of disc degeneration and suggest promising therapeutic strategies for future treatment development.
Collapse
Affiliation(s)
- Yigang Lv
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China
| | - Jiawei Du
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China
| | - Haoning Xiong
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China
| | - Lei Feng
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China
| | - Di Zhang
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China.
| | - Hengxing Zhou
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University Centre for Orthopaedics, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
- Center for Reproductive Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China.
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University Centre for Orthopaedics, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
- Cheeloo College of Medicine, The Second Hospital of Shandong University, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, P.R. China.
| |
Collapse
|
2
|
Zhao Y, Yang Y, Liu H, Wang J, Huang Y, Li W. Orthodontic tension promotes cementoblast mineralization by regulating autophagy. J Dent Sci 2024; 19:2186-2195. [PMID: 39347047 PMCID: PMC11437326 DOI: 10.1016/j.jds.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose External root resorption is a main side effect of orthodontic treatment and is more likely to occur on the pression side than the tension side. To explore the potential protective mechanisms on the tension side, this study investigated the influence of mechanical tension on cementoblast mineralization and elucidated the role of autophagy in mediating this process. Materials and methods Mechanical tension was applied to cementoblasts using iStrain. The expression of mineralization-related and autophagy-related markers was detected by qRT-PCR, Western blot analysis, and immunofluorescence staining. RNA sequencing identified key regulators. Immunohistochemical staining assessed related markers expression in in vivo experiments. Results Applying tension to cementoblasts increased mineralization-related gene expression in a force-dependent and time-dependent manner. The immunohistochemical staining result of in vivo experiments supported these findings, demonstrating elevated expression of mineralization markers under tension. Mechanical tension also enhanced autophagic activity in cementoblasts, which was demonstrated by the results of qRT-PCR, Western blot analysis, immunofluorescence staining, and in vivo experiments. Suppression of autophagy with chloroquine attenuated the mineralization of cementoblasts induced by tension stimulus. RNA-seq identified Postn as a key regulator, and the knockdown of Postn impaired the mechanical tension-promoted mineralization of cementoblasts. Conclusion This study proposed the tension-induced promotion in mineralization of cementoblasts and emphasized the mediating role of autophagy in this process. Postn, a mediator connecting autophagy and mineralization, was identified as a key regulator. These discoveries helped elucidate orthodontic-related microprocesses on tooth roots and offer potential targets for therapeutic interventions to prevent and restore external root resorption clinically.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuhui Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jiayi Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
3
|
Cai J, Han R, Li J, Hao J, Zhao Z, Jing D. Exploring mechanobiology network of bone and dental tissue based on Natural Language Processing. J Biomech 2024; 174:112271. [PMID: 39159585 DOI: 10.1016/j.jbiomech.2024.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Bone and cartilage tissues are physiologically dynamic organs that are systematically regulated by mechanical inputs. At cellular level, mechanical stimulation engages an intricate network where mechano-sensors and transmitters cooperate to manipulate downstream signaling. Despite accumulating evidence, there is a notable underutilization of available information, due to limited integration and analysis. In this context, we conceived an interactive web tool named MechanoBone to introduce a new avenue of literature-based discovery. Initially, we compiled a literature database by sourcing content from Pubmed and processing it through the Natural Language Toolkit project, Pubtator, and a custom library. We identified direct co-occurrence among entities based on existing evidence, archiving in a relational database via SQLite. Latent connections were then quantified by leveraging the Link Prediction algorithm. Secondly, mechanobiological pathway maps were generated, and an entity-pathway correlation scoring system was established through weighted algorithm based on our database, String, and KEGG, predicting potential functions of specific entities. Additionally, we established a mechanical circumstance-based exploration to sort genes by their relevance based on big data, revealing the potential mechanically sensitive factors in bone research and future clinical applications. In conclusion, MechanoBone enables: 1) interpreting mechanobiological processes; 2) identifying correlations and crosstalk among molecules and pathways under specific mechanical conditions; 3) connecting clinical applications with mechanobiological processes in bone research. It offers a literature mining tool with visualization and interactivity, facilitating targeted molecule navigation and prediction within the mechanobiological framework of bone-related cells, thereby enhancing knowledge sharing and big data analysis in the biomedical realm.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - RuiYing Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Junfu Li
- Glagow College, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Jin Hao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; ChohoTech Inc., Hangzhou 311100, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
4
|
Mei Y, Wang L, Chen T, Song C, Cheng K, Cai W, Zhou D, Gao S, Jiang F, Liu S, Liu Z. Ferroptosis: A New Direction in the Treatment of Intervertebral Disc Degeneration. Cell Biochem Biophys 2024:10.1007/s12013-024-01468-6. [PMID: 39102089 DOI: 10.1007/s12013-024-01468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Intervertebral disc degeneration (IVDD) is one of the most common musculoskeletal disorders in middle-aged and elderly people, and lower back pain (LBP) is the main clinical symptom [1, 2], which often causes significant pain and great economic burden to patients [3]. The current molecular mechanisms of IVDD include extracellular matrix degradation, cellular pyroptosis, apoptosis, necrotic apoptosis, senescence, and the newly discovered ferroptosis [4, 5], among which ferroptosis, as a new hot spot of research, has a non-negligible role in IVDD. Ferroptosis is an iron-dependent cell death caused by lipid peroxide accumulation [6]. Its main mechanism is cell death caused by lipid peroxidation by oxygen radicals due to iron overload and inhibition of pathways such as SLC7A11-GSH-GPX4. Currently, more and more studies have found a close relationship between IVDD and ferroptosis [7]. In the process of ferroptosis, the most important factors are abnormal iron metabolism, increased ROS, lipid peroxidation, and abnormal proteins such as GSH, GPX4, and system XC-. Our group has previously elucidated the pathogenesis of IVDD in terms of extracellular matrix degradation, myeloid cell senescence and pyroptosis, apoptosis, and inflammatory immunity. Therefore, this time, we will use ferroptosis as an entry point to discover the new mechanism of IVDD and provide guidance for clinical treatment.
Collapse
Affiliation(s)
- Yongliang Mei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liquan Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ting Chen
- Department of Critical Care Medicine, Luzhou maternal's and Children's Health Hospital, Luzhou, 646000, Sichuan, China
| | - Chao Song
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Kang Cheng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Weiye Cai
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Daqian Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Silong Gao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feng Jiang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shigui Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Third People's Hospital of Luzhou, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Dai J, Liu J, Shen Y, Zhang B, Li C, Liu Z. Regulation of endoplasmic reticulum stress on autophagy and apoptosis of nucleus pulposus cells in intervertebral disc degeneration and its related mechanisms. PeerJ 2024; 12:e17212. [PMID: 38666076 PMCID: PMC11044878 DOI: 10.7717/peerj.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common and frequent disease in orthopedics, which seriously affects the quality of life of patients. Endoplasmic reticulum stress (ERS)-regulated autophagy and apoptosis play an important role in nucleus pulposus (NP) cells in IVDD. Hypoxia and serum deprivation were used to induce NP cells. Cell counting kit-8 (CCK-8) assay was used to detect cell activity and immunofluorescence (IF) was applied for the appraisement of glucose regulated protein 78 (GRP78) and green fluorescent protein (GFP)-light chain 3 (LC3). Cell apoptosis was detected by flow cytometry and the expression of LC3II/I was detected by western blot. NP cells under hypoxia and serum deprivation were induced by lipopolysaccharide (LPS), and intervened by ERS inhibitor (4-phenylbutyric acid, 4-PBA) and activator (Thapsigargin, TP). Then, above functional experiments were conducted again and western blot was employed for the evaluation of autophagy-, apoptosis and ERS-related proteins. Finally, NP cells under hypoxia and serum deprivation were stimulated by LPS and intervened using apoptosis inhibitor z-Val-Ala-DL-Asp-fluoromethyl ketone (Z-VAD-FMK) and autophagy inhibitor 3-methyladenine (3-MA). CCK-8 assay, IF, flow cytometry and western blot were performed again. Besides, the levels of inflammatory cytokines were measured with enzyme-linked immunosorbent assay (ELISA) and the protein expressions of programmed death markers were estimated with western blot. It showed that serum deprivation induces autophagy and apoptosis. ERS was significantly activated by LPS in hypoxic and serum deprivation environment, and autophagy and apoptosis were significantly promoted. Overall, ERS affects the occurrence and development of IVDD by regulating autophagy, apoptosis and other programmed death.
Collapse
Affiliation(s)
- Jiuming Dai
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Jin Liu
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Yucheng Shen
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Bing Zhang
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Chaonian Li
- Department of Traditional Chinese Medicine, Binhai County People’s Hospital, Yancheng, China
| | - Zhidong Liu
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| |
Collapse
|
6
|
Khaleque MA, Kim JH, Lee HH, Kim GH, You WY, Lee WJ, Kim YY. Comparative Analysis of Autophagy and Apoptosis in Disc Degeneration: Understanding the Dynamics of Temporary-Compression-Induced Early Autophagy and Sustained-Compression-Triggered Apoptosis. Int J Mol Sci 2024; 25:2352. [PMID: 38397026 PMCID: PMC10889391 DOI: 10.3390/ijms25042352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of this study was to investigate the initiation of autophagy activation and apoptosis in nucleus pulposus cells under temporary compression (TC) and sustained compression (SC) to identify ideal research approaches in intervertebral disc degeneration. Various techniques were used: radiography (X-ray), magnetic resonance imaging (MRI), transmission electron microscope (TEM), H&E staining, Masson's trichrome staining, immunohistochemistry (IHC) (LC3, beclin-1, and cleaved caspase-3), and real-time polymerase chain reaction (RT-qPCR) for autophagy-related (beclin-1, LC3, and P62) and apoptosis-related (caspase-3 and PARP) gene expression analysis. X-ray and MRI revealed varying degrees of disc degeneration, ranging from moderate to severe in both groups. The severity was directly linked to compression duration, with SC resulting in notably severe central NP cell degeneration. Surprisingly, TC also caused similar, though less severe, degeneration. Elevated expression of LC3 and beclin-1 was identified after 6 weeks, but it notably declined after 12 weeks. Central NP cells in both groups exhibited increased expression of cleaved caspase-3 that was positively correlated with the duration of SC. TC showed fewer apoptotic markers compared to SC. LC3, beclin-1, and P62 mRNA expression peaked after 6 weeks and declined after 12 weeks in both groups. Cleaved caspase-3 and PARP expression peaked in SC, positively correlating with longer compression duration, while TC showed lower levels of apoptosis gene expression. Furthermore, TEM results revealed different events of the autophagic degradation process after 2 weeks of compression. TCmay be ideal for studying early triggered autophagy-mediated degeneration, while SC may be ideal for studying late or slower-triggered apoptosis-mediated degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon 34943, Republic of Korea; (M.A.K.); (J.-H.K.); (H.-H.L.); (G.-H.K.); (W.-Y.Y.); (W.-J.L.)
| |
Collapse
|
7
|
Wen ZQ, Lin J, Xie WQ, Shan YH, Zhen GH, Li YS. Insights into the underlying pathogenesis and therapeutic potential of endoplasmic reticulum stress in degenerative musculoskeletal diseases. Mil Med Res 2023; 10:54. [PMID: 37941072 PMCID: PMC10634069 DOI: 10.1186/s40779-023-00485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Degenerative musculoskeletal diseases are structural and functional failures of the musculoskeletal system, including osteoarthritis, osteoporosis, intervertebral disc degeneration (IVDD), and sarcopenia. As the global population ages, degenerative musculoskeletal diseases are becoming more prevalent. However, the pathogenesis of degenerative musculoskeletal diseases is not fully understood. Previous studies have revealed that endoplasmic reticulum (ER) stress is a stress response that occurs when impairment of the protein folding capacity of the ER leads to the accumulation of misfolded or unfolded proteins in the ER, contributing to degenerative musculoskeletal diseases. By affecting cartilage degeneration, synovitis, meniscal lesion, subchondral bone remodeling of osteoarthritis, bone remodeling and angiogenesis of osteoporosis, nucleus pulposus degeneration, annulus fibrosus rupture, cartilaginous endplate degeneration of IVDD, and sarcopenia, ER stress is involved in the pathogenesis of degenerative musculoskeletal diseases. Preclinical studies have found that regulation of ER stress can delay the progression of multiple degenerative musculoskeletal diseases. These pilot studies provide foundations for further evaluation of the feasibility, efficacy, and safety of ER stress modulators in the treatment of musculoskeletal degenerative diseases in clinical trials. In this review, we have integrated up-to-date research findings of ER stress into the pathogenesis of degenerative musculoskeletal diseases. In a future perspective, we have also discussed possible directions of ER stress in the investigation of degenerative musculoskeletal disease, potential therapeutic strategies for degenerative musculoskeletal diseases using ER stress modulators, as well as underlying challenges and obstacles in bench-to-beside research.
Collapse
Affiliation(s)
- Ze-Qin Wen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215001, China
| | - Wen-Qing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yun-Han Shan
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ge-Hua Zhen
- Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
8
|
Yan M, Zhang Y, Niu W, Liu K, Xue L, Zhou K. Reactive oxygen species-mediated endoplasmic reticulum stress contributes to osteocyte death induced by orthodontic compressive force. Microsc Res Tech 2023; 86:1529-1541. [PMID: 37382312 DOI: 10.1002/jemt.24382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
During orthodontic tooth movement (OTM), osteocytes, the most mechanosensitive cells in alveolar bone, suffer the heavy orthodontic force and initiate alveolar bone resorption on the compression side. However, the inherent mechanisms of compressive force-induced osteocyte death are not fully understood. In this study, we established an OTM model on Sprague-Dawley rats by inserting coil springs to investigate osteocyte damage on the compression side of alveolar bone. We then applied compressive force on the MLO-Y4 osteocyte-like cell line in vitro to explore whether the reactive oxygen species (ROS)-mediated endoplasmic reticulum stress (ERS) pathway is involved in compressive force-induced osteocyte death. We found that the orthodontic force caused apparent alveolar bone loss, osteocyte death, and elevated serum sclerostin and receptor activator of NF-κB ligand (RANKL) levels in rats. In vitro, compressive force inhibited cell viability but increased the LDH leakage and loss of mitochondrial membrane potential in MLO-Y4 cells. Simultaneously, it activated protein kinase RNA-like endoplasmic reticulum kinase (PERK), eukaryotic translation initiation factor 2 (eIF2α), and their downstream pro-apoptotic ERS signaling proteins and caused significant osteocyte apoptosis, which can be blocked by ERS inhibitor salubrinal. Moreover, the compressive force elevated intracellular ROS levels, while the ROS scavenger N-acetyl-L-cysteine (NAC) alleviated ERS and apoptosis in loaded osteocytes. These results suggest that the orthodontic compressive force induced osteocyte apoptosis via the ROS-mediated ERS pathway. This study first proposes the ERS pathway as a new potential pathway for regulating the rate of OTM based on osteocyte death. RESEARCH HIGHLIGHTS: The orthodontic force increases osteocyte death in rat alveolar bone. The compressive force causes osteocyte apoptosis by the endoplasmic reticulum stress (ERS) pathway in vitro. The ROS scavenger NAC blocked compressive force-induced ERS and osteocyte apoptosis.
Collapse
Affiliation(s)
- Ming Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Yun Zhang
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Wanting Niu
- Department of STEM, Regis College, Weston, Massachusetts, USA
| | - Kezhou Liu
- School of Automation, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Lingyun Xue
- School of Automation, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Kexin Zhou
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
9
|
Qingxin S, Kai J, Dandan Z, Linyu J, Xiuyuan C, Yubo F, Kun W, Yingchao H, Hao C, Jie S, Zhi C, Hongxing S. Programmable DNA hydrogel provides suitable microenvironment for enhancing autophagy-based therapies in intervertebral disc degeneration treatment. J Nanobiotechnology 2023; 21:350. [PMID: 37759249 PMCID: PMC10537074 DOI: 10.1186/s12951-023-02109-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The pathogenesis of intervertebral disc degeneration (IVDD) is attributed to metabolic dysregulation within the extracellular matrix and heightened apoptosis of nucleus pulposus cells (NPC). Therefore, a potential therapeutic strategy for managing IVDD involves the reestablishment of metabolic equilibrium within the extracellular matrix and the suppression of excessive myeloid cell apoptosis. The microRNA, miR-5590, displays marked differential expression in degenerative nucleus pulposus (NP) tissues and exerts a direct influence on the regulation of DDX5 expression. This, in turn, modulates mammalian target of rapamycin (mTOR) phosphorylation, thereby impacting autophagy and apoptosis. However, ensuring the smooth delivery of miRNA to a specific injury site poses a significant challenge. To address this issue, a multifunctional DNA hydrogel was developed and subsequently loaded with miR-5590 via spherical nucleic acids (SNAs) for the treatment of IVDD. The hydrogel, which exhibits versatility, has the potential to be administered through injection at the site of injury, resulting in a consistent and prolonged release of miR-5590. This leads to the creation of a genetic microenvironment within the NP, which triggers the onset of autophagy in NPCs and subsequently suppresses apoptosis. As a result, this process regulates the metabolic equilibrium within the extracellular matrix, thereby impeding the in vitro and in vivo progression of IVDD. The amalgamation of miRNAs and biomaterials offers a promising therapeutic strategy for the management of IVDD in clinical settings.
Collapse
Affiliation(s)
- Song Qingxin
- Department of Spine Surgery Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Jiang Kai
- Department of Ophthalmology and Vision Science, Ear, Nose and Throat Hospital, Shanghai Eye, Fudan University, Shanghai, China
| | - Zheng Dandan
- Department of Spine Surgery Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Jin Linyu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Chen Xiuyuan
- Department of Spine Surgery Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Feng Yubo
- Department of Spine Surgery Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Wang Kun
- Department of Spine Surgery Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Han Yingchao
- Department of Spine Surgery Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Chen Hao
- Department of Spine Surgery Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Song Jie
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Chen Zhi
- Department of Spine Surgery Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China.
| | - Shen Hongxing
- Department of Spine Surgery Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China.
| |
Collapse
|
10
|
Oxidative Stress and Intervertebral Disc Degeneration: Pathophysiology, Signaling Pathway, and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1984742. [PMID: 36262281 PMCID: PMC9576411 DOI: 10.1155/2022/1984742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
Intervertebral disc degeneration (IDD), characterized as decreased proteoglycan content, ossification of endplate, and decreased intervertebral height, is one of the major reasons of low back pain, which seriously affects the quality of life and also brings heavy economic burden. However, the mechanisms leading to IDD and its therapeutic targets have not been fully elucidated. Oxidative stress refers to the imbalance between oxidation and antioxidant systems, between too many products of reactive oxygen species (ROS) and the insufficient scavenging function. Excessive ROS can damage cell lipids, nucleic acids and proteins, which has been proved to be related to the development of a variety of diseases. In recent years, an increasing number of studies have reported that oxidative stress is involved in the pathological process of IDD. Excessive ROS can accelerate the IDD process via inducing the pathological activities, such as inflammation, apoptosis, and senescence. In this review, we focused on pathophysiology and molecular mechanisms of oxidative stress-induced IDD. Moreover, the present review also summarized the possible ideas for the future therapy strategies of oxidative stress-related IDD.
Collapse
|
11
|
Xia Y, Yang R, Hou Y, Wang H, Li Y, Zhu J, Fu C. Application of mesenchymal stem cell-derived exosomes from different sources in intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1019437. [PMID: 36277386 PMCID: PMC9585200 DOI: 10.3389/fbioe.2022.1019437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a main cause of lower back pain, leading to psychological and economic burdens to patients. Physical therapy only delays pain in patients but cannot eliminate the cause of IVDD. Surgery is required when the patient cannot tolerate pain or has severe neurological symptoms. Although surgical resection of IVD or decompression of the laminae eliminates the diseased segment, it damages adjacent normal IVD. There is also a risk of re-protrusion after IVD removal. Cell therapy has played a crucial role in the development of regenerative medicine. Cell transplantation promotes regeneration of degenerative tissue. However, owing to the lack of vascular structure in IVD, sufficient nutrients cannot be provided for transplanted mesenchymal stem cells (MSCs). In addition, dead cells release harmful substances that aggravate IVDD. Extracellular vesicles (EVs) have been extensively studied as an emerging therapeutic approach. EVs generated by paracrine MSCs retain the potential of MSCs and serve as carriers to deliver their contents to target cells to regulate target cell activity. Owing to their double-layered membrane structure, EVs have a low immunogenicity and no immune rejection. Therefore, EVs are considered an emerging therapeutic modality in IVDD. However, they are limited by mass production and low loading rates. In this review, the structure of IVD and advantages of EVs are introduced, and the application of MSC-EVs in IVDD is discussed. The current limitations of EVs and future applications are described.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yulin Hou
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Fu,
| |
Collapse
|
12
|
Bahar ME, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Akter KM, Kim DH, Yang J, Kim DR. Targeting Autophagy for Developing New Therapeutic Strategy in Intervertebral Disc Degeneration. Antioxidants (Basel) 2022; 11:antiox11081571. [PMID: 36009290 PMCID: PMC9405341 DOI: 10.3390/antiox11081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain. IVDD is characterized by abnormal expression of extracellular matrix components such as collagen and aggrecan. In addition, it results in dysfunctional growth, senescence, and death of intervertebral cells. The biological pathways involved in the development and progression of IVDD are not fully understood. Therefore, a better understanding of the molecular mechanisms underlying IVDD could aid in the development of strategies for prevention and treatment. Autophagy is a cellular process that removes damaged proteins and dysfunctional organelles, and its dysfunction is linked to a variety of diseases, including IVDD and osteoarthritis. In this review, we describe recent research findings on the role of autophagy in IVDD pathogenesis and highlight autophagy-targeting molecules which can be exploited to treat IVDD. Many studies exhibit that autophagy protects against and postpones disc degeneration. Further research is needed to determine whether autophagy is required for cell integrity in intervertebral discs and to establish autophagy as a viable therapeutic target for IVDD.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, GyeongNam, Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju 52727, GyeongNam, Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
- Correspondence: ; Tel.: +82-55-772-8054
| |
Collapse
|
13
|
Chang HI, Chen CN, Huang KY. Mechanical Stretch-Induced NLRP3 Inflammasome Expression on Human Annulus Fibrosus Cells Modulated by Endoplasmic Reticulum Stress. Int J Mol Sci 2022; 23:ijms23147951. [PMID: 35887297 PMCID: PMC9323355 DOI: 10.3390/ijms23147951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023] Open
Abstract
Excessive mechanical loading is a major cause of spinal degeneration, typically originating from a tear in the annulus fibrosus (AF). Endoplasmic reticulum (ER) stress and NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome have been implicated in the pathogenesis of intervertebral disc (IVD) degeneration. However, the causal relationship between the mechanical stretching of AF cells and the NLRP3 inflammasome response associated with ER stress remains scarce. To elucidate the pathogenesis and regulatory mechanisms of mechanical stretch-induced IVD degeneration, human AF cell lines were subjected to different degrees of cyclic stretching to simulate daily spinal movements. Our results indicated that 15% high cyclic stretch (HCS) induced the expression of NLRP3 and interleukin-1 beta (IL-1β) and was also responsible for the increased expression of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 2 (NOX2) and reactive oxygen species (ROS) in human AF cells. In addition, HCS increased the expression of glucose-regulated protein 78 (GRP78), an ER stress chaperone, which was neutralized with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor. In addition, HCS was found to induce thioredoxin-interacting protein (TXNIP) expression and NLRP3 inflammasome activation, which can be suppressed by si-NOX2 or the NOX2 inhibitor GSK2795039. Consequently, HCS upregulated ER stress and ROS production, leading to increased NLRP3 and IL-1β expression in human AF cells, and may further accelerate IVD degeneration.
Collapse
Affiliation(s)
- Hsin-I Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan; (H.-I.C.); (C.-N.C.)
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan; (H.-I.C.); (C.-N.C.)
| | - Kuo-Yuan Huang
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535 (ext. 5237); Fax: +886-6-276-6189
| |
Collapse
|
14
|
Wang D, He X, Zheng C, Wang C, Peng P, Gao C, Xu X, Ma Y, Liu M, Yang L, Luo Z. Endoplasmic Reticulum Stress: An Emerging Therapeutic Target for Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:819139. [PMID: 35178406 PMCID: PMC8843852 DOI: 10.3389/fcell.2021.819139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Low back pain (LBP) is a global health issue. Intervertebral disc degeneration (IDD) is a major cause of LBP. Although the explicit mechanisms underpinning IDD are unclear, endoplasmic reticulum (ER) stress caused by aberrant unfolded or misfolded proteins may be involved. The accumulation of unfolded/misfolded proteins may result in reduced protein synthesis and promote aberrant protein degradation to recover ER function, a response termed the unfolded protein response. A growing body of literature has demonstrated the potential relationships between ER stress and the pathogenesis of IDD, indicating some promising therapeutic targets. In this review, we summarize the current knowledge regarding the impact of ER stress on the process of IDD, as well as some potential therapeutic strategies for alleviating disc degeneration by targeting different pathways to inhibit ER stress. This review will facilitate understanding the pathogenesis and progress of IDD and highlights potential therapeutic targets for treating this condition.
Collapse
Affiliation(s)
- Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin He
- Pharmacy Department, Air Force Hospital of Eastern Theater Command, Nanjing, China
| | - Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chengzhe Wang
- Rehabilitation Department, Dongchangfu Traditional Chinese Medicine Hospital, Liaocheng, China
| | - Pandi Peng
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, China
| | - Chu Gao
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Xiaolong Xu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yachao Ma
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mei Liu
- Pharmacy Department, Air Force Hospital of Eastern Theater Command, Nanjing, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
15
|
Ohnishi T, Iwasaki N, Sudo H. Causes of and Molecular Targets for the Treatment of Intervertebral Disc Degeneration: A Review. Cells 2022; 11:cells11030394. [PMID: 35159202 PMCID: PMC8834258 DOI: 10.3390/cells11030394] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a pathological condition that can lead to intractable back pain or secondary neurological deficits. There is no fundamental cure for this condition, and current treatments focus on alleviating symptoms indirectly. Numerous studies have been performed to date, and the major strategy for all treatments of IVDD is to prevent cell loss due to programmed or regulated cell death. Accumulating evidence suggests that several types of cell death other than apoptosis, including necroptosis, pyroptosis, and ferroptosis, are also involved in IVDD. In this study, we discuss the molecular pathway of each type of cell death and review the literature that has identified their role in IVDD. We also summarize the recent advances in targeted therapy at the RNA level, including RNA modulations through RNA interference and regulation of non-coding RNAs, for preventing cell death and subsequent IVDD. Therefore, we review the causes and possible therapeutic targets for RNA intervention and discuss the future direction of this research field.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan;
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Correspondence:
| |
Collapse
|
16
|
Zhao Y, Shi D, Shang M, Sun X, Guo L, Meng D, Liu X, Zhou X, Li J. GRP78-targeted and doxorubicin-loaded nanodroplets combined with ultrasound: a potential novel theranostics for castration-resistant prostate cancer. Drug Deliv 2022; 29:203-213. [PMID: 34985396 PMCID: PMC8741251 DOI: 10.1080/10717544.2021.2023698] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The construction of multifunctional oncotherapy nanoplatforms that combine diagnosis and treatment remains challenging. Nanodroplets (NDs), which simultaneously enhance ultrasound imaging and therapeutic effects, are a potential strategy for non-invasive drug delivery. To achieve the goals of precise medicine, novel SP94 peptide-modified and doxorubicin-loaded ultrasonic NDs (SP94-DOX-NDs) for castration-resistant prostate cancer (CRPC) targeting and treatment were constructed in this study. The characteristics, contrast-enhanced ultrasound imaging (CEUI), targeting ability to glucose-regulated protein 78 (GRP78)-overexpressing CRPC and anticancer effect of the SP94-DOX-NDs were assessed. The desired SP94-NDs were successfully prepared using the nanoemulsification method using a certain proportion of SP94-PEG-chitosan, perfluoropentane (PFP), Tween 20, and lecithin. SP94-NDs with a size of ∼300 nm showed great biocompatibility and CEUI ability. Compared with blank NDs, SP94-NDs exhibited higher tumor-specific targeting ability due to conjugation between the SP94 peptide and GRP78-overexpressing 22RV1 cells. Most importantly, in vitro and in vivo investigations showed that SP94-DOX-NDs combined with ultrasound could specifically deliver DOX into 22RV1 cells and thereby demonstrated a stronger anticancer effect than DOX-NDs and DOX. Thus, SP94-DOX-NDs may provide an efficient approach for the real-time imaging of tumors and triggered, accurate drug delivery to tumors.
Collapse
Affiliation(s)
- Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
17
|
Dimethyl Fumarate Ameliorates Nucleus Pulposus Cell Dysfunction through Activating the Nrf2/HO-1 Pathway in Intervertebral Disc Degeneration. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6021763. [PMID: 34754326 PMCID: PMC8572606 DOI: 10.1155/2021/6021763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022]
Abstract
Background Oxidative stress, inflammation, and nucleus pulposus cells (NPCs) apoptosis are involved in pathogenesis of intervertebral disc (IVD) degeneration (IVDD). Dimethyl fumarate (DMF) has been found to effectively depress oxidative stress and inflammation via the Nrf2 pathway. Hence, this project was designed to explore the underlying mechanisms of how DMF protects NPCs from damage by LPS challenge. Methods and Results CCK8 assay and flow cytometry of apoptosis indicated that DMF treatment attenuated LPS-induced NPC damage. Western blot analysis demonstrated that DMF enhanced the expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in LPS-challenged NPCs. DMF treatment significantly decreased the accumulation of ROS, downregulated inflammatory cytokines (p-NF-κB, IL-1β, and TNF-α), and ER stress-associated apoptosis proteins (Bip, calpain-1, caspase-12, caspase-3, and Bax) in LPS-challenged NPCs. The level of antiapoptotic protein Bcl-2 was promoted by DMF treatment in LPS-challenged NPCs. Glutathione (GSH) assay showed that DMF treatment improved reduced to oxidized glutathione ratio in LPS-challenged NPCs. Furthermore, the results of western blot analysis indicated that in LPS-challenged NPCs, DMF treatment ameliorated the elevated levels of matrix degradation enzymes (MMP-13, aggrecanase 1) and type I collagen and the reduced levels of matrix composition (type II collagen and ACAN). However, Nrf2 knockdown abolished these protective effects of DMF. Conclusion Our data suggested that treatment with DMF mitigated LPS-induced oxidative stress, inflammation, and ER stress-associated apoptosis in NPCs via the Nrf2/HO-1 signaling pathway, thus reliving LPS-induced dysfunction of NPCs, which offered a novel potential pharmacological treatment strategy for IVDD.
Collapse
|
18
|
Shi M, Zhao Y, Sun Y, Xin D, Xu W, Zhou B. Therapeutic effect of co-culture of rat bone marrow mesenchymal stem cells and degenerated nucleus pulposus cells on intervertebral disc degeneration. Spine J 2021; 21:1567-1579. [PMID: 34000376 DOI: 10.1016/j.spinee.2021.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND After non-contact co-culture of bone marrow mesenchymal stem cells (BMSCs) with nucleus pulposus cells (NPCs), exosomes secreted by BMSCs were able to ameliorate the degree of disc degeneration. The reason for this is, at least in part, that exosomes from BMSCs achieve by affecting the level of autophagy in NPCs, while the components in exosomes are diverse and their specific mechanism of action is still unclear. PURPOSE Here, we aimed to explore the therapeutic effect of co-culture of BMSCs and NPCs on NPCs and explore its specific mechanism of action. STUDY DESIGN/SETTING In vitro study. METHODS Rat NPCs and BMSCs were isolated and cultured in vitro. The serum deprivation experiment (using oxygen, glucose, and serum deprivation [OGD]) simulates the pathological state of low blood supply of the intervertebral disc in vivo. We used apoptotic cell staining and flow cytometry to study the effect of BMSCs on the apoptosis rate of rat NPCs, and the apoptotic proteins active-caspase-3, active-caspase-9, autophagy marker proteins LC3 and Beclin 1 were further detected using Western blot analysis. The expression levels of the pro-apoptotic protein Bax and the apoptosis-inhibiting protein Bcl2 were measured. The differentially expressed miRNAs were screened in a gene expression profiling chip. Then qRT-PCR was used to detect the effect of different treatment methods on miR-155 expression. The effect of anti-miR-155 antibodies on autophagy was studied by flow cytometry and transmission electron microscopy. A luciferase reporter assay was used to study the direct interaction between miR-155 and BACH1 mRNA, which was analyzed by TargetScan software, and the results were verified by Western blotting. RESULTS Compared with the OGD group, the expression level of miR-155 and the NPC autophagy level significantly increased; the HO-1 protein expression increased; and the Bach1 protein expression, degeneration index, and apoptosis index all significantly decreased in the co-culture group. After BMSCs transfected with anti-miR-155 were co-cultured with NPCs, the miR-155 expression in the cells was significantly reduced, the HO-1 protein expression and the level of cell autophagy was reduced. However, Bach1 protein expression, NPC degeneration index, and apoptosis index increased. After being inhibited by the autophagy inhibitor wortmannin, the cell degeneration index and apoptosis rate significantly improved. CONCLUSION In the OGD model, BMSCs can significantly increase the viability, the level of autophagy, and reduce the level of apoptosis in rat NPCs. BMSC exosomes increase miR-155 expression in NPCs, which targets Bach1 and in turn upregulates HO-1 expression, activates autophagy in NPCs, inhibits the apoptosis level, and improves intervertebral disc degeneration. CLINICAL SIGNIFICANCE Our experiment shows that it is maybe feasible to treat disc degeneration with drugs. At the same time, compared with BMSC injection method of treatment, side effects of drug therapy are smaller, and can be controlled, it also provides a new way for intervertebral disc degeneration drug treatment.
Collapse
Affiliation(s)
- Ming Shi
- Thoracic Lumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Yan Zhao
- Thoracic Lumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China.
| | - Yue Sun
- Orthopedics, Inner Mongolia Autonomous Region People's Hospital, Inner Mongolia, China
| | - Daqi Xin
- Thoracic Lumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Weilong Xu
- Thoracic Lumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Boyuan Zhou
- Thoracic Lumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| |
Collapse
|
19
|
Gong CY, Zhang HH. Autophagy as a potential therapeutic target in intervertebral disc degeneration. Life Sci 2021; 273:119266. [PMID: 33631177 DOI: 10.1016/j.lfs.2021.119266] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular recirculation system that delivers cytoplasmic content to lysosomes for degradation, thereby maintaining metabolism and homeostasis. Recent studies have found that autophagy plays a dual role in intervertebral disc degeneration (IDD). Most studies have shown that inducing autophagy can slow down the process of IDD. A few studies have shown that extensive autophagy activation-mediated apoptosis accelerates IDD. In this review, we describe the pathophysiological characteristics of intervertebral disc (IVD), the mechanism of autophagy and the application of regulating autophagy in the treatment of IDD, hoping to provide a certain theoretical basis for the biotherapy of IDD.
Collapse
Affiliation(s)
- Chao-Yang Gong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China.
| |
Collapse
|
20
|
Li J, Chen H, Lou J, Bao G, Wu C, Lou Z, Wang X, Ding J, Li Z, Xiao J, Xu H, Gao W, Zhou K. Exenatide improves random-pattern skin flap survival via TFE3 mediated autophagy augment. J Cell Physiol 2021; 236:3641-3659. [PMID: 33044023 DOI: 10.1002/jcp.30102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/05/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
Random-pattern skin flaps are widely applied to rebuild and restore soft-tissue damage in reconstructive surgery; however, ischemia and subsequent ischemia-reperfusion injury lead to flap necrosis and are major complications. Exenatide, a glucagon-like peptide-1 analog, exerts therapeutic benefits for diabetic wounds, cardiac injury, and nonalcoholic fatty liver disease. Furthermore, Exenatide is a known activator of autophagy, which is a complex process of subcellular degradation that may enhance the viability of random skin flaps. In this study, we explored whether exenatide can improve skin flap survival. Our results showed that exenatide augments autophagy, increases flap viability, enhances angiogenesis, reduces oxidative stress, and alleviates pyroptosis. Coadministration of exenatide with 3-methyladenine and chloroquine, potent inhibitors of autophagy, reversed the beneficial effects, suggesting that the therapeutic benefits of exenatide for skin flaps are due largely to autophagy activation. Mechanistically, we identified that exenatide enhanced activation and nuclear translocation of TFE3, which leads to autophagy activation. Furthermore, we found that exenatide activates the AMPK-SKP2-CARM1 and AMPK-mTOR signaling pathways, which likely lead to exenatide's effects on activating TFE3. Overall, our findings suggest that exenatide may be a potent therapy to prevent flap necrosis, and we also reveal novel mechanistic insight into exenatide's effect on flap survival.
Collapse
Affiliation(s)
- Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Huanwen Chen
- School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Junsheng Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Guodong Bao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Zhiling Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Xingyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Zhijie Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Zhang XB, Hu YC, Cheng P, Zhou HY, Chen XY, Wu D, Zhang RH, Yu DC, Gao XD, Shi JT, Zhang K, Li SL, Song PJ, Wang KP. Targeted therapy for intervertebral disc degeneration: inhibiting apoptosis is a promising treatment strategy. Int J Med Sci 2021; 18:2799-2813. [PMID: 34220308 PMCID: PMC8241771 DOI: 10.7150/ijms.59171] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a multifactorial pathological process associated with low back pain (LBP). The pathogenesis is complicated, and the main pathological changes are IVD cell apoptosis and extracellular matrix (ECM) degradation. Apoptotic cell loss leads to ECM degradation, which plays an essential role in IDD pathogenesis. Apoptosis regulation may be a potential attractive therapeutic strategy for IDD. Previous studies have shown that IVD cell apoptosis is mainly induced by the death receptor pathway, mitochondrial pathway, and endoplasmic reticulum stress (ERS) pathway. This article mainly summarizes the factors that induce IDD and apoptosis, the relationship between the three apoptotic pathways and IDD, and potential therapeutic strategies. Preliminary animal and cell experiments show that targeting apoptotic pathway genes or drug inhibition can effectively inhibit IVD cell apoptosis and slow IDD progression. Targeted apoptotic pathway inhibition may be an effective strategy to alleviate IDD at the gene level. This manuscript provides new insights and ideas for IDD therapy.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Honghui Hospital, Xi'an, Shanxi, 710000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Peng Cheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Xigu District People's Hospital, Lanzhou, Gansu 730000, PR China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Ding Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Jin-Tao Shi
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Kai Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Shao-Long Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Peng-Jie Song
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Ke-Ping Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Xigu District People's Hospital, Lanzhou, Gansu 730000, PR China
| |
Collapse
|
22
|
Xiao L, Ding B, Gao J, Yang B, Wang J, Xu H. Curcumin prevents tension-induced endplate cartilage degeneration by enhancing autophagy. Life Sci 2020; 258:118213. [PMID: 32768583 DOI: 10.1016/j.lfs.2020.118213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
AIMS Intermittent cyclic tension stimulation(ICMT) was shown to promote degeneration of endplate chondrocytes and induce autophagy. However, enhancing autophagy can alleviate degeneration partly. Studies have shown that curcumin can induce autophagy and protect chondrocytes, we speculated that regulation of autophagy by curcumin might be an effective method to improve the stress resistance of endplate cartilage. In this study, human cervical endplate cartilage specimens were collected, and expression of autophagy markers was detected and compared. MAIN METHODS Human cervical endplate chondrocytes were cultured to establish a tension-induced degeneration model, for which changes of functional metabolism and autophagy levels were detected under different tension loading conditions. Changes in functional metabolism of endplate chondrocytes were observed under high-intensity tension loading in the presence of inhibitors, inducers, and curcumin to regulate the autophagy level of cells. In addition, a rat model of lumbar instability was established to observe the degeneration of lumbar disc after curcumin administration. KEY FINDINGS Through a series of experiments, we found that low-intensity tension stimulation can maintain a stable phenotype of endplate chondrocytes, but high-intensity tension stimulation has a negative effect. Moreover, with increasing tension intensity, the degree of degeneration of endplate chondrocytes was gradually aggravated and the level of autophagy increased. Besides, curcumin upregulated autophagy, inhibited apoptosis, and reduced phenotype loss of endplate chondrocytes induced by high-intensity tension loading, thereby relieving intervertebral disc degeneration induced by mechanical imbalance. SIGNIFICANCE Curcumin mediated autophagy and enhanced the adaptability of endplate chondrocytes to high-intensity tension load, thereby relieving intervertebral disc degeneration.
Collapse
Affiliation(s)
- Liang Xiao
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Baiyang Ding
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Jianming Gao
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Bijing Yang
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Jing Wang
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Hongguang Xu
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China.
| |
Collapse
|
23
|
Song J, Chen ZH, Zheng CJ, Song KH, Xu GY, Xu S, Zou F, Ma XS, Wang HL, Jiang JY. Exosome-Transported circRNA_0000253 Competitively Adsorbs MicroRNA-141-5p and Increases IDD. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1087-1099. [PMID: 32858458 PMCID: PMC7473879 DOI: 10.1016/j.omtn.2020.07.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
The pathogenesis of intervertebral disc degeneration (IDD) is complex, and a better understanding of IDD pathogenesis may provide a better method for the treatment of IDD. Exosomes are 40-100 nm nanosized vesicles that are released from many cell types into the extracellular space. We speculated that exosome-transported circular RNAs (circRNAs) could regulate IDD. Exosomes from different degenerative grades were isolated and added to nucleus pulposus cells (NPCs), and indicators of proliferation and apoptosis were detected. Based on the previous circRNA microarray results, the top 10 circRNAs were selected. PCR was performed to determine the circRNA with the maximum upregulation. Competing endogenous RNA (ceRNA) analysis was carried out, and the sponged microRNA (miRNA) was identified. Further functional verification of the selected circRNA was carried out in vivo and in vitro. NPCs of different degenerative grades secreted exosomes, which could regulate IDD. circRNA_0000253 was selected as having the maximum upregulation in degenerative NPC exosomes. ceRNA analysis showed that circRNA_0000253 could adsorb miRNA-141-5p to downregulate SIRT1. circRNA_0000253 was confirmed to increase IDD by adsorbing miRNA-141-5p and downregulating SIRT1 in vivo and in vitro. Exosomal circRNA_0000253 owns the maximum upregulation in degenerative NPC exosomes and could promote IDD by adsorbing miRNA-141-5p and downregulating SIRT1.
Collapse
Affiliation(s)
- Jian Song
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhen-Hao Chen
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chao-Jun Zheng
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ke-Han Song
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guang-Yu Xu
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shun Xu
- Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai 200240, China
| | - Fei Zou
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xiao-Sheng Ma
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Hong-Li Wang
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jian-Yuan Jiang
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
24
|
Li N, Gao Q, Zhou W, Lv X, Yang X, Liu X. MicroRNA-129-5p affects immune privilege and apoptosis of nucleus pulposus cells via regulating FADD in intervertebral disc degeneration. Cell Cycle 2020; 19:933-948. [PMID: 32160130 DOI: 10.1080/15384101.2020.1732515] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Literatures indicate that microRNA-129-5p (miR-129-5p) or Fas-associated death domain (FADD) is related to intervertebral disc degeneration (IDD), but the effect of miR-129-5p/FADD axis on IDD is not studied. The study aimed to investigate whether miR-129-5p influenced immune privilege and nucleus pulposus (NP) cell apoptosis in rats with IDD via regulating FADD.A rat model with caudal IDD was established, and injected with miR-129-5p agomir or miR-129-5p antagomir to figure out the character of miR-129-5p in the cell apoptosis and inflammation in the nucleus pulposus (NP) tissues of IDD rats. NP cells were grouped as the same ways for determining proliferation, apoptosis, and senescence in NP cells of IDD rats. Annexin V-FITC/PI double staining detected the apoptosis of macrophages and CD8+ cells co-cultured via transfected NP cells. Expression of miR-129-5p, FADD, collagen I, collagen II, aggrecan and Sox-9 in NP tissues and cells were determined.Up-regulated miR-129-5p decreased FADD, collagen I and elevated collagen Ⅱ, aggrecan, and Sox-9 in NP tissues and repressed inflammation in serum and NP tissues in IDD rats. Up-regulated miR-129-5p facilitated proliferation, inhibited senescence, apoptosis, and decreased FADD, collagen I and increased collagen Ⅱ, aggrecan, and Sox-9 in NP cells of IDD rats. Elevated miR-129-5p promoted the apoptosis of macrophages and CD8+ cells.We pronounced that up-regulated miR-129-5p inhibited the apoptosis and facilitated the proliferation of NP cells, as well as the apoptosis of macrophages and CD8+ cells via decreased FADD in IDD, suggesting that miR-129-5p had a protective effect on IDD.
Collapse
Affiliation(s)
- Nan Li
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Gao
- Department of Pharmaceutical Chemistry, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin, China.,Department of Orthopaedics, Changchun Central Hospital, Changchun, Jilin, China
| | - Wenli Zhou
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoming Lv
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaohong Yang
- Department of Pharmaceutical Chemistry, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin, China
| | - Xiaoqi Liu
- Department of Orthopaedics, Changchun Central Hospital, Changchun, Jilin, China
| |
Collapse
|