1
|
Colaianni F, Zelli V, Compagnoni C, Miscione MS, Rossi M, Vecchiotti D, Di Padova M, Alesse E, Zazzeroni F, Tessitore A. Role of Circulating microRNAs in Liver Disease and HCC: Focus on miR-122. Genes (Basel) 2024; 15:1313. [PMID: 39457437 PMCID: PMC11507253 DOI: 10.3390/genes15101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
miR-122 is the most abundant microRNA (miRNA) in the liver; it regulates several genes mainly involved in cell metabolism and inflammation. Host factors, diet, metabolic disorders and viral infection promote the development of liver diseases, including hepatocellular carcinoma (HCC). The downregulation of miR-122 in tissue is a common feature of the progression of liver injury. In addition, the release of miR-122 in the bloodstream seems to be very promising for the early diagnosis of both viral and non-viral liver disease. Although controversial data are available on the role of circulating miR-122 as a single biomarker, high diagnostic accuracy has been observed using miR-122 in combination with other circulating miRNAs and/or proteins. This review is focused on comprehensively summarizing the most recent literature on the potential role of circulating miR-122, and related molecules, as biomarker(s) of metabolic liver diseases, hepatitis and HCC.
Collapse
Affiliation(s)
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (F.C.); (C.C.); (M.S.M.); (M.R.); (D.V.); (M.D.P.); (E.A.); (F.Z.); (A.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Song H, Zhang Q, Fang G, Luo X, Wu D, Li H, Zhou K, Zhao X, Xu F, Zhang Y, Huang A. Unraveling the Mechanisms of MicroRNA in Suppressing Hepatitis B Virus Progression: A Comprehensive Review for Designing Treatment Strategies. HEPATITIS MONTHLY 2024; 24. [DOI: 10.5812/hepatmon-144239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/22/2024] [Accepted: 07/13/2024] [Indexed: 01/02/2025]
Abstract
: Liver cancer and cirrhosis caused by the Hepatitis B virus (HBV) remain significant global health challenges due to the virus's high prevalence and contagious nature. Hepatitis B virus can be transmitted through various means, leading to mild or severe liver disease. Although an effective prophylactic vaccine is available, it offers limited benefits for those already chronically infected. Current treatments often fail to consistently eliminate the virus and can cause severe adverse effects. In response to these challenges, researchers have begun exploring microRNAs (miRNAs) as novel therapeutic targets. Studying miRNA-virus interactions presents a promising opportunity to identify potential therapeutic targets. By manipulating host miRNAs, researchers aim to enhance antiviral defenses, restore cellular balance, and prevent viral replication. The text concludes by highlighting the potential for personalized medicine in Hepatitis B treatment, guided by individual miRNA profiles. Numerous studies have been conducted to understand how different miRNAs inhibit HBV replication, paving the way for the development of innovative and effective therapeutic strategies.
Collapse
|
3
|
Woo J, Choi Y. Biomarkers in Detection of Hepatitis C Virus Infection. Pathogens 2024; 13:331. [PMID: 38668286 PMCID: PMC11054098 DOI: 10.3390/pathogens13040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
The hepatitis C virus (HCV) infection affects 58 million people worldwide. In the United States, the incidence rate of acute hepatitis C has doubled since 2014; during 2021, this increased to 5% from 2020. Acute hepatitis C is defined by any symptom of acute viral hepatitis plus either jaundice or elevated serum alanine aminotransferase (ALT) activity with the detection of HCV RNA, the anti-HCV antibody, or hepatitis C virus antigen(s). However, most patients with acute infection are asymptomatic. In addition, ALT activity and HCV RNA levels can fluctuate, and a delayed detection of the anti-HCV antibody can occur among some immunocompromised persons with HCV infection. The detection of specific biomarkers can be of great value in the early detection of HCV infection at an asymptomatic stage. The high rate of HCV replication (which is approximately 1010 to 1012 virions per day) and the lack of proofreading by the viral RNA polymerase leads to enormous genetic diversity, creating a major challenge for the host immune response. This broad genetic diversity contributes to the likelihood of developing chronic infection, thus leading to the development of cirrhosis and liver cancer. Direct-acting antiviral (DAA) therapies for HCV infection are highly effective with a cure rate of up to 99%. At the same time, many patients with HCV infection are unaware of their infection status because of the mostly asymptomatic nature of hepatitis C, so they remain undiagnosed until the liver damage has advanced. Molecular mechanisms induced by HCV have been intensely investigated to find biomarkers for diagnosing the acute and chronic phases of the infection. However, there are no clinically verified biomarkers for patients with hepatitis C. In this review, we discuss the biomarkers that can differentiate acute from chronic hepatitis C, and we summarize the current state of the literature on the useful biomarkers that are detectable during acute and chronic HCV infection, liver fibrosis/cirrhosis, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
| | - Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329-4018, USA;
| |
Collapse
|
4
|
Peng Y, Xiao S, Zuo W, Xie Y, Xiao Y. Potential diagnostic value of miRNAs in sexually transmitted infections. Gene 2024; 895:147992. [PMID: 37977319 DOI: 10.1016/j.gene.2023.147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
MiRNAs are small endogenous non-coding RNAs that have been demonstrated to be involved in post-transcriptional gene silencing, regulating a number of metabolic functions in the human body, including immune response, cellular physiology, organ development, angiogenesis, signaling, and other aspects. As popular molecules that have been studied in previous years, given their extensive regulatory functions, miRNAs hold considerable promise as non-invasive biomarkers. Sexually transmitted infections(STIs) are still widespread and have an adverse effect on individuals, communities, and society worldwide. miRNAs in the regulatory networks are generally involved in their molecular processes of formation and development. In this review, we discuss the value of miRNAs for the diagnosis of STIs.
Collapse
Affiliation(s)
- Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuangwen Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wei Zuo
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
5
|
Gupta S, Parveen S. Potential role of microRNAs in personalized medicine against hepatitis: a futuristic approach. Arch Virol 2024; 169:33. [PMID: 38245876 DOI: 10.1007/s00705-023-05955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/21/2023] [Indexed: 01/23/2024]
Abstract
MicroRNAs (miRNAs) have been the subject of extensive research for many years, primarily in the context of diseases such as cancer. However, our appreciation of their significance in viral infections, particularly in hepatitis, has increased due to the discovery of their association with both the host and the virus. Hepatitis is a major global health concern and can be caused by various viruses, including hepatitis A to E. This review highlights the key factors associated with miRNAs and their involvement in infections with various viruses that cause hepatitis. The review not only emphasizes the expression profiles of miRNAs in hepatitis but also puts a spotlight on their potential for diagnostics and therapeutic interventions. Ongoing extensive studies are propelling the therapeutic application of miRNAs, addressing both current limitations and potential strategies for the future of miRNAs in personalized medicine. Here, we discuss the potential of miRNAs to influence future medical research and an attempt to provide a thorough understanding of their diverse roles in hepatitis and beyond.
Collapse
Affiliation(s)
- Sonam Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
6
|
Circulating MicroRNA-122 as a Potential Biomarker for Hepatitis C Virus Induced Hepatocellular Carcinoma. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-131221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Background: The microRNA (miRNA) mediated translational repression can cause various diseases in humans. The liver-specific miRNA (microRNA-122 (miR-122)) is primarily involved in tissue tropism during hepatitis C virus (HCV) infection which ultimately leads to hepatocellular carcinoma (HCC). Objectives: This study focuses on evaluating host serum miR-122 as a prognostic marker in HCV-induced hepatocellular carcinoma. Methods: Evaluation of miR-122 expression was carried out by quantitative real time PCR. Results: Positive expression of miR-122 was observed in patients with chronic hepatitis C (CHC) followed by HCC patients compared to healthy controls. A difference in median levels of the miR-122 expression in CHC and HCC patients (P < 0.000) was found in contrast to cirrhosis patients (P = 0.511). The serum miR-122 expression was found threefold higher in liver cirrhosis patients than chronic hepatitis. Further, the area under the receiver operating characteristic curve (AUROC) analysis of miR-122 expression profile can efficiently distinguish CHC patients (AUROC = 0.978, P = 0.000, 95% confidence interval (CI) = 0.958 to 0.998) and HCC from healthy controls (AUROC = 0.971, P = 0.000, 95% CI = 0.944 to 0.997). Moreover, receiver operating characteristic (ROC) curve analysis significantly distinguished between CHC patients from cirrhosis patients (AUROC = 0.955, P = 0.000, 95% CI = 0.925 to 0.986) but not CHC from HCC patients (AUROC = 0.584, P = 0.104, 95% CI = 0.485 to 0.684). This study revealed a substantial correlation of miR-122 with HCV viral load (r = 0.56, P = 0.000), ALT (r = 0.67, P = 0.000) and AST (r = 0.65, P = 0.000) levels. Conclusions: Serum miR-122 can potentially serve as a promising prognostic tool for HCV induced HCC.
Collapse
|
7
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
8
|
Panigrahi M, Palmer MA, Wilson JA. MicroRNA-122 Regulation of HCV Infections: Insights from Studies of miR-122-Independent Replication. Pathogens 2022; 11:1005. [PMID: 36145436 PMCID: PMC9504723 DOI: 10.3390/pathogens11091005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Despite the advancement in antiviral therapy, Hepatitis C remains a global health challenge and one of the leading causes of hepatitis related deaths worldwide. Hepatitis C virus, the causative agent, is a positive strand RNA virus that requires a liver specific microRNA called miR-122 for its replication. Unconventional to the canonical role of miRNAs in translation suppression by binding to 3'Untranslated Region (UTR) of messenger RNAs, miR-122 binds to two sites on the 5'UTR of viral genome and promotes viral propagation. In this review, we describe the unique relationship between the liver specific microRNA and HCV, the current knowledge on the mechanisms by which the virus uses miR-122 to promote the virus life cycle, and how miR-122 impacts viral tropism and pathogenesis. We will also discuss the use of anti-miR-122 therapy and its impact on viral evolution of miR-122-independent replication. This review further provides insight into how viruses manipulate host factors at the initial stage of infection to establish a successful infection.
Collapse
Affiliation(s)
| | | | - Joyce A. Wilson
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
9
|
Forte G, Ventimiglia G, Pesaturo M, Petralia S. A highly sensitive PNA-microarray system for miRNA122 recognition. Biotechnol J 2022; 17:e2100587. [PMID: 35225426 DOI: 10.1002/biot.202100587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Abstract
Surface chemistry is a fundamental aspect of the development of the sensitive biosensor based on microarray technology. Here we described an advanced PNA-microarray system for the detection of miRNA, composed by a multilayered Si/Al/Agarose component. A straightforward optical signal enhancement is achieved thanks to a combination of the Al film mirror effect and the positive interference for the emission wavelength of the Cy5 fluorescent label tuned by the agarose film. The PNA-microarray was investigated for the detection of miRNA_122, resulting in a sensitivity of about 1.75 μM-1 and Limit of Detection in the range of 0.043 nM as a function of the capture probe sequence. The contribution, in terms of H-bonds amounts at 298 and 333 K, of the agarose coating to the dsPNA-RNA interactions was demonstrated by Molecular Dynamic simulations. These results pave the way for advanced sensing strategies suitable for the environmental monitoring and the public safety. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Giuseppe Forte
- Department of Drug Science and Health, University of Catania, via S. Sofia 64, 95125, Catania, Italy
| | - Giorgio Ventimiglia
- EM Microelectronic, Rue de Sors 3, 2074, Marin (Suisse), Marin-Epagnier, Switzerland
| | | | - Salvatore Petralia
- Department of Drug Science and Health, University of Catania, via S. Sofia 64, 95125, Catania, Italy
| |
Collapse
|
10
|
Fang Q, Chen W, Jian Y, Li Y, Lian W, Wan H, Chen S, Li F, Chen Y. Serum Expression Level of MicroRNA-122 and Its Significance in Patients with Hepatitis B Virus Infection. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8430276. [PMID: 35251580 PMCID: PMC8894023 DOI: 10.1155/2022/8430276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/26/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To analyze the expression of miR-122 and evaluate its significance in patients with HBV infection in different phases. METHODS Eleven chronic hepatitis B (CHB), 26 hepatitis B virus (HBV)-induced cirrhosis, 16 HBV-associated hepatocellular carcinoma (HCC) patients and 10 healthy control cases were enrolled. The serum levels of miR-122 were detected by RT-PCR and compared between healthy individuals and CHB at different stages. RESULTS Compared with healthy control cases, serum miR-122 levels were markedly increased in HBV infection cases (AUC = 0.795, P=0.002). In the CHB group, miR-122 levels were positively associated with albumin levels (P < 0.05) but had no significant associations with alanine aminotransferase (ALT) and aspartate aminotransferase (AST) (P > 0.05). In the cirrhosis group, miR-122 expression was remarkably lower in the Child C group in comparison with the Child A group (P=0.025). At the same time, miR-122 amounts had a negative correlation with HVPG (P < 0.05). In the HCC group, miR-122 amounts were negatively associated with alkaline phosphatase (AKP) and alpha-fetoprotein (AFP) (P < 0.05). Serum miR-122 amounts in 3 patients who died were lower than the survival group (5.520 ± 0.522 vs. 5.860 ± 1.183, P > 0.05). CONCLUSION Serum miR-122 can be leveraged to screen patients with HBV infection. In HBV sufferers, the serum miR-122 expression level is related to liver disease progression, hence making it an underlying molecular biomarker for predicting the development of CHB.
Collapse
Affiliation(s)
- Qingqing Fang
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Wei Chen
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yourong Jian
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yu Li
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Wei Lian
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Hongyu Wan
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Shiyao Chen
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Feng Li
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Chen
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| |
Collapse
|
11
|
Bardhi E, McDaniels J, Rousselle T, Maluf DG, Mas VR. Nucleic acid biomarkers to assess graft injury after liver transplantation. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100439. [PMID: 35243279 PMCID: PMC8856989 DOI: 10.1016/j.jhepr.2022.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
Many risk factors and complications impact the success of liver transplantation, such as ischaemia-reperfusion injury, acute rejection, and primary graft dysfunction. Molecular biomarkers have the potential to accurately diagnose, predict, and monitor injury progression or organ failure. There is a critical opportunity for reliable and non-invasive biomarkers to reduce the organ shortage by enabling i) the assessment of donor organ quality, ii) the monitoring of short- and long-term graft function, and iii) the prediction of acute and chronic disease development. To date, no established molecular biomarkers have been used to guide clinical decision-making in transplantation. In this review, we outline the recent advances in cell-free nucleic acid biomarkers for monitoring graft injury in liver transplant recipients. Prior work in this area can be divided into two categories: biomarker discovery and validation studies. Circulating nucleic acids (CNAs) can be found in the extracellular environment pertaining to different biological fluids such as bile, blood, urine, and perfusate. CNAs that are packaged into extracellular vesicles may facilitate intercellular and interorgan communication. Thus, decoding their biological function, cellular origins and molecular composition is imperative for diagnosing causes of graft injury, guiding immunosuppression and improving overall patient survival. Herein, we discuss the most promising molecular biomarkers, their state of development, and the critical aspects of study design in biomarker research for early detection of post-transplant liver injury. Future advances in biomarker studies are expected to personalise post-transplant therapy, leading to improved patient care and outcomes.
Collapse
|
12
|
Li X, He J, Wang G, Sun J. Diagnostic value of microRNA-155 in active tuberculosis: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27869. [PMID: 34797326 PMCID: PMC8601318 DOI: 10.1097/md.0000000000027869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/03/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) is a preventable and treatable disease, but the increased mortality and morbidity associated with TB continues to be a leading cause of death globally. MicroRNA (miRNA)-155 has been recognized as a marker of many lung diseases. However, the effectiveness of this marker for diagnosing TB remains unclear. METHODS A detailed search (updated on February 6, 2021) of literature published in the Wanfang database, EMBASE, PubMed, CNKI, and Cochrane Library was conducted to identify eligible studies suitable for inclusion in the current research. The positive likelihood ratio, negative likelihood ratio, specificity, area under the curve, sensitivity, and diagnostic odds ratio were used to investigate the diagnostic potential of miRNA-155. RESULTS A total of 122 studies related to active TB, which completely complied with the inclusion and exclusion criteria of our meta-analysis, were included. The overall results suggested a moderately high diagnostic accuracy and efficacy of miRNA-155, with a specificity of 0.85 (95% confidence interval = 0.77-0.91) and sensitivity of 0.87 (95% confidence interval = 0.76-0.93). The result based on dysregulated status demonstrated that the upregulated group yielded better accuracy and efficacy than the downregulated group. Notably, the accuracy and efficacy of miRNA-155 in pediatric TB were higher than those in adult TB. The results showed that the accuracy and efficacy of miRNA-155 in children were higher than those in adults. CONCLUSION The results of the meta-analysis suggested that miRNA-155 could serve as an effective biomarker for identifying active TB.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Endocrinology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, PR China
| | - Jie He
- Department of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, PR China
| | - Guodong Wang
- Department of Pathology, Mouping District Hospital of Traditional Chinese Medicine, Yantai, Shandong, PR China
| | - Jian Sun
- Department of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, PR China
| |
Collapse
|
13
|
Huang PS, Liao CJ, Huang YH, Yeh CT, Chen CY, Tang HC, Chang CC, Lin KH. Functional and Clinical Significance of Dysregulated microRNAs in Liver Cancer. Cancers (Basel) 2021; 13:5361. [PMID: 34771525 PMCID: PMC8582514 DOI: 10.3390/cancers13215361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
Liver cancer is the leading cause of cancer-related mortality in the world. This mainly reflects the lack of early diagnosis tools and effective treatment methods. MicroRNAs (miRNAs) are a class of non-transcribed RNAs, some of which play important regulatory roles in liver cancer. Here, we discuss microRNAs with key impacts on liver cancer, such as miR-122, miR-21, miR-214, and miR-199. These microRNAs participate in various physiological regulatory pathways of liver cancer cells, and their modulation can have non-negligible effects in the treatment of liver cancer. We discuss whether these microRNAs can be used for better clinical diagnosis and/or drug development. With the advent of novel technologies, fast, inexpensive, and non-invasive RNA-based biomarker research has become a new mainstream approach. However, the clinical application of microRNA-based markers has been limited by the high sequence similarity among them and the potential for off-target problems. Therefore, researchers particularly value microRNAs that are specific to or have special functions in liver cancer. These include miR-122, which is specifically expressed in the liver, and miR-34, which is necessary for the replication of the hepatitis C virus in liver cancer. Clinical treatment drugs have been developed based on miR-34 and miR-122 (MRX34 and Miravirsen, respectively), but their side effects have not yet been overcome. Future research is needed to address these weaknesses and establish a feasible microRNA-based treatment strategy for liver cancer.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chia-Jung Liao
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia-yi, Chia-yi 613, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| |
Collapse
|
14
|
Elabd NS, Tayel SI, Elhamouly MS, Hassanein SA, Kamaleldeen SM, Ahmed FE, Rizk M, Gadallah AA, Ajlan SE, Sief AS. Evaluation of MicroRNA-122 as a Biomarker for Chronic Hepatitis C Infection and as a Predictor for Treatment Response to Direct-Acting Antivirals. Hepat Med 2021; 13:9-23. [PMID: 33758557 PMCID: PMC7979684 DOI: 10.2147/hmer.s292251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background Treatment response to antiviral drugs is a challenging issue in patients with chronic hepatitis C virus (HCV) infection. Although microRNA-122 represents the majority of the microRNA content in hepatic tissues, few studies have evaluated its role in the treatment response, so we aimed to study its role in chronic HCV patients and in predicting the treatment response to direct-acting antivirals (DAAs). Methods The study included 125 chronic HCV patients (89 naïve and 36 with a prior failed peginterferon/ribavirin response) and 50 apparently healthy subjects. Complete blood count, liver function, α-fetoprotein, lipid profiles, serum creatinine, abdominal ultrasound, and FibroScan® were assessed. Viral markers, HCV antibodies, and hepatitis B surface antigen were measured by enzyme-linked fluorescent immunoassay, with quantitative estimation of HCV RNA and microRNA-122 levels by real-time PCR. Results The microRNA-122 level in HCV patients (those with a sustained virologic response 12 weeks after finishing therapy [SVR12] and non-responders) was significantly increased compared with controls and expressed more in non-responders versus SVR12 (p=0.042). ROC curve analysis of microRNA-122 for differentiating HCV patients from healthy controls revealed that a cut-off point of >1.45 had a sensitivity of 67.20%, specificity of 94.0%, AUC=0.861, and p<0.001; and for predicting response to treatment a cut-off point ≤5.66 could significantly (p=0.022) predict the occurrence of SVR, with a sensitivity of 60.34%, specificity of 66.67%, and AUC=0.729. Logistic regression analysis showed significant values for microRNA-122 in multivariate and univariate analysis for the prediction of response to DAAs. Conclusion The results demonstrated the possible function of microRNA-122 as an indicative tool for distinguishing chronic HCV patients from controls and in the assessment of the therapeutic reaction to DAAs.
Collapse
Affiliation(s)
- Naglaa S Elabd
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Safaa I Tayel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Moamena S Elhamouly
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Shaimaa A Hassanein
- Diagnostic Radiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Samar M Kamaleldeen
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Fatma E Ahmed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mahmoud Rizk
- Internal Medicine Department, Faculty of Medicine, Banha University, Banha, Egypt
| | - Abdelnaser A Gadallah
- Internal Medicine Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Soma E Ajlan
- Microbiology and Immunology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Ahmed S Sief
- Hepatology and Gastroenterology Department, Shebin Elkom Teaching Hospital, Menoufia, Egypt
| |
Collapse
|
15
|
The Role of the Liver-Specific microRNA, miRNA-122 in the HCV Replication Cycle. Int J Mol Sci 2020; 21:ijms21165677. [PMID: 32784807 PMCID: PMC7460827 DOI: 10.3390/ijms21165677] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) replication requires annealing of a liver specific microRNA, miR-122 to 2 sites on 5' untranslated region (UTR). While, microRNAs downregulate gene expression by binding to the 3' untranslated region of the target mRNA, in this case, the microRNA anneals to the 5'UTR of the viral genomes and upregulates the viral lifecycle. In this review, we explore the current understandings of the mechanisms by which miR-122 promotes the HCV lifecycle, and its contributions to pathogenesis. Annealing of miR-122 has been reported to (a) stimulate virus translation by promoting the formation of translationally active internal ribosome entry site (IRES) RNA structure, (b) stabilize the genome, and (c) induce viral genomic RNA replication. MiR-122 modulates lipid metabolism and suppresses tumor formation, and sequestration by HCV may influence virus pathogenesis. We also discuss the possible use of miR-122 as a biomarker for chronic hepatitis and as a therapeutic target. Finally, we discuss roles for miR-122 and other microRNAs in promoting other viruses.
Collapse
|
16
|
Gu Z, Shen HQ, Fu PH, Chen M. Screening of long non-coding RNAs markers in plasma of children with chronic gastritis. Chronic Dis Transl Med 2020; 6:62-68. [PMID: 32226936 PMCID: PMC7096328 DOI: 10.1016/j.cdtm.2020.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Objective The study aimed to detect and analyze long non-coding RNAs (lncRNAs) in plasma of children diagnosed with chronic gastritis, and to explore its biological functions and involved signaling pathways. Methods The plasma samples were collected from six children that were diagnosed with chronic gastritis by physical examination, gastroscopy, and pathological examination and six healthy children. The plasma samples were assayed for determining the expression profiles of lncRNA based upon the gen chip detection. The specific expression of lcnRNA in plasma of children with chronic gastritis was analyzed and its biological functions were speculated. Results Five lncRNAs (RP11-697M17.1, RP11-388M20.9, AFAP1-AS1, BC062758, and XLOC001406) were significantly up-regulated, and five lncRNAs (UNQ697, BX571672.5, CYP4F35P, ANKRD20A5P, and AL832737) were observed to be significantly down-regulated. The lncRNAs RP11-697M17.1, and UNQ697 were detected with the highest up-regulation and down-regulation, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the up-regulated lncRNAs were significantly enriched in 20 signaling pathways such as phosphoinositide-3-kinase–protein kinase B (PI3K-Akt) pathway, and the down-regulated lncRNAs target genes were significantly enriched in 20 signaling pathways such as the metabolic pathway. Conclusion The analysis of the lncRNA expression profiles in plasma of children with chronic gastritis revealed that the lncRNA RP11-697M17.1, and lncRNA UNQ697 may act as plasma markers for predicting chronic gastritis in children.
Collapse
Affiliation(s)
- Zhen Gu
- Department of Pediatrics, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201318, China
| | - Hua-Qin Shen
- Department of Pediatrics, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201318, China
| | - Pei-Hua Fu
- Department of Pediatrics, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201318, China
| | - Mei Chen
- Department of Pediatrics, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201318, China
| |
Collapse
|