1
|
李 菲, 向 俊, 刘 佳, 王 效, 江 浩. [Overexpression of lncRNA FEZF1-AS1 promotes progression of non-small cell lung cancer via the miR-130a-5p/CCND1 axis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:841-850. [PMID: 38862441 PMCID: PMC11166728 DOI: 10.12122/j.issn.1673-4254.2024.05.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To explore the molecular mechanism by which FEZF1-AS1 overexpression promotes progression of nonsmall cell lung cancer (NSCLC) via the miR-130a-5p/CCND1 axis. METHODS TCGA database was used to analyze FEZF1-AS1 expression levels in NSCLC. FEZF1-AS1 expression was detected by qRT-PCR in clinical specimens of NSCLC tissues and NSCLC cell lines, and its correlation with clinical features of the patients were analyzed. The binding sites of FEZF1-AS1 with hsa-miR-130a-5p and those of hsa-miR-130a-5p with CCND1 were predicted. CCK8 assay, clone formation assay, scratch assay, and Transwell assay were employed to examine the effects of FEZF1-AS1 knockdown and hsa-miR-130a-5p inhibitor on proliferation, invasion, and migration abilities of lung cancer cell lines. Dual luciferase assay was used to verify the binding of FEZF1-AS1 with hsa-miR-130a-5p and the binding of hsa-miR-130a-5p with CCND1. Western blotting was performed to detect the changes in CCND1 protein expression level in H1299 and H358 cells following FEZF1-AS1 knockdown and treatment with hsa-miR-130a-5p inhibitor. RESULTS FEZF1-AS1 was highly expressed in NSCLC tissues in close correlation with lymph node metastasis and also in H1299 and H358 cell lines (all P < 0.05). FEZF1-AS1 knockdown obviously reduced proliferation, migration, and invasion abilities of NSCLC cells (P < 0.05). Dual luciferase assay confirmed the binding of hsa-miR-130a-5p with FEZF1-AS1 and CCND1 (P < 0.05), and hsa-miR-130a-5p inhibitor significantly inhibited proliferation, migration, and invasion of NSCLC cells (P < 0.05). FEZF1-AS1 knockdown significantly reduced CCND1 protein expression in NSCLC cells, and this effect was strongly inhibited by treatment with hsa-miR-130a-5p inhibitor (P < 0.05). CONCLUSION FEZF1-AS1 is highly expressed in NSCLC tissue in close correlation with lymph node metastasis to promote cancer progression through the miR-130a-5p/CCND1 axis.
Collapse
|
2
|
Siddique R, Gupta G, Mgm J, Kumar A, Kaur H, Ariffin IA, Pramanik A, Almalki WH, Ali H, Shahwan M, Patel N, Murari K, Mishra R, Thapa R, Bhat AA. Targeting notch-related lncRNAs in cancer: Insights into molecular regulation and therapeutic potential. Pathol Res Pract 2024; 257:155282. [PMID: 38608371 DOI: 10.1016/j.prp.2024.155282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
Cancer is a group of diseases marked by unchecked cell proliferation and the ability for the disease to metastasize to different body areas. Enhancements in treatment and early detection are crucial for improved outcomes. LncRNAs are RNA molecules that encode proteins and have a length of more than 200 nucleotides. LncRNAs are crucial for chromatin architecture, gene regulation, and other cellular activities that impact both normal growth & pathological processes, even though they are unable to code for proteins. LncRNAs have emerged as significant regulators in the study of cancer biology, with a focus on their intricate function in the Notch signaling pathway. The imbalance of this pathway is often linked to a variety of malignancies. Notch signaling is essential for cellular functions like proliferation, differentiation, and death. The cellular response is shaped by these lncRNAs through their modulation of essential Notch pathway constituents such as receptors, ligands, and downstream effectors around it. Furthermore, a variety of cancer types exhibit irregular expression of Notch-related lncRNAs, underscoring their potential use as therapeutic targets and diagnostic markers. Gaining an understanding of the molecular processes behind the interaction between the Notch pathway and lncRNAs will help you better understand the intricate regulatory networks that control the development of cancer. This can open up new possibilities for individualized treatment plans and focused therapeutic interventions. The intricate relationships between lncRNAs & the Notch pathway in cancer are examined in this review.
Collapse
Affiliation(s)
- Raihan Siddique
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Johar Mgm
- Management and Science University (MSU), Shah Alam, Selangor 40100 MSU, Malaysia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand- 831001, India
| | - I A Ariffin
- Management and Science University (MSU), Shah Alam, Selangor 40100 MSU, Malaysia
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Krishna Murari
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
3
|
Zhao X, Su F, Guo Q, Tao X, Wang H, Wang H, Li Q, Zhang W. Preeclampsia-associated lncRNA FEZF1-AS1 regulates cell proliferation and apoptosis in placental trophoblast cells through the ELAVL1/NOC2L axis. Cell Div 2023; 18:17. [PMID: 37872600 PMCID: PMC10591422 DOI: 10.1186/s13008-023-00101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND LncRNAs have been shown to be involved in and control the biological processes of multiple diseases, including preeclampsia (PE). The impairment of trophoblast cell proliferation is recognized as a significant anomaly contributing to the development of PE. LncRNA FEZF1-AS1 was found downregulated in placental tissues of PE patients. However, the precise regulatory mechanism of FEZF1-AS1 in placental trophoblast proliferation and apoptosis remains unclear. RESULTS In this study, we conducted an investigation into the expression levels of FEZF1-AS1 and NOC2L in placental tissues obtained from patients diagnosed with PE. Subsequently, we employed CCK-8 and EdU assays to quantify cell proliferation, while TUNEL staining and western blot for apoptosis-related protein detection to assess apoptosis. Furthermore, the interactions between FEZF1-AS1 and ELAVL1, as well as NOC2L and ELAVL1, were confirmed through the implementation of RIP and RNA pull-down assays. We found a downregulation of lncRNA FEZF1-AS1 and NOC2L in placental tissues of PE patients. Overexpression of FEZF1-AS1 or NOC2L resulted in increased cell proliferation and inhibition of apoptosis, whereas knockdown of FEZF1-AS1 or NOC2L had the opposite effect. In addition, lncRNA FEZF1-AS1 stabilized NOC2L mRNA expression by interacting with ELAVL1. Moreover, partial reversal of the effects of FEZF1-AS1 overexpression on cell proliferation and apoptosis was observed upon suppression of ELAVL1 or NOC2L. CONCLUSIONS PE related lncRNA FEZF1-AS1 could regulate apoptosis and proliferation of placental trophoblast cells through the ELAVL1/NOC2L axis.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, No.29, Longtan Road, Taian, 271000, Shandong, People's Republic of China.
| | - Fengyun Su
- Department of Pharmacy, The Second Affiliated Hospital Of Shandong First Medical University, Taian, 271000, Shandong, People's Republic of China
| | - Qing Guo
- Intensive Care Unit, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, 271000, Shandong, People's Republic of China
| | - Xiuhong Tao
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, No.29, Longtan Road, Taian, 271000, Shandong, People's Republic of China
| | - Huifeng Wang
- Department of Ultrasound, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, 271000, Shandong, People's Republic of China
| | - Hongling Wang
- Department of Ultrasound, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, 271000, Shandong, People's Republic of China
| | - Qinwen Li
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, No.29, Longtan Road, Taian, 271000, Shandong, People's Republic of China
| | - Wangmeng Zhang
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, No.29, Longtan Road, Taian, 271000, Shandong, People's Republic of China
| |
Collapse
|
4
|
Long X, Wen F, Li J, Huang X. LncRNA FEZF1-AS1 accelerates multiple myeloma progression by regulating IGF2BP1/BZW2 signaling. Hematol Oncol 2023; 41:694-703. [PMID: 37125488 DOI: 10.1002/hon.3157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 05/02/2023]
Abstract
Multiple myeloma (MM) is the second largest hematological tumor with clonal proliferation of malignant plasma cells. Growing reports have revealed that the dysregulation of long non-coding RNA (lncRNA) is involved in the MM progression. Nevertheless, lncRNA FEZF1 antisense RNA 1 (FEZF1-AS1) remain not deeply explored. The RNA transcripts and protein level of MM-associated molecule were measured by quantitative real-time polymerase chain reaction or western blot assays, respectively. The clinical correlation was analyzed by Pearson analysis. Molecular interactions among lncRNA FEZF1-AS1, basic leucine zipper and W2 domain 2 (BZW2) and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) were verified by RNA immunoprecipitation and RNA pull-down assays. The survival of MM cells was detected by cell counting kit-8 and flow cytometry assays. Xenograft tumor in vivo was performed to assess tumor growth. The RNA transcripts of lncRNA FEZF1-AS1, BZW2 and IGF2BP1 were upregulated in MM samples compared to those in healthy donors. Knockdown of lncRNA FEZF1-AS1 could inhibit the proliferation and induce cell apoptosis in vitro and in vivo. Besides, lncRNA FEZF1-AS1 could maintain the stability of BZW2 mRNA by interacting IGF2BP1. Moreover, BZW2 silence also downregulated the proliferation but enhanced apoptosis of MM cells, while BZW2 overexpression had an opposite role, which dramatically reversed the regulatory roles of lncRNA FEZF1-AS1. Altogether, lncRNA FEZF1-AS1 facilitated MM development by regulating IGF2BP1/BZW2 signaling, suggesting that lncRNA FEZF1-AS1 might be a candidate for MM treatment.
Collapse
Affiliation(s)
- Xingxing Long
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Feng Wen
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Junjun Li
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Xiaoqing Huang
- Department of Blood Transfusion, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
5
|
El Sharkawi FZ, El Sabah M, Atya HB, Khaled HM. Urinary BLACAT1 as a non-invasive biomarker for bladder cancer. Mol Biol Rep 2023; 50:4339-4345. [PMID: 36939965 PMCID: PMC10147806 DOI: 10.1007/s11033-023-08370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Bladder cancer (BC) is recorded as the fifth most common cancer worldwide with high morbidity and mortality. The most urgent problem in BCs is the high recurrence rate as two-thirds of non-muscle-invasive bladder cancer (NMIBC) will develop into muscle-invasive bladder cancer (MIBC), which retains a feature of rapid progress and metastasis. In addition, only a limited number of biomarkers are available for diagnosing BC compared to other cancers. Hence, finding sensitive and specific biomarkers for predicting the diagnosis and prognosis of patients with BC is critically needed. Therefore, this study aimed to determine the expression and clinical significance of urinary lncRNA BLACAT1 as a non-invasively diagnostic and prognostic biomarker to detect and differentiate BCs stages. METHODS AND RESULTS The expression levels of urinary BLACAT1 were detected by qRT-PCR assay in seventy (70) BC patients with different TNM grades (T0-T3) and twelve (12) healthy subjects as control. BLACAT1 was downregulated in superficial stages (T0 = 0.09 ± 0.02 and T1 = 0.5 ± 0.1) compared to healthy control. Furthermore, in the invasive stages, its levels started to elevate in the T2 stage (1.2 ± 0. 2), and higher levels were detected in the T3 stage with a mean value of (5.2 ± 0.6). This elevation was positively correlated with disease progression. Therefore, BLACAT1 can differentiate between metastatic and non-metastatic stages of BCs. Furthermore, its predictive values are not like to be influenced by schistosomal infection. CONCLUSIONS Upregulation of BLACAT1 in invasive stages predicted an unfavorable prognosis for patients with BCs, as it contributes to the migration and metastasis of BCs. Therefore, we can conclude that urinary BLACAT1 may be considered a non-invasive promising metastatic biomarker for BCs.
Collapse
Affiliation(s)
- Fathia Z El Sharkawi
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt
| | - Mahmoud El Sabah
- Department of Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University, Cairo, Egypt
| | - Hanaa B Atya
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt.
| | | |
Collapse
|
6
|
Huang Z, Song S, Zhang D, Bian Z, Han J. Protective effects of Tripterygium glycoside on IL-1β-induced inflammation and apoptosis of rat chondrocytes via microRNA-216a-5p/TLR4/NF-κB axis. Immunopharmacol Immunotoxicol 2023; 45:61-72. [PMID: 36052873 DOI: 10.1080/08923973.2022.2115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND This study is designed to fill the research gap concerning the efficacy of Tripterygium glycoside (TG) on Interleukin-1β (IL-1β)-induced inflammation and injury in chondrocytes. METHODS Chondrocytes were isolated from Sprague-Dawley rats. After the treatment with IL-1β and TG and transfection, the viability and apoptosis of chondrocytes were determined via Cell Counting Kit-8 (CCK-8) assay and flow cytometry. The levels of inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-8 were determined by enzyme-linked immunosorbent assay (ELISA). Relative expression levels of potential microRNAs (miRNAs, miRs) that may target toll-like receptor 4 (TLR4), as well as apoptosis- and TLR4/nuclear factor-κB (TLR4/NF-κB) pathway-associated factors were quantified using quantitative real-time (qRT) PCR and western blot. The targeting relationship between miR-216a-5p and TLR4 was predicted by TargetScan and further confirmed by dual-luciferase reporter assay. RESULTS The viability was reduced yet the apoptosis and inflammation were promoted in IL-1β-treated chondrocytes, where upregulation of Bax, Cleaved caspase 3, TLR4, Myeloid differentiation factor 88 (MyD88), phosphorylation of P65 and IκBα yet downregulation of Bcl-2 and IκBα were evidenced. Strikingly, the above changes were reversed by TG. TG also offset the effects of IL-1β on repressing the expression of miR-216a-5p, the miRNA targeting TLR4. Additionally, TLR4 overexpression neutralized the impacts of TG upon viability, apoptosis, and TLR4 expression in IL-1β-treated chondrocytes, while all these effects induced by TLR4 overexpression could be restored by miR-216a-5p. CONCLUSIONS TG protects chondrocytes against IL-1β-induced inflammation and apoptosis via miR-216a-5p/TLR4/NF-κB axis.
Collapse
Affiliation(s)
- Zhen Huang
- Acupuncture and Massage Department, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Shuanglin Song
- Acupuncture and Massage Department, Hangzhou First People's Hospital, Hangzhou, PR China
| | - Di Zhang
- Acupuncture and Massage Department, Hangzhou First People's Hospital, Hangzhou, PR China
| | - Zhenyu Bian
- Orthopedics Department, Hangzhou First People's Hospital, Hangzhou, PR China
| | - Jinsheng Han
- Massage Department, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, PR China
| |
Collapse
|
7
|
Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22:316. [PMID: 36229883 PMCID: PMC9558410 DOI: 10.1186/s12935-022-02736-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent digestive cancers, ranking the 2nd cause of cancer-related fatality worldwide. The worldwide burden of CRC is predicted to rise by 60% by 2030. Environmental factors drive, first, inflammation and hence, cancer incidence increase. Main The Notch-signaling system is an evolutionarily conserved cascade, has role in the biological normal developmental processes as well as malignancies. Long non-coding RNAs (LncRNAs) have become major contributors in the advancement of cancer by serving as signal pathways regulators. They can control gene expression through post-translational changes, interactions with micro-RNAs or down-stream effector proteins. Recent emerging evidence has emphasized the role of lncRNAs in controlling Notch-signaling activity, regulating development of several cancers including CRC. Conclusion Notch-associated lncRNAs might be useful prognostic biomarkers or promising potential therapeutic targets for CRC treatment. Therefore, here-in we will focus on the role of “Notch-associated lncRNAs in CRC” highlighting “the impact of Notch-associated lncRNAs as player for cancer induction and/or progression.” Graphical Abstract ![]()
Collapse
Affiliation(s)
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
8
|
Hao K, Li J, Zhang Y, Zhao W, Chen X, Xu J, Tian Y, Li X, Fen J, He X. Expression and prognostic signatures of m6A-related lncRNAs in hepatocellular carcinoma. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04338-x. [PMID: 36121511 DOI: 10.1007/s00432-022-04338-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND N6-methyladenosine (m6A) is a common modification and plays an important role in various biological processes, but m6A-related lncRNA functions in hepatocellular carcinoma (HCC) have not been systematically clarified. METHODS The clinical data and RNA-seq transcriptome of 375 cases of HCC and 50 cases of normal tissues were obtained from the Cancer Gene Atlas database. Co-expression analysis was used to obtain m6A-related lncRNA. The independent prognostic factors were identified by univariate and multivariate Cox regression models. Kaplan-Meier method was used in survival analysis. The core gene of the mRNA-mRNA interaction network is related to m6A-related lncRNAs obtained by the CytoHubba plugin of Cytoscape. Gene ontology and Kyoto Gene Encyclopedia were analyzed to find out the potential mechanism. CIBERSORT algorithm was used to calculate the relative proportion of immune infiltrating cells. RESULTS We identified two subgroups (cluster 1 and cluster 2) according to the expression level. The survival analysis curve and receiver operating characteristic curve proved that this model could predict the prognosis of HCC patients. The univariate and multivariate Cox regression analyses showed the independent prognostic value. UBE2C was screened as the pivotal gene. The expression level of m6A-related lncRNAs causes changes in the tumor immune microenvironment. CONCLUSION The expression levels of m6A-related lncRNAs were significantly different and the prognostic value of m6A-related lncRNAs was confirmed. The m6A-related lncRNAs are expected to be prognostic signatures in HCC.
Collapse
Affiliation(s)
- Kenan Hao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jincheng Li
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Radiology Department, Guangdong Second Provincial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Youao Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Zhao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiaojing Chen
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jiabin Xu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ye Tian
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xinmin Li
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jianyu Fen
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiaofeng He
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Kt RD, Karthick D, Saravanaraj KS, Jaganathan MK, Ghorai S, Hemdev SP. The Roles of MicroRNA in Pancreatic Cancer Progression. Cancer Invest 2022; 40:700-709. [PMID: 35333689 DOI: 10.1080/07357907.2022.2057526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) has a poor patient survival rate in comparison with other cancer types, even after targeted therapy, chemotherapy, and immunotherapy. Therefore, a great deal needs to be done to gain a better understanding of the biology and identification of prognostic and predictive markers for the development of superior therapies. The microRNAs (miRNAs) belong to small non-coding RNAs that regulate post-transcriptional gene expression. Several shreds of evidence indicate that miRNAs play an important role in the pathogenesis of pancreatic cancer. Here we review the recent developments in miRNAs and their target role in the development, metastasis, migration, and invasion.
Collapse
Affiliation(s)
- Ramya Devi Kt
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Dharshene Karthick
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Kirtikesav Salem Saravanaraj
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - M K Jaganathan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, Uttar Dinajpur, India
| | - Sanjana Prakash Hemdev
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Hong S, Yan Z, Song Y, Bi M, Li S. RETRACTED ARTICLE: Down-regulation of lncRNA FEZF1-AS1 mediates regulatory T cell differentiation and further blocks immune escape in colon cancer. Expert Rev Mol Diagn 2022; 22:i-xiii. [PMID: 34877908 DOI: 10.1080/14737159.2022.2012157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Statement of RetractionWe, the Editors and Publisher of the journal Expert Review of Molecular Diagnostics, have retracted the following article:Sen Hong, Zhenkun Yan, YuMei Song, MiaoMiao Bi & Shiquan Li. Down-regulation of lncRNA FEZF1-AS1 mediates regulatory T cell differentiation and further blocks immune escape in colon cancer. Expert Review of Molecular Diagnostics. 2021. DOI: 10.1080/14737159.2022.2012157Since publication, significant concerns have been raised about the integrity of the data and reported results in the article. When approached for an explanation, the authors did not provide their original data or any necessary supporting information. As verifying the validity of published work is core to the integrity of the scholarly record, we are therefore retracting the article. The corresponding author listed in this publication has been informed.We have been informed in our decision-making by our policy on publishing ethics and integrity and the COPE guidelines on retractions.The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as 'Retracted'.
Collapse
Affiliation(s)
- Sen Hong
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhenkun Yan
- Department of Endoscopy Center, China-Japan Union Hospital of JiLin University, Changchun, Jilin, P.R.China
| | - YuMei Song
- Department of Thoracic Oncology, Tumor Hospital of Jilin Province, Changchun, Jilin People's Republic of China
| | - MiaoMiao Bi
- Department of Ophthalmology, The China-Japan Union Hostial of Jilin University, Jilin University, Changchun, Jilin, P.R. China
| | - Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
11
|
Gong YQ, Lu TL, Hou FT, Chen CW. Antisense long non-coding RNAs in gastric cancer. Clin Chim Acta 2022; 534:128-137. [PMID: 35872031 DOI: 10.1016/j.cca.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022]
Abstract
Gastric cancer is a global health problem with high mortality. The incidence of gastric cancer has significant regional differences. Helicobacter pylori (H. pylori) infection and its interaction with epigenetics are closely related to the occurrence of gastric cancer. It is of great significance to explore the early diagnosis and effective therapeutic targets of gastric cancer. Emerging evidence indicates that antisense long non-coding RNAs (lncRNAs) are closely associated with various biological and functional aspects of gastric cancer. However, diverse antisense lncRNAs in gastric cancer have not been compiled and discussed. In this review, we summarize the predisposing factors and compile the interaction between H. pylori and epigenetics in gastric cancer. Moreover, we focus on the underlying molecular mechanism and regulatory role of each antisense lncRNA in gastric cancer. In addition, we provide a new insight into the potential diagnosis and treatment of antisense lncRNAs in gastric cancer.
Collapse
Affiliation(s)
- Yong-Qiang Gong
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Tai-Liang Lu
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Fu-Tao Hou
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Chao-Wu Chen
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Histone Modifications and Non-Coding RNAs: Mutual Epigenetic Regulation and Role in Pathogenesis. Int J Mol Sci 2022; 23:ijms23105801. [PMID: 35628612 PMCID: PMC9146199 DOI: 10.3390/ijms23105801] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022] Open
Abstract
In the last few years, more and more scientists have suggested and confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. This is particularly interesting for a better understanding of processes that occur in the development and progression of various diseases. Appearing on the preclinical stages of diseases, epigenetic aberrations may be prominent biomarkers. Being dynamic and reversible, epigenetic modifications could become targets for a novel option for therapy. Therefore, in this review, we are focusing on histone modifications and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
|
13
|
Aryee DNT, Fock V, Kapoor U, Radic-Sarikas B, Kovar H. Zooming in on Long Non-Coding RNAs in Ewing Sarcoma Pathogenesis. Cells 2022; 11:1267. [PMID: 35455947 PMCID: PMC9032025 DOI: 10.3390/cells11081267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ewing sarcoma (ES) is a rare aggressive cancer of bone and soft tissue that is mainly characterized by a reciprocal chromosomal translocation. As a result, about 90% of cases express the EWS-FLI1 fusion protein that has been shown to function as an aberrant transcription factor driving sarcomagenesis. ES is the second most common malignant bone tumor in children and young adults. Current treatment modalities include dose-intensified chemo- and radiotherapy, as well as surgery. Despite these strategies, patients who present with metastasis or relapse still have dismal prognosis, warranting a better understanding of treatment resistant-disease biology in order to generate better prognostic and therapeutic tools. Since the genomes of ES tumors are relatively quiet and stable, exploring the contributions of epigenetic mechanisms in the initiation and progression of the disease becomes inevitable. The search for novel biomarkers and potential therapeutic targets of cancer metastasis and chemotherapeutic drug resistance is increasingly focusing on long non-coding RNAs (lncRNAs). Recent advances in genome analysis by high throughput sequencing have immensely expanded and advanced our knowledge of lncRNAs. They are non-protein coding RNA species with multiple biological functions that have been shown to be dysregulated in many diseases and are emerging as crucial players in cancer development. Understanding the various roles of lncRNAs in tumorigenesis and metastasis would determine eclectic avenues to establish therapeutic and diagnostic targets. In ES, some lncRNAs have been implicated in cell proliferation, migration and invasion, features that make them suitable as relevant biomarkers and therapeutic targets. In this review, we comprehensively discuss known lncRNAs implicated in ES that could serve as potential biomarkers and therapeutic targets of the disease. Though some current reviews have discussed non-coding RNAs in ES, to our knowledge, this is the first review focusing exclusively on ES-associated lncRNAs.
Collapse
Affiliation(s)
- Dave N T Aryee
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Valerie Fock
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Utkarsh Kapoor
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Branka Radic-Sarikas
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
- Department of Pediatric Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
LncRNA: a new perspective on the study of neurological diseases. Biochem Soc Trans 2022; 50:951-963. [PMID: 35383841 DOI: 10.1042/bst20211181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNA with a length greater than 200 nt. It has a mRNA-like structure, formed by splicing after transcription, and contains a polyA tail and a promoter, of whom promoter plays a role by binding transcription factors. LncRNAs' sequences are low in conservation, and other species can only find a handful of the same lncRNAs as humans, and there are different splicing ways during the differentiation of identical species, with spatiotemporal expression specificity. With developing high-throughput sequencing and bioinformatics, found that more and more lncRNAs associated with nervous system disease. This article deals with the regulation of certain lncRNAs in the nervous system disease, by mean of to understand its mechanism of action, and the pathogenesis of some neurological diseases have a fresh understanding, deposit a foundation for resulting research and clinical treatment of disease.
Collapse
|
15
|
García-García L, Fernández-Tabanera E, Cervera ST, Melero-Fernández de Mera RM, Josa S, González-González L, Rodríguez-Martín C, Grünewald TGP, Alonso J. The Transcription Factor FEZF1, a Direct Target of EWSR1-FLI1 in Ewing Sarcoma Cells, Regulates the Expression of Neural-Specific Genes. Cancers (Basel) 2021; 13:5668. [PMID: 34830820 PMCID: PMC8616448 DOI: 10.3390/cancers13225668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Ewing sarcoma is a rare pediatric tumor characterized by chromosomal translocations that give rise to aberrant chimeric transcription factors (e.g., EWSR1-FLI1). EWSR1-FLI1 promotes a specific cellular transcriptional program. Therefore, the study of EWSR1-FLI1 target genes is important to identify critical pathways involved in Ewing sarcoma tumorigenesis. In this work, we focused on the transcription factors regulated by EWSR1-FLI1 in Ewing sarcoma. Transcriptomic analysis of the Ewing sarcoma cell line A673 indicated that one of the genes more strongly upregulated by EWSR1-FLI1 was FEZF1 (FEZ family zinc finger protein 1), a transcriptional repressor involved in neural cell identity. The functional characterization of FEZF1 was performed in three Ewing sarcoma cell lines (A673, SK-N-MC, SK-ES-1) through an shRNA-directed silencing approach. FEZF1 knockdown inhibited clonogenicity and cell proliferation. Finally, the analysis of the FEZF1-dependent expression profile in A673 cells showed several neural genes regulated by FEZF1 and concomitantly regulated by EWSR1-FLI1. In summary, FEZF1 is transcriptionally regulated by EWSR1-FLI1 in Ewing sarcoma cells and is involved in the regulation of neural-specific genes, which could explain the neural-like phenotype observed in several Ewing sarcoma tumors and cell lines.
Collapse
Affiliation(s)
- Laura García-García
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (L.G.-G.); (E.F.-T.); (S.T.C.); (R.M.M.-F.d.M.); (S.J.); (L.G.-G.); (C.R.-M.)
| | - Enrique Fernández-Tabanera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (L.G.-G.); (E.F.-T.); (S.T.C.); (R.M.M.-F.d.M.); (S.J.); (L.G.-G.); (C.R.-M.)
- Centro de Investigación, Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Saint T. Cervera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (L.G.-G.); (E.F.-T.); (S.T.C.); (R.M.M.-F.d.M.); (S.J.); (L.G.-G.); (C.R.-M.)
- Centro de Investigación, Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Raquel M. Melero-Fernández de Mera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (L.G.-G.); (E.F.-T.); (S.T.C.); (R.M.M.-F.d.M.); (S.J.); (L.G.-G.); (C.R.-M.)
- Centro de Investigación, Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Santiago Josa
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (L.G.-G.); (E.F.-T.); (S.T.C.); (R.M.M.-F.d.M.); (S.J.); (L.G.-G.); (C.R.-M.)
| | - Laura González-González
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (L.G.-G.); (E.F.-T.); (S.T.C.); (R.M.M.-F.d.M.); (S.J.); (L.G.-G.); (C.R.-M.)
| | - Carlos Rodríguez-Martín
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (L.G.-G.); (E.F.-T.); (S.T.C.); (R.M.M.-F.d.M.); (S.J.); (L.G.-G.); (C.R.-M.)
- Centro de Investigación, Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany;
- Hopp-Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (L.G.-G.); (E.F.-T.); (S.T.C.); (R.M.M.-F.d.M.); (S.J.); (L.G.-G.); (C.R.-M.)
- Centro de Investigación, Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
16
|
Xiong G, Pan S, Jin J, Wang X, He R, Peng F, Li X, Wang M, Zheng J, Zhu F, Qin R. Long Noncoding Competing Endogenous RNA Networks in Pancreatic Cancer. Front Oncol 2021; 11:765216. [PMID: 34760707 PMCID: PMC8573238 DOI: 10.3389/fonc.2021.765216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease characterized by insidious onset, rapid progress, and poor therapeutic effects. The molecular mechanisms associated with PC initiation and progression are largely insufficient, hampering the exploitation of novel diagnostic biomarkers and development of efficient therapeutic strategies. Emerging evidence recently reveals that noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and microRNAs (miRNAs), extensively participate in PC pathogenesis. Specifically, lncRNAs can function as competing endogenous RNAs (ceRNAs), competitively sequestering miRNAs, therefore modulating the expression levels of their downstream target genes. Such complex lncRNA/miRNA/mRNA networks, namely, ceRNA networks, play crucial roles in the biological processes of PC by regulating cell growth and survival, epithelial-mesenchymal transition and metastasis, cancer stem cell maintenance, metabolism, autophagy, chemoresistance, and angiogenesis. In this review, the emerging knowledge on the lncRNA-associated ceRNA networks involved in PC initiation and progression will be summarized, and the potentials of the competitive crosstalk as diagnostic, prognostic, and therapeutic targets will be comprehensively discussed.
Collapse
Affiliation(s)
- Guangbing Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikuan Jin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zheng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
lncRNA FEZF1‑AS1 promotes migration, invasion and epithelial‑mesenchymal transition of retinoblastoma cells by targeting miR‑1236‑3p. Mol Med Rep 2020; 22:3635-3644. [PMID: 32901841 PMCID: PMC7533456 DOI: 10.3892/mmr.2020.11478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRs) have been reported to regulate disease progression in numerous types of disease, including retinoblastoma (Rb). Therefore, the present study aimed to investigate the effects of the lncRNA FEZ family zinc finger 1 antisense RNA 1 (FEZF1-AS1) on Rb and to determine its possible mechanism of action. Reverse transcription-quantitative PCR and western blot analysis were conducted to detect the gene or protein expression. Cell Counting Kit-8, wound healing and transwell invasion assays were performed to estimate the capabilities of cell viability, invasion and migration. The potential association between FEZF1-AS1 and miR-1236-3p in Y79 cells was measured via dual-luciferase reporter assay. The results of the present study revealed that the levels of FEZF1-AS1 were significantly upregulated in different Rb cell lines, with the most prominent upregulation observed in Y79 cells. In addition, the cell viability, invasive and migratory abilities, and the ability to undergo epithelial-mesenchymal transition (EMT), were significantly inhibited following the transfection of short hairpin RNA (shRNA)-FEZF1-AS1 into Y79 cells. Further experimental validation confirmed that miR-1236-3p may be a direct target of FEZF1-AS1. Notably, the miR-1236-3p inhibitor was discovered to reverse the inhibitory effects of shRNA-FEZF1-AS1 on cell viability, invasion, migration and EMT. In conclusion, the findings of the present study suggested that lncRNA-FEZF1-AS1 may promote the viability, migration, invasion and EMT of Rb cells by modulating miR-1236-3p.
Collapse
|
18
|
Ye T, Yang X, Liu H, Lv P, Ye Z. Long Non-Coding RNA BLACAT1 in Human Cancers. Onco Targets Ther 2020; 13:8263-8272. [PMID: 32903916 PMCID: PMC7445530 DOI: 10.2147/ott.s261461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a cluster of RNAs with more than 200 nucleotides in length, which lack protein-coding capacity. They are important regulators of numerous cellular processes, including gene transcription, translation, and posttranslational modification, especially in tumor initiation and progression. Aberrant expression of lncRNA bladder cancer-associated transcript 1 (BLACAT1) has been reported in various human cancers and was usually associated with unfavorable prognosis. Previous studies have revealed that dysregulation of BLACAT1 could promote the proliferation and metastasis of cancer cells. In this review, we summarize the present understanding of the functions and underlying mechanisms of BLACAT1 in the occurrence and development of various human cancers and discuss the roles of this lncRNA in cancers, including its promising application as a prognostic biomarker or a novel therapeutic target for malignancies.
Collapse
Affiliation(s)
- Tao Ye
- Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaoqi Yang
- Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Haoran Liu
- Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, People's Republic of China
| | - Peng Lv
- Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhangqun Ye
- Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
19
|
Zhang Y, Liu H, Liu X, Guo Y, Wang Y, Dai Y, Zhuo J, Wu B, Wang H, Zhang X. Identification of an exosomal long non-coding RNAs panel for predicting recurrence risk in patients with colorectal cancer. Aging (Albany NY) 2020; 12:6067-6088. [PMID: 32246818 PMCID: PMC7185113 DOI: 10.18632/aging.103006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/24/2020] [Indexed: 12/17/2022]
Abstract
Recurrence is a major cause of cancer-related deaths in colorectal cancer (CRC) patients, but the current strategies are limited to predict this clinical behavior. Our aim is to develop a recurrence prediction model based on long non-coding RNAs (lncRNAs) in exosomes of serum to improve the prediction accuracy. In discovery phase, 11 lncRNAs were found to be associated with CRC recurrence in tissues using high-throughput lncRNAs microarray and reverse transcription quantitative real-time PCR. And, 9 of them were correlated with their expression levels of serum exosomes. In training phase, a model based on 5-exosomal lncRNAs (exolncRNAs) panel was constructed, and showed high distinguish capability for recurrent CRC patients. ROC showed the panel was superior to serum CEA and CA19-9 in prediction of CRC recurrence. In both training and test sets, high-risk patients defined by the 5-exolncRNAs panel had poor recurrence free and overall survival. And, COX model showed it was an independent factor for CRC prognosis. Moreover, there was a significant relationship in detection of 5-exolncRNAs between plasma samples and paired serum samples. In summary, the 5-exolncRNAs panel robustly stratifies CRC patients’ risk of recurrence, enabling more accurate prediction of prognosis.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan 250031, Shandong Province, China
| | - Hui Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xinfeng Liu
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan 250031, Shandong Province, China
| | - Yulian Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yanlei Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yonggang Dai
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan 250031, Shandong Province, China
| | - Jinhua Zhuo
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan 250031, Shandong Province, China
| | - Bing Wu
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan 250031, Shandong Province, China
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
20
|
Chen J, Yin R, Liu X. [Progress in Role of FEZF1-AS1 in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:294-298. [PMID: 32228826 PMCID: PMC7210085 DOI: 10.3779/j.issn.1009-3419.2020.101.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nowadays, accumulating evidence indicates that long non-coding RNA (lncRNA) play vital roles in tumorigenesis. As a newly discovered lncRNA, FEZ family zinc finger 1-antisense RNA 1 (FEZF1-AS1) is markedly upregulated in various malignant tumors including non-small cell lung cancer (NSCLC). Aberrant expression of FEZF1-AS1 is related to clinical characteristics of patients with NSCLC and suggests poor prognosis. Moreover, FEZF1-AS1 can regulate numerous biological processes, such as cell proliferation, migration and invasion through different mechanisms. In this article, we systematically summarize the recent research progress of FEZF1-AS1 in NSCLC, which might be a novel target for clinical therapy.
Collapse
Affiliation(s)
- Jin Chen
- Nanjing Medical University, Nanjing 211166, China
| | - Rong Yin
- Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China
| | - Xinyin Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
21
|
Brown JM, Wasson MCD, Marcato P. The Missing Lnc: The Potential of Targeting Triple-Negative Breast Cancer and Cancer Stem Cells by Inhibiting Long Non-Coding RNAs. Cells 2020; 9:E763. [PMID: 32244924 PMCID: PMC7140662 DOI: 10.3390/cells9030763] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment decisions for breast cancer are based on staging and hormone receptor expression and include chemotherapies and endocrine therapy. While effective in many cases, some breast cancers are resistant to therapy, metastasize and recur, leading to eventual death. Higher percentages of tumor-initiating cancer stem cells (CSCs) may contribute to the increased aggressiveness, chemoresistance, and worse outcomes among breast cancer. This may be particularly true in triple-negative breast cancers (TNBCs) which have higher percentages of CSCs and are associated with worse outcomes. In recent years, increasing numbers of long non-coding RNAs (lncRNAs) have been identified as playing an important role in breast cancer progression and some of these have been specifically associated within the CSC populations of breast cancers. LncRNAs are non-protein-coding transcripts greater than 200 nucleotides which can have critical functions in gene expression regulation. The preclinical evidence regarding lncRNA antagonists for the treatment of cancer is promising and therefore, presents a potential novel approach for treating breast cancer and targeting therapy-resistant CSCs within these tumors. Herein, we summarize the lncRNAs that have been identified as functionally relevant in breast CSCs. Furthermore, our review of the literature and analysis of patient datasets has revealed that many of these breast CSC-associated lncRNAs are also enriched in TNBC. Together, this suggests that these lncRNAs may be playing a particularly important role in TNBC. Thus, certain breast cancer-promoting/CSC-associated lncRNAs could be targeted in the treatment of TNBCs and the CSCs within these tumors should be susceptible to anti-lncRNA therapy.
Collapse
Affiliation(s)
- Justin M Brown
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
| | - Marie-Claire D Wasson
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
| | - Paola Marcato
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
- Departments of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
22
|
Wu Z, Wang W, Wang Y, Wang X, Sun S, Yao Y, Zhang Y, Ren Z. Long noncoding RNA LINC00963 promotes breast cancer progression by functioning as a molecular sponge for microRNA-625 and thereby upregulating HMGA1. Cell Cycle 2020; 19:610-624. [PMID: 32052688 PMCID: PMC7100992 DOI: 10.1080/15384101.2020.1728024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Extensive research has shown that LINC00963 is aberrantly expressed in human cancers, and that dysregulation of LINC00963 is implicated in the initiation and progression of human cancers. The expression and functions of LINC00963 in breast cancer are still unclear. Our aims were to measure the expression of LINC00963 in breast cancer, determine its effects on malignant behaviors of tumor cells, and uncover the molecular events underlying the actions of LINC00963 in breast cancer. Herein, LINC00963 was found to be overexpressed in breast cancer samples, and its overexpression was correlated with lymph node metastasis, TNM stage and differentiation grade. Patients with breast cancer harboring higher LINC00963 expression showed shorter overall survival than did the patients with lower LINC00963 expression. Functional experiments revealed that depletion of LINC00963 inhibited breast cancer cell proliferation, migration, and invasion and facilitated apoptosis in vitro and impaired tumor growth in vivo. Mechanism investigation revealed that LINC00963 can interact with microRNA-625 (miR-625). LINC00963 worked as a competitive endogenous RNA for miR-625 to weaken the suppressive effect of miR-625 on high mobility group AT-hook 1 (HMGA1) in breast cancer cells. Furthermore, miR-625 inhibition and HMGA1 restoration both abrogated the effects of LINC00963 silencing on breast cancer cells. Our findings indicate that the LINC00963-miR-625-HMGA1 pathway plays an important role in the malignancy of breast cancer in vitro and in vivo. Hence, targeting this pathway may be a novel strategy against breast cancer.
Collapse
Affiliation(s)
- Zhen Wu
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Wei Wang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Yongkun Wang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Xin Wang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Shanping Sun
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Yumin Yao
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Yang Zhang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Zhongxi Ren
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| |
Collapse
|