1
|
Guo X, Yu H, Wang X, Zhao S, Wang C, Wang S. Hsa_circ_0109320 Serves as a Novel Circular RNA Biomarker in Non-small Cell Lung Cancer by Promoting Metastasis. Mol Biotechnol 2024:10.1007/s12033-024-01306-3. [PMID: 39499388 DOI: 10.1007/s12033-024-01306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Non-small cell lung cancer (NSCLC), including squamous cell carcinoma and adenocarcinoma, ranks among the top 10 cancers worldwide in terms of prevalence and mortality. NSCLC, a highly malignant tumor, exhibits distant invasion and migration as well as an unfavorable prognosis. As an innovative circular RNA, hsa _circ_0109320 (circ_0109320) has been recognized as a promising cancer modulator. However, our understanding of the influence of circ_0109320 in NSCLC remains insufficient. Our research explored the clinical significance and effects of circ_0109320 on oncogenic non-small cell lung cancer (NSCLC) phenotypes. Microarray analysis and qPCR indicated that circ_0109320 expression in NSCLC specimens increased relative to that in adjacent normal tissues and was further elevated in metastatic lymph nodes. The specimens acquired from 25 patients confirmed these findings. Additionally, circ_0109320 indicated a good score (AUC = 0.688, P = 0.013) on the ROC curves, which suggests its suitability as a promising biomarker for lung cancer. Meanwhile, circ_0109320 was noticeably upregulated in lung cancer (LC) cell lines compared to human bronchial epithelial cells. Next, we performed loss- and gain-of-function experiments to examine the role of circ_0109320 in the tumor phenotypes of the cell lines. We observed that depletion or overexpression of circ_0109320 did not alter cell viability. However, the ectopic removal of circ_0109320 repressed the migration and invasion of A549 and SK-MES-1 cells, whereas circ_0109320 overexpression promoted cell migration and invasion. Furthermore, the examination of epithelial-mesenchymal transition (EMT) markers indicated that circ_0109320 elevates cell EMT activity. In conclusion, circ_0109320 level was highly associated with increased tumor cell proliferation and metastasis. circ_0109320 could be a promising predictor of clinical outcomes and a reliable target to treat NSCLC by inhibiting metastasis.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Pulmonary and Critical Care Medicine II, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, Hebei, China
| | - Hongyan Yu
- Pulmonary and Critical Care Medicine II, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, Hebei, China
| | - Xiansheng Wang
- Pulmonary and Critical Care Medicine II, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, Hebei, China
| | - Shifeng Zhao
- Pulmonary and Critical Care Medicine II, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, Hebei, China
| | - Chunyan Wang
- Pulmonary and Critical Care Medicine II, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, Hebei, China
| | - Shuai Wang
- Department of Function I, Affiliated Hospital of Hebei University of Engineering, No. 81 Congtai Road, Congtai District, Handan, 056002, Hebei, China.
| |
Collapse
|
2
|
Shao W, Cui J, Wang W. Circ_0007445 inhibits trophoblast cell proliferation, migration and invasion by mediating the miR-4432/HTRA1 axis in preeclampsia. J Hypertens 2024; 42:1154-1162. [PMID: 38690926 DOI: 10.1097/hjh.0000000000003692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
BACKGROUND : Circular RNAs (circRNAs) have been shown to be extensively involved in preeclampsia progression. At present, the role of circ_0007445 in preeclampsia progression is not clear. METHODS A total of 30 preeclampsia patients and 30 normal pregnant women were recruited in our study. The function of trophoblast cells was explored to clarify the role and mechanism of circ_0007445 on the preeclampsia progression. The expression of circ_0007445, microRNA (miR)-4432 and high temperature requirement A1 (HTRA1) was analyzed by quantitative real-time PCR. The proliferation, migration and invasion of trophoblast cells were determined by cell counting kit 8 assay, EdU assay, colony formation assay, flow cytometry, and transwell assay. Protein expression was examined by western blot analysis. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay were used to assess RNA interaction relationships. RESULTS Our data suggested that circ_0007445 had increased expression in preeclampsia patients. Knockdown of circ_0007445 enhanced trophoblast cell proliferation, migration and invasion. MiR-4432 was lowly expressed in preeclampsia patients, and it could be sponged by circ_0007445. MiR-4432 inhibitor overturned the promotion effects of circ_0007445 knockdown on trophoblast cell functions. HTRA1 was highly expressed in preeclampsia patients, and it could be targeted by miR-4432. HTRA1 overexpression could also reverse the proliferation, migration and invasion of trophoblast cells promoted by miR-4432 mimic. In addition, circ_0007445 positively regulated HTRA1 through targeting miR-4432. CONCLUSION :Our results suggested that circ_0007445 facilitated the development of preeclampsia by suppressing trophoblast cell function through miR-4432/HTRA1 axis.
Collapse
Affiliation(s)
- Wenjia Shao
- Department of Gynecology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | | | | |
Collapse
|
3
|
Shi Y, Shen F, Chen X, Sun M, Zhang P. Current understanding of circular RNAs in preeclampsia. Hypertens Res 2024; 47:1607-1619. [PMID: 38605141 DOI: 10.1038/s41440-024-01675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Preeclampsia (PE) is a multiple organ and system disease that seriously threatens the safety of the mother and infant during pregnancy, and has a profound impact on the morbidity and mortality of the mother and new babies. Presently, there are no remedies for cure of PE as to the mechanisms of PE are still unclear, and the only way to eliminate the symptoms is to deliver the placenta. Thus, new therapeutic targets for PE are urgently needed. Approximately 95% of human transcripts are thought to be non-coding RNAs, and the roles of them are to be increasingly recognized of great importance in various biological processes. Circular RNAs (circRNAs) are a class of non-coding RNAs, with no 5' caps and 3' polyadenylated tails, commonly produced by back-splicing of exons. The structure of circRNAs makes them more stable than their counterparts. Increasing evidence shows that circRNAs are involved in the pathogenesis of PE, but the biogenesis, functions, and mechanisms of circRNAs in PE are poorly understood. In the present review, we mainly summarize the biogenesis, functions, and possible mechanisms of circRNAs in the development and progression of PE, as well as opportunities and challenges in the treatment and prevention of PE.
Collapse
Affiliation(s)
- Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangrong Shen
- Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xionghui Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Trauma Medicine, Soochow University, Suzhou, China.
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Suzhou, China.
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Pengjie Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Liu Y, Wang S, Zhang X, Jia X, Lu Y, Liu Y. Circ_0001861 facilitates trophoblast cell proliferation, migration, invasion and epithelial-mesenchymal transition via the miR-296-5p/forkhead box protein 1 pathway in preeclampsia. J Hypertens 2024; 42:546-556. [PMID: 38164984 DOI: 10.1097/hjh.0000000000003634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Preeclampsia (PE) is one of the leading causes of maternal mortality and placental trophoblastic disorders. Recent studies reported that circular RNAs (circRNAs) were involved in PE pathogenesis. However, the role of circ_0001861 in PE progression is largely unknown. METHODS The RNA expression of circ_0001861, forkhead box protein 1 (FOXP1) and microRNA-296-5p (miR-296-5p) was detected by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Western blot assay was performed to examine the protein levels of FOXP1 and epithelial-mesenchymal transition (EMT) markers. Cell viability, proliferation, migration and invasion were detected by cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and transwell assays. Luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation (RIP) assay were conducted to explore the interaction between miR-296-5p and circ_0001861 or FOXP1. RESULTS Circ_0001861 and FOXP1 were downregulated but miR-296-5p was upregulated in PE placenta. Upregulation of circ_0001861 facilitated trophoblast cell proliferation, migration, invasion and EMT. Mechanistically, circ_0001861 sponged miR-296-5p to elevate FOXP1 expression, thus promoting trophoblast cell progression. CONCLUSION The circ_0001861/miR-296-5p/FOXP1 axis plays a critical role in trophoblast cell proliferation, migration, invasion and EMT, which may provide a novel insight into developing potential therapeutic targets for PE.
Collapse
Affiliation(s)
| | | | | | - Xuewei Jia
- Medical Insurance Office, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Yaping Liu
- Medical Insurance Office, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Zhou W, Li X, Li X, Liu Y, Song W, Yang Q. The role of circular RNA in preeclampsia: From pathophysiological mechanism to clinical application. Life Sci 2024; 338:122407. [PMID: 38184270 DOI: 10.1016/j.lfs.2023.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Preeclampsia (PE) is a common pregnancy-induced hypertension disorder that poses a significant threat to the health of pregnant women and fetuses, and has become a leading cause of maternal, fetal, and neonatal mortality. Currently, the therapy strategy for PE is mainly prevention management and symptomatic treatment, and only delivery can completely terminate PE. Therefore, a deeper understanding of the pathogenesis of PE is needed to make treatment and prevention more effective and targeted. With the deepening of molecular etiology research, circular RNAs (circRNAs) have been found to be widely involved in various processes of PE pathogenesis. As a kind of RNA with a special "head to tail" loop structure, the characteristics of circRNAs enable them to play diverse roles in the pathophysiology of PE, and can also serve as ideal biomarkers for early prediction and monitoring progression of PE. In this review, we summarized the latest research on PE-related circRNAs, trying to elucidate the unique or shared roles of circRNAs in various pathophysiological mechanisms of PE, aiming to provide a whole picture of current research on PE-related circRNAs, and extend a new perspective for the precise screening and targeted therapy of PE.
Collapse
Affiliation(s)
- Wenjing Zhou
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China; Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiuying Li
- Medical Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Xin Li
- Medical College, Jilin Engineering Vocational College, Siping, Jilin, China.
| | - Yaojia Liu
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Wenling Song
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Qiwei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Wang Y, Liu L, Wang J, Gao Y. Hsa_circ_0015382 is involved in the pathogenesis of preeclampsia by mediating THBS2 expression. Am J Reprod Immunol 2023; 90:e13760. [PMID: 37641374 DOI: 10.1111/aji.13760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is a hypertensive disorder of pregnancy that causes significant maternal and perinatal morbidity and mortality. Circular RNA (circRNA) hsa_circ_0015382 is associated with the pathogenesis of PE, but its underlying regulatory mechanism remains to be explored. METHODS Relative RNA levels of hsa_circ_0015382, microRNA-616-3p and thrombospondin-2 (THBS2) were detected by quantitative reverse transcription-polymerase chain reaction. In vitro regulatory effects of hsa_circ_0015382 on the proliferation, migration, invasion and angiogenesis of trophoblasts were evaluated by CCK-8, flow cytometry for cell cycle, EdU, transwell, wound healing and HUVEC tube formation assays, respectively. Targeting interaction was verified by dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS Hsa_circ_0015382 was highly expressed in placental tissues from PE patients. Upregulation of hsa_circ_0015382 repressed trophoblast proliferation, migration, invasion and lowered trophoblast-induced HUVEC tube formation. Hsa_circ_0015382 was validated as a miR-616-3p sponge and miR-616-3p targeted THBS2. Hsa_circ_0015382 could mediate trophoblast proliferation, migration, invasion and regulate trophoblast-induced HUVEC tube formation by sponging miR-616-3p and regulating THBS2 expression. CONCLUSION Hsa_circ_0015382 is associated with the pathogenesis of PPE by regulating the miR-616-3p/THBS2 axis. HIGHLIGHTS Hsa_circ_0015382 is overexpressed in preeclampsia patients. Hsa_circ_0015382 inhibits trophoblast proliferation, migration, invasion and decreases trophoblast-induced HUVEC tube formation. Hsa_circ_0015382 interacts with miR-616-3p to regulate THBS2 expression.
Collapse
Affiliation(s)
- Yang Wang
- Department of Obstetrics, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Lingfang Liu
- Department of Obstetrics, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Jiayao Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Yan Gao
- Department of Obstetrics, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| |
Collapse
|
7
|
Fu X, Li Y, Zhang Z, Wang B, Wei R, Chu C, Xu K, Li L, Liu Y, Li X. Emerging role of miRNAs, lncRNAs, and circRNAs in pregnancy-associated diseases. Chin Med J (Engl) 2023; 136:1300-1310. [PMID: 36914956 PMCID: PMC10309522 DOI: 10.1097/cm9.0000000000002595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 03/15/2023] Open
Abstract
ABSTRACT Accumulating studies have demonstrated that non-coding RNAs (ncRNAs), functioning as important regulators of transcription and translation, are involved in the establishment and maintenance of pregnancy, especially the maternal immune adaptation process. The endometrial stromal cells (ESCs), trophoblast cells, and decidua immune cells that reside at the maternal-fetal interface are thought to play significant roles in normal pregnancy and pregnancy-associated diseases. Here, we reviewed the up-to-date evidence on how microRNA, long non-coding RNA, and circular RNA regulate ESCs, trophoblast cells, and immune cells and discussed the potential applications of these ncRNAs as diagnostic and therapeutic markers in pregnancy complications.
Collapse
Affiliation(s)
- Xiaoxiao Fu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Yuling Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, China
| | - Zhen Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Bin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, China
| | - Ran Wei
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Ke Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Lihua Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Yonglin Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| |
Collapse
|
8
|
Ren J, Jin H, Zhu Y. The Role of Placental Non-Coding RNAs in Adverse Pregnancy Outcomes. Int J Mol Sci 2023; 24:ijms24055030. [PMID: 36902459 PMCID: PMC10003511 DOI: 10.3390/ijms24055030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are transcribed from the genome and do not encode proteins. In recent years, ncRNAs have attracted increasing attention as critical participants in gene regulation and disease pathogenesis. Different categories of ncRNAs, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in the progression of pregnancy, while abnormal expression of placental ncRNAs impacts the onset and development of adverse pregnancy outcomes (APOs). Therefore, we reviewed the current status of research on placental ncRNAs and APOs to further understand the regulatory mechanisms of placental ncRNAs, which provides a new perspective for treating and preventing related diseases.
Collapse
Affiliation(s)
- Jiawen Ren
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
| | - Heyue Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
| | - Yumin Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Correspondence:
| |
Collapse
|
9
|
Kannampuzha S, Ravichandran M, Mukherjee AG, Wanjari UR, Renu K, Vellingiri B, Iyer M, Dey A, George A, Gopalakrishnan AV. The mechanism of action of non-coding RNAs in placental disorders. Biomed Pharmacother 2022; 156:113964. [DOI: 10.1016/j.biopha.2022.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
10
|
Liang Z, Liu L, Guo X, Wu X, Yu YL, Yu Z, Hu X, Zhang X, Wang J. The expression profiles of circular RNAs and competing endogenous RNA networks in intrahepatic cholangiocarcinoma. Front Cell Dev Biol 2022; 10:942853. [PMID: 36274844 PMCID: PMC9585165 DOI: 10.3389/fcell.2022.942853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/23/2022] [Indexed: 09/02/2023] Open
Abstract
Introduction: Intrahepatic cholangiocarcinoma (iCCA) is a heterogeneous entity with diverse etiologies, morphologies, and clinical outcomes, but our knowledge of its epidemiology and carcinogenesis is very limited. Materials and methods: The expression patterns of circRNAs were explored in iCCA tissues and corresponding adjacent normal ones, denoted by (iCCA) and (iCCAP), respectively, using high-throughput sequencing. Results: A total of 117 differential expressed (DE) circRNAs were identified. Based on the parental transcripts of circRNAs, these DE circRNAs were related to several important GO terms and were enriched in important pathways. Two circRNA-mediated ceRNA networks were constructed and many important metabolic pathways related to mRNAs were regulated by DE circRNAs via miRNAs. Conclusion: Our study revealed the DE circRNAs in the iCCA tissues compared with iCCAP ones, suggesting that circRNAs may play crucial roles in the pathogenesis of iCCA.
Collapse
Affiliation(s)
- Zi Liang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Liyan Liu
- Department of Blood Transfusion, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xinyi Guo
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Wu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun-Li Yu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziyang Yu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Xing Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Ji Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Zhang B, Zhang F, Lu F, Wang J, Zhou W, Wang H, Yu B. Reduced cell invasion may be a characteristic of placental defects in pregnant women of advanced maternal age at single-cell level. J Zhejiang Univ Sci B 2022; 23:747-759. [PMID: 36111571 DOI: 10.1631/jzus.b2101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanisms underlying pregnancy complications caused by advanced maternal age (AMA) remain unclear. We analyzed the cellular signature and transcriptomes of human placentas in AMA women to elucidate these mechanisms. Placental tissues from two AMA women and two controls were used for single-cell RNA-sequencing (scRNA-seq). Controls consisted of AMA women who did not experience any pregnancy complications and pregnant women below the age of 35 years without pregnancy complications. Trophoblast cells were obtained from the placentas of another six pregnant women (three AMA women and three controls), and in-vitro transwell assays were conducted to observe the cell invasion ability. Thirty additional samples (from 15 AMA women and 15 controls) were analyzed to verify the specific expression of serine protease inhibitor clade E member 1 (SERPINE1). Preliminary study of the role of SERPINE1 in cell invasion was carried out with HTR8-S/Vneo cells. High-quality transcriptomes of 27 607 cells were detected. Three types of trophoblast cells were detected, which were further classified into eight subtypes according to differences in gene expression and Gene Ontology (GO) function. We identified 110 differentially expressed genes (DEGs) in trophoblast cells between the AMA and control groups, and the DEGs were enriched in multiple pathways related to cell invasion. In-vitro transwell assays suggested that the invading trophoblast cells in AMA women were reduced. SERPINE1 was specifically expressed in the trophoblast, and its expression was higher in AMA women (P<0.05). Transfection of human SERPINE1 (hSERPINE1) into HTR8-S/Vneo trophoblast cells showed fewer invading cells in the hSERPINE1 group. Impaired cell invasion may underlie the increased risk of adverse pregnancy outcomes in AMA women. Abnormal expression of SERPINE1 in extravillous trophoblast (EVT) cells appears to play an important role.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Feng Zhang
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Fengying Lu
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Jing Wang
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Wenbai Zhou
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Huihui Wang
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Bin Yu
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China.
| |
Collapse
|
12
|
Rong W, Shukun W, Xiaoqing W, Wenxin H, Mengyuan D, Chenyang M, Zhang H. Regulatory roles of non-coding RNAs and m6A modification in trophoblast functions and the occurrence of its related adverse pregnancy outcomes. Crit Rev Toxicol 2022; 52:681-713. [PMID: 36794364 DOI: 10.1080/10408444.2022.2144711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adverse pregnancy outcomes, such as preeclampsia, gestational diabetes mellitus, fetal growth restriction, and recurrent miscarriage, occur frequently in pregnant women and might further induce morbidity and mortality for both mother and fetus. Increasing studies have shown that dysfunctions of human trophoblast are related to these adverse pregnancy outcomes. Recent studies also showed that environmental toxicants could induce trophoblast dysfunctions. Moreover, non-coding RNAs (ncRNAs) have been reported to play important regulatory roles in various cellular processes. However, the roles of ncRNAs in the regulation of trophoblast dysfunctions and the occurrence of adverse pregnancy outcomes still need to be further investigated, especially with exposure to environmental toxicants. In this review, we analyzed the regulatory mechanisms of ncRNAs and m6A methylation modification in the dysfunctions of trophoblast cells and the occurrence of adverse pregnancy outcomes and also summarized the harmful effects of environmental toxicants. In addition to DNA replication, mRNA transcription, and protein translation, ncRNAs and m6A modification might be considered as the fourth and fifth elements that regulate the genetic central dogma, respectively. Environmental toxicants might also affect these processes. In this review, we expect to provide a deeper scientific understanding of the occurrence of adverse pregnancy outcomes and to discover potential biomarkers for the diagnosis and treatment of these outcomes.
Collapse
Affiliation(s)
- Wang Rong
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wan Shukun
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wang Xiaoqing
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huang Wenxin
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dai Mengyuan
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Mi Chenyang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
13
|
Hu X, Xia W. Circ_0005714/miR-223-3p/ADAM9 regulatory axis affects proliferation, migration, invasion, and angiopoiesis in trophoblast cells. Autoimmunity 2022; 55:640-649. [PMID: 35880619 DOI: 10.1080/08916934.2022.2101642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) have critical roles in various types of diseases, including preeclampsia (PE). Circ_0005714 function in PE was explored in this study. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed for level analysis of circ_0005714, micoRNA-223-3p (miR-223-3p), and a disintegrin and metalloproteinase 9 (ADAM9). Cell Counting Kit-8 (CCK-8) and colony formation assays were used for cell viability and colony formation detection. Cell proliferation was determined by EdU assay. The determination of migration and invasion was conducted by wound healing assay and transwell assay. Tube formation assay was applied to assess angiopoiesis. Target binding analysis was performed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Western blot was used for protein examination. RESULTS Circ_0005714 was highly expressed in PE placenta tissues. The expression promotion of circ_0005714 reduced proliferation, migration, invasion, and angiopoiesis in trophoblast cells. Furthermore, circ_0005714 acted as a molecular sponge for miR-223-3p and the effects of circ_0005714 on trophoblast cells were achieved by sponging miR-223-3p. Moreover, miR-223-3p could target ADAM9 and knockdown of ADAM9 reversed cell progression inhibition induced by miR-223-3p inhibitor. In addition, circ_0005714 upregulated the ADAM9 expression and inactivated the Wnt/β-catenin pathway through targeting miR-223-3p. CONCLUSIONS All results manifested that circ_0005714 retarded the progression of PE by mediating the miR-223-3p/ADAM9 signal network.
Collapse
Affiliation(s)
- Xuemei Hu
- Department of Obstetrics and Gynecology, Lishui People's Hospital, Lishui City, PR China
| | - Weilan Xia
- Department of Obstetrics and Gynecology, Lishui People's Hospital, Lishui City, PR China
| |
Collapse
|
14
|
Zhang S, Guo G. Circ_FURIN promotes trophoblast cell proliferation, migration and invasion in preeclampsia by regulating miR-34a-5p and TFAP2A. Hypertens Res 2022; 45:1334-1344. [PMID: 35697768 DOI: 10.1038/s41440-022-00934-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Emerging evidence has shown that circular RNAs (circRNAs) play vital roles in the progression of diverse human diseases. However, the functions of circRNAs in preeclampsia (PE) are largely unknown. In this study, we aimed to explore the functions of the circRNA furin, paired basic amino acid cleaving enzyme (circ_FURIN) in PE development. qRT-PCR and western blot analyses were conducted to determine the levels of circ_FURIN, miR-34a-5p and transcription factor AP-2 alpha (TFAP2A). A Cell Counting Kit-8 (CCK-8) assay and a 5'-ethynyl-2'-deoxyuridine (EdU) incorporation assay were utilized to evaluate the cell proliferation ability. Transwell assays were adopted to estimate cell migration and invasion. A dual-luciferase reporter assay and an RNA pulldown assay were utilized to analyze the relationships among circ_FURIN, miR-34a-5p and TFAP2A. It was found that circ_FURIN was downregulated in PE placental tissues and hypoxia-treated placental trophoblast cells. Overexpression of circ_FURIN promoted trophoblast cell proliferation, migration and invasion under hypoxic conditions. Circ_FURIN functioned as the sponge for miR-34a-5p. MiR-34a-5p overexpression abrogated the effects of circ_FURIN on the proliferation, migration and invasion of trophoblast cells under hypoxic conditions. In addition, TFAP2A was demonstrated to be the target gene of miR-34a-5p. TFAP2A silencing ameliorated the promotive effects of miR-34a-5p inhibition on trophoblast cell proliferation, migration and invasion under hypoxic conditions. In conclusion, circ_FURIN enhanced trophoblast cell proliferation, migration and invasion under hypoxic conditions by elevating TFAP2A expression through sponging miR-34a-5p.
Collapse
Affiliation(s)
- Shuqing Zhang
- Department of Obstetrics, Shanxi Provincial People's Hospital, Taiyuan City, Shanxi Province, China.
| | - Guoxia Guo
- Department of Obstetrics, Shanxi Provincial People's Hospital, Taiyuan City, Shanxi Province, China
| |
Collapse
|
15
|
Žarković M, Hufsky F, Markert UR, Marz M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022; 11:1588. [PMID: 35563893 PMCID: PMC9104507 DOI: 10.3390/cells11091588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.
Collapse
Affiliation(s)
- Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Franziska Hufsky
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
- Aging Research Center (ARC), 07745 Jena, Germany
| |
Collapse
|
16
|
Choudhury J, Pandey D, Chaturvedi PK, Gupta S. Epigenetic regulation of epithelial to mesenchymal transition: a trophoblast perspective. Mol Hum Reprod 2022; 28:6572349. [PMID: 35451485 DOI: 10.1093/molehr/gaac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Indexed: 11/12/2022] Open
Abstract
Epigenetic changes alter expression of genes at both pre- and post-transcriptional levels without changing their DNA sequence. Accumulating evidence suggests that such changes can modify cellular behaviour and characteristics required during development and in response to various extracellular stimuli. Trophoblast cells develop from the outermost trophectoderm layer of the blastocyst and undergo many phenotypic changes as the placenta develops. One such phenotypic change is differentiation of the epithelial natured cytotrophoblasts into the mesenchymal natured extravillous trophoblasts. The extravillous trophoblasts are primarily responsible for invading into the maternal decidua and thus establishing connection with the maternal spiral arteries. Any dysregulation of this process can have adverse effects on the pregnancy outcome. Hence, tight regulation of this epithelial-mesenchymal transition is critical for successful pregnancy. This review summarizes the recent research on the epigenetic regulation of the epithelial-mesenchymal transition occurring in the trophoblast cells during placental development. The functional significance of chemical modifications of DNA and histone, which regulate transcription, as well as non-coding RNAs, which control gene expression post-transcriptionally, is discussed in relation to trophoblast biology.
Collapse
Affiliation(s)
- Jaganmoy Choudhury
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| | - Deepak Pandey
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| | - Pradeep Kumar Chaturvedi
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| |
Collapse
|
17
|
Liu J, Yang Y, Liu W, Lan R. circ_0085296 inhibits the biological functions of trophoblast cells to promote the progression of preeclampsia via the miR-942-5p/THBS2 network. Open Med (Wars) 2022; 17:577-588. [PMID: 35415249 PMCID: PMC8941187 DOI: 10.1515/med-2022-0427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/03/2023] Open
Abstract
Insufficient invasion of trophoblast cells is one of the important causes of preeclampsia (PE). Circular RNA (circRNA) has been proven to regulate the biological functions of trophoblast cells and mediate the progression of PE. The expression of circ_0085296, microRNA (miR)-942-5p, and thrombospondin 2 (THBS2) was detected by quantitative real-time PCR. In addition, the interaction between miR-942-5p and circ_0085296 or THBS2 was confirmed by dual-luciferase reporter assay and RIP assay. Our data showed that circ_0085296 was upregulated in the placental tissues of PE patients. Silenced circ_0085296 could enhance the proliferation, migration, invasion, and angiogenesis of HTR-8/SVneo cells. Besides, circ_0085296 was found to act as miR-942-5p sponge. Function analysis results suggested that miR-942-5p inhibitor reversed the positive regulation of circ_0085296 knockdown on the biological functions of HTR-8/SVneo cells. Moreover, THBS2 was a target of miR-942-5p, and its overexpression also reversed the promotion effect of miR-942-5p on the proliferation, migration, invasion, and angiogenesis of HTR-8/SVneo cells. Also, circ_0085296 was discovered to positively regulate THBS2 by sponging miR-942-5p. To sum up, our results revealed that circ_0085296 could inhibit trophoblast cells proliferation, migration, invasion, and angiogenesis by regulating miR-942-5p/THBS2, confirming that circ_0085296 might be a potential therapeutic target for PE.
Collapse
Affiliation(s)
- Jiyi Liu
- Department of Obstetric, Jiangjin Maternal and Child Health Hospital , Jiangjin District , Chongqing , 402260 , China
| | - Yan Yang
- Department of Obstetric, Jiangjin Maternal and Child Health Hospital , Jiangjin District , Chongqing , 402260 , China
| | - Wenlan Liu
- Department of Obstetric, Jiangjin Maternal and Child Health Hospital , Jiangjin District , Chongqing , 402260 , China
| | - Ruilun Lan
- Department of Obstetric, Jiangjin Maternal and Child Health Hospital , 192 Jiangzhou Dadao, Jiangjin District , Chongqing , 402260 , China
| |
Collapse
|
18
|
Hsa_circ_0070194 targets the miR-384/HDAC2 axis to enhance proliferation, cell cycle, migration and invasion of trophoblast cells. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Li J, Han J, Zhao A, Zhang G. CircPAPPA Regulates the Proliferation, Migration, Invasion, Apoptosis, and Cell Cycle of Trophoblast Cells Through the miR-3127-5p/HOXA7 Axis. Reprod Sci 2022; 29:1215-1225. [PMID: 34978042 DOI: 10.1007/s43032-021-00802-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Abnormal function of trophoblast cells is one of the important causes of preeclampsia (PE). Circular RNA (circRNA) is thought to be involved in the regulation of various diseases progression, including PE. However, the role of circRNA pregnancy-associated plasma protein A (circPAPPA) in PE is less studied. The expression levels of circPAPPA, miR-3127-5p, and homeobox A7 (HOXA7) were determined by quantitative real-time PCR. Cell proliferation was evaluated using MTT assay and colony formation assay. Besides, flow cytometry was used to detect cell apoptosis and cell cycle distribution. In addition, the interaction between miR-3127-5p and circPAPPA or HOXA7 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay. CircPAPPA was lowly expressed in the placental tissues of PE patients. Knockdown of circPAPPA inhibited proliferation, migration, and invasion, while induced apoptosis and cell cycle arrest in trophoblast cells. MiR-3127-5p could be targeted by circPAPPA, and its inhibitor reversed the effect of circPAPPA silencing on the biological function of trophoblast cells. Moreover, HOXA7 was a target of miR-3127-5p. HOXA7 overexpression reversed the effect of miR-3127-5p on the biological function of trophoblast cells. Our research indicated that circPAPPA positively regulated the biological function of trophoblast cells to mediate the progression of PE by miR-3127-5p/HOXA7 axis, which suggested that circPAPPA might be a potential biomarker for PE.
Collapse
Affiliation(s)
- Jun Li
- Department of Obstetrics, Tengzhou Central People's Hospital, Tengzhou, 277500, Shandong, China
| | - Jingying Han
- Department of Obstetrics, Tengzhou Central People's Hospital, Tengzhou, 277500, Shandong, China
| | - Aimei Zhao
- Department of Obstetrics, Maternity and Child Health Hospital of Dongchangfu District, 129 Zhenxing West Road, Liaocheng, 252000, Shandong, China
| | - Guixia Zhang
- Department of Obstetrics, Maternity and Child Health Hospital of Dongchangfu District, 129 Zhenxing West Road, Liaocheng, 252000, Shandong, China.
| |
Collapse
|
20
|
Identification of Circular RNA circ_0017068 as a Regulator of Proliferation and Apoptosis in Trophoblast Cells by miR-330-5p/XIAP Axis. Reprod Sci 2022; 29:2414-2427. [PMID: 34981461 DOI: 10.1007/s43032-021-00827-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Preeclampsia (PE) is a major and serious complication of pregnancy. Circular RNAs (circRNAs) have been implicated in the initiation and progression of PE. In this paper, we explored the precise actions of circ_0017068 in trophoblast cell functional properties. Ribonuclease (RNase) R, and Actinomycin D treatments were used to characterize circ_0017068. The levels of circ_0017068, microRNA (miR)-330-5p and X-linked inhibitor of apoptosis protein (XIAP) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot analysis. Cell proliferation, cell cycle progression, and apoptosis were gauged by the Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays, respectively. Direct relationship between miR-330-5p and circ_0017068 or XIAP was validated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Our data showed that circ_0017068 was downregulated in PE placental samples. Enforced expression of circ_0017068 promoted HTR-8/SVneo cell proliferation, cycle progression, and suppressed apoptosis, while silencing of circ_0017068 exhibited opposite effects. Mechanistically, circ_0017068 targeted miR-330-5p, and circ_0017068 regulated proliferation, cycle progression, and apoptosis of HTR-8/SVneo cells through miR-330-5p. Moreover, XIAP was identified as a direct and functional target of miR-330-5p. Furthermore, circ_0017068 operated as a post-transcriptional regulator of XIAP expression through miR-330-5p. Our study identifies circ_0017068 as an important regulator of the proliferation and apoptosis of HTR-8/SVneo trophoblast cells at least in part by miR-330-5p-dependent regulation of XIAP, highlighting circ_0017068 as a potential therapeutic agent for PE treatment.
Collapse
|
21
|
Wang W, Liu J, Pan E. CircHIPK3 contributes to human villous trophoblast growth, migration and invasion via modulating the pathway of miR-346/KCMF1. Placenta 2021; 118:46-54. [PMID: 35032791 DOI: 10.1016/j.placenta.2021.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Preeclampsia (PE) is one of the leading causes of maternal and perinatal morbidity and mortality worldwide. The regular growth, migration and invasion of villous trophoblast cells contribute to placental development. The objective of this study was to investigate the role and mechanism of circular RNA homeodomain interacting protein kinase 3 (circHIPK3) in the biological functions of trophoblast cells. METHODS The expression of circHIPK3, microRNA-346 (miR-346) and potassium channel modulatory factor 1 (KCMF1) mRNA was measured by quantitative real-time PCR (qPCR). Trophoblast cell proliferation, migration/invasion and cell cycle progression/apoptosis were determined by CCK-8 assay, transwell assay and flow cytometry assay, respectively. The predicted relationship between miR-346 and circHIPK3 or KCMF1 by bioinformatics was confirmed dual-luciferase reporter assay and RIP assay. RESULTS CircHIPK3 and KCMF1 were downregulated, while miR-346 was upregulated in placenta tissues from PE patients. The forced expression of circHIPK3 promoted trophoblast cell proliferation and migration/invasion but alleviated cell cycle arrest and cell apoptosis. MiR-346 was a target of circHIPK3, and miR-346 restoration reversed the effects of circHIPK3 upregulation. In addition, circHIPK3 acted as miR-346 sponge to modulate KCMF1 expression. KCMF1 downregulation partially repressed trophoblast cell proliferation, migration and invasion that were facilitated by miR-346 inhibition or circHIPK3 upregulation. DISCUSSION CircHIPK3 contributes to trophoblast cell proliferation, migration and invasion by upregulating KCMF1 via acting as miR-346 sponge.
Collapse
Affiliation(s)
- Wenxing Wang
- Department of Obstetrical, Yantaishan Hospital, China
| | - Jingying Liu
- Department of Obstetrical, Yantaishan Hospital, China.
| | - Enjie Pan
- Department of Gynecology, Yantai Hospital of Traditional Chinese Medicine, China
| |
Collapse
|
22
|
Shu C, Xu P, Han J, Han S, He J. Upregulation of circRNA hsa_circ_0008726 in Pre-eclampsia Inhibits Trophoblast Migration, Invasion, and EMT by Regulating miR-345-3p/RYBP Axis. Reprod Sci 2021; 29:2829-2841. [PMID: 34845670 PMCID: PMC9537224 DOI: 10.1007/s43032-021-00804-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/13/2021] [Indexed: 11/30/2022]
Abstract
Accumulating evidence shows that impaired spiral artery remodeling, placental dysfunction, and insufficient trophoblast infiltration contribute to the etiology and pathogenesis of pre-eclampsia (PE). circRNAs are a class of endogenous non-coding RNAs implicated in the pathogenesis of many diseases, including PE. This study aims to investigate the role of circRNA hsa_circ_0008726 in regulating the migration and invasion of extravillous trophoblast cells. RNase R assay was performed to confirm that circ_0008726 was a circular transcript. The expression of circ_0008726, RYBP, and miR-345-3p was examined by qRT-PCR. The functional interaction between miR-345-3p and circ_0008726 or RYBP was confirmed using dual-luciferase reporter assay and RNA immunoprecipitation (RIP). Cell migration and invasion ability was analyzed by Transwell assays. Western blot was used for the quantification of RYBP protein level. Circ_0008726 expression was significantly increased in PE placenta tissues as compared with normal placenta tissues. Circ_0008726 was resistant to RNase R digestion and was predominately located in the cytoplasm of HTR-8/SVneo cells. Silencing circ_0008726 promoted cell migration and EMT (epithelial-mesenchymal transition), while circ_0008726 overexpression suppressed these processes. Mechanistically, circ_0008726 sponged miR-345-3p to negatively regulate its expression, and miR-345-3p negatively modulated the expression of RYBP. In PE samples, the expression level of circ_0008726 was negatively correlated with miR-345-3p level, but was positively correlated with RYBP expression. Transfection of miR-345-3p mimic or RYBP knockdown counteracted the effects of circ_0008726 overexpression on cell migration and EMT. Our data demonstrate the upregulation of circ_0008726 in PE placenta, which inhibits the migration, invasion, and EMT of HTR-8/SVneo cells by targeting miR-345-3p/RYBP axis. These data suggest that circ_0008726 could be a potential biomarker and therapeutic target for PE.
Collapse
Affiliation(s)
- Chang Shu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, 71 Xinmin Dajie, Chaoyang District, Changchun, 130021, Jilin, China
| | - Peng Xu
- Department of Sports Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jun Han
- Neonatal Department, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shumei Han
- Department of Medical Administration, The First Hospital of Jilin University, Jilin University, 71 Xinmin Dajie, Chaoyang District, Changchun, 130021, Jilin, China.
| | - Jin He
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, 71 Xinmin Dajie, Chaoyang District, Changchun, 130021, Jilin, China.
| |
Collapse
|
23
|
Zhou X, Zeng B, Li Y, Wang H, Zhang X. LINC02532 Contributes to Radiosensitivity in Clear Cell Renal Cell Carcinoma through the miR-654-5p/YY1 Axis. Molecules 2021; 26:molecules26227040. [PMID: 34834139 PMCID: PMC8625588 DOI: 10.3390/molecules26227040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Studies have shown that long non-coding RNAs (lncRNAs) play essential roles in tumor progression and can affect the response to radiotherapy, including in clear cell renal cell carcinoma (ccRCC). LINC02532 has been found to be upregulated in ccRCC. However, not much is known about this lncRNA. Hence, this study aimed to investigate the role of LINC02532 in ccRCC, especially in terms of radioresistance. Methods: Quantitative real-time PCR was used to detect the expression of LINC02532, miR-654-5p, and YY1 in ccRCC cells. Protein levels of YY1, cleaved PARP, and cleaved-Caspase-3 were detected by Western blotting. Cell survival fractions, viability, and apoptosis were determined by clonogenic survival assays, CCK-8 assays, and flow cytometry, respectively. The interplay among LINC02532, miR-654-5p, and YY1 was detected by chromatin immunoprecipitation and dual-luciferase reporter assays. In addition, in vivo xenograft models were established to investigate the effect of LINC02532 on ccRCC radioresistance in 10 nude mice. Results: LINC02532 was highly expressed in ccRCC cells and was upregulated in the cells after irradiation. Moreover, LINC02532 knockdown enhanced cell radiosensitivity both in vitro and in vivo. Furthermore, YY1 activated LINC02532 in ccRCC cells, and LINC02532 acted as a competing endogenous RNA that sponged miR-654-5p to regulate YY1 expression. Rescue experiments indicated that miR-654-5p overexpression or YY1 inhibition recovered ccRCC cell functions that had been previously impaired by LINC02532 overexpression. Conclusions: Our results revealed a positive feedback loop of LINC02532/miR-654-5p/YY1 in regulating the radiosensitivity of ccRCC, suggesting that LINC02532 might be a potential target for ccRCC radiotherapy. This study could serve as a foundation for further research on the role of LINC02532 in ccRCC and other cancers.
Collapse
Affiliation(s)
- Xiaoguang Zhou
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (X.Z.); (B.Z.); (Y.L.); (H.W.)
| | - Bowen Zeng
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (X.Z.); (B.Z.); (Y.L.); (H.W.)
- Department of Urology, Affiliated Hospital of Sergeant School of Army Medical University, Shijiazhuang 050044, China
| | - Yansheng Li
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (X.Z.); (B.Z.); (Y.L.); (H.W.)
| | - Haozhou Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (X.Z.); (B.Z.); (Y.L.); (H.W.)
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (X.Z.); (B.Z.); (Y.L.); (H.W.)
- Correspondence: ; Tel.: +86-010-85231247
| |
Collapse
|
24
|
Fan Z, Wang Q, Deng H. Circ_0011460 upregulates HTRA1 expression by sponging miR-762 to suppress HTR8/SVneo cell growth, migration, and invasion. Am J Reprod Immunol 2021; 86:e13485. [PMID: 34270834 DOI: 10.1111/aji.13485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Aberrant expression of circular RNAs (circRNAs) during placental development could affect fetal growth and contribute to preeclampsia (PE). Circ_0011460 was found to be differentially expressed in placental samples of PE. However, the exact function and mechanism of circ_0011460 in PE process remain largely undefined. METHODS Levels of circ_0011460, microRNA (miR)-762, and high-temperature requirement-A serine peptidase 1 (HTRA1) were detected using quantitative real-time polymerase chain reaction and Western blot. In vitro experiments in HTR8/SVneo cells were conducted using cell counting kit-8, wound healing, transwell, flow cytometry and Western blot assays. The direct interactions between miR-762 and circ_0011460 or HTRA1 were verified using dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays. RESULTS Circ_0011460 possessed a loop structure and was highly expressed in placental tissues of PE patients. Overexpression of circ_0011460 greatly suppressed HTR8/SVneo cell proliferation, migration, and invasion, and accelerated cell apoptosis. While circ_0011460 knockdown yielded the opposite trends on above biological behaviors. Mechanistically, we confirmed that circ_0011460 could up-regulate HTRA1 expression via serving as a sponge of miR-762. Further rescue studies demonstrated that circ_0011460 exerted its roles via targeting miR-762, and miR-762 promoted HTR8/SVneo cell growth, migration and invasion via regulating HTRA1. CONCLUSION In all, circ_0011460 suppressed HTR8/SVneo cell growth, migration, and invasion via miR-762/HTRA1 axis, suggesting a new insight into the pathogenesis of PE.
Collapse
Affiliation(s)
- Zhongyan Fan
- Departement of Obstetrics and Gynecology, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, China
| | - Qiming Wang
- Department of Obstetrics and Gynaecology, Ningbo Women and Children's Hospital, Ningbo, China
| | - Hui Deng
- Maternal-Fetal Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Shan L, Hou X. Circular RNA hsa_circ_0026552 inhibits the proliferation, migration and invasion of trophoblast cells via the miR‑331‑3p/TGF‑βR1 axis in pre‑eclampsia. Mol Med Rep 2021; 24:798. [PMID: 34523694 PMCID: PMC8456345 DOI: 10.3892/mmr.2021.12438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/24/2021] [Indexed: 12/01/2022] Open
Abstract
Globally, pre-eclampsia (PE) is a gestational disorder that causes increased morbidity of the fetus and mortality induced by pregnancy. Despite various studies, the understanding of the causes or mechanism of the development of PE remains elusive. Thus, the present study aimed to investigate the role of circular (circ)RNA hsa_circ_0026552 (hsa_circ_0026552) in the development of PE and its mechanism of regulation. hsa_circ_0026552 differential expression in PE tissue data and clinical samples were analyzed and it was observed that hsa_circ_0026552 is highly upregulated in PE samples. Furthermore, miR-331-3p was detected as an hsa_circ_0026552 target miRNA and TGF-βR1 gene as a target of miR-331-3p. These results were confirmed using various assays, including dual-luciferase reporter, reverse transcription-quantitative PCR and RNA pull-down assay. It was observed that miR-331-3p expression was negatively correlated to hsa_circ_0026552 relative expression, while TGF-βR1 expression was positively correlated to hsa_circ_0026552 expression evaluated by Pearson's correlation test. The functional experiments, including Cell Counting Kit-8, colony formation and Transwell assay, showed that silencing hsa_circ_0026552 could significantly strengthen the proliferation, migration and invasion of the trophoblastic HTR-8/SVneo cells, but the subsequent overexpression of hsa_circ_0026552 reversed this. Mechanistically, it was concluded that hsa_circ_0026552 acts as a miR-331-3p sponge to upregulate TGF-βR1 expression in trophoblasts and is involved significantly in PE development and progression in pregnant women. The circRNA hsa_circ_0026552 could be a novel therapeutic target and prognostic biomarker for PE.
Collapse
Affiliation(s)
- Li Shan
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaofei Hou
- Department of Prenatal Screening Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
26
|
Abstract
Preeclampsia (PE) is an idiopathic disease that occurs during pregnancy. It comprises multiple organ and system damage, and can seriously threaten the safety of the mother and infant throughout the perinatal period. As the pathogenesis of PE is unclear, there are few specific remedies. Currently, the only way to eliminate the clinical symptoms is to terminate the pregnancy. Although noncoding RNA (ncRNA) was once thought to be the "junk" of gene transcription, it is now known to be widely involved in pathological and physiological processes, including pregnancy-related disorders. Moreover, there is growing evidence that the unbalanced expression of specific ncRNA is involved in the pathogenesis of PE. In the present review, we summarize the expression patterns of ncRNAs, i.e., microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), and the functional mechanisms by which they affect the development of PE, and examine the clinical significance of ncRNAs as biomarkers for the diagnosis of PE. We also discuss the contributions made by genetic polymorphisms and epigenetic ncRNA regulation to PE. In the present review, we wish to explore and reinforce the clinical value of ncRNAs as noninvasive biomarkers of PE.
Collapse
Affiliation(s)
- Ningxia Sun
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Department of Gynecology and obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shiting Qin
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lu Zhang
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Shiguo Liu
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
27
|
Chen X, Guo DY, Yin TL, Yang J. Non-Coding RNAs Regulate Placental Trophoblast Function and Participate in Recurrent Abortion. Front Pharmacol 2021; 12:646521. [PMID: 33967782 PMCID: PMC8100504 DOI: 10.3389/fphar.2021.646521] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a serious pregnancy complication with an increasing clinical incidence. The various causes of recurrent abortion are complicated. Developments in genetics, immunology, and cell biology have identified important roles of non-coding RNAs (ncRNAs) in the occurrence and progress of recurrent abortion. NcRNAs can affect the growth, migration, and invasion of placental trophoblasts by regulating cell processes such as the cell cycle, apoptosis, and epithelial-mesenchymal transformation. Therefore, their abnormal expression might lead to the occurrence and development of RSA. NcRNAs include small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), ribosomal RNA (rRNA), transfer, RNA (tRNA), circular RNA (cRNA), and Piwi-interacting RNA (piRNA). In this review, we discuss recent research that focused on the function and mechanism of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNA) in regulating placental trophoblasts. The use of ncRNAs as potential diagnostic and predictive biomarkers in RSA is also discussed to provide future research insights.
Collapse
Affiliation(s)
- Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Duan-Ying Guo
- Department of Gynecology, Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Tai-Lang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
28
|
Ping Z, Ai L, Shen H, Zhang X, Jiang H, Song Y. Identification and comparison of circular RNAs in preeclampsia. PeerJ 2021; 9:e11299. [PMID: 33976984 PMCID: PMC8063878 DOI: 10.7717/peerj.11299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Background Preeclampsia (PE) is a pregnancy-specific syndrome, belongs to the gestational hypertension diseases category and is considered among the causes of maternal and perinatal mortality and morbidity. However, the pathogenesis of PE is still vague. Methods In the present study, the circular RNA (circRNA) expression patterns of normal pregnant women and PE patients were investigated using whole RNA sequencing. Results A total of 151 differential expressed circRNAs were identified including 121 upregulated and 30 downregulated ones. Functional and pathway enrichment analysis was conducted on the differentially expressed circRNAs using Gene Ontology and KEGG databases. The results of this analysis indicated that several crucial biological processes and pathways were enriched in PE patients. circRNA–microRNA (miRNA) interaction analysis indicated that the reported differentially expresse circRNAs may be associated with some regulatory functions through miRNAs in PE patients. Two ceRNAs networks were constructed according to the targeting relationship between circRNAs/miRNAs and miRNAs/mRNAs. One sub-network contained one upregulated circRNA, four downregulated miRNAs and five upregulated mRNAs, and another sub-network contained 10 downregulated circRNAs, 21 upregulated miRNAs and 15 downregulated mRNAs. Conclusion CircRNA expression patterns have been investigated and this analysis revealed their potential regulatory mechanisms in PE patients. We constructed the ceRNAs (competing endogenous RNA) to reveal the potential molecular roles of dysregulated circRNAs in the PE patients using RNA sequencing data. circRNA_13301 was the only one upregulated circRNA in ceRNA being targeted by four miRNAs.
Collapse
Affiliation(s)
- Zepeng Ping
- Department of Obstetrics, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing, China
| | - Ling Ai
- Department of Obstetrics, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing, China
| | - Huaxiang Shen
- Department of Obstetrics, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Huling Jiang
- Department of Obstetrics, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing, China
| | - Ye Song
- Department of Obstetrics, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
29
|
Circ_0015382 is associated with preeclampsia and regulates biological behaviors of trophoblast cells through miR-149-5p/TFPI2 axis. Placenta 2021; 108:73-80. [PMID: 33819864 DOI: 10.1016/j.placenta.2021.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/21/2021] [Accepted: 03/08/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Circ_0015382 expression was found to be up-regulated in preeclampsia (PE) placenta tissues, while the role and molecular mechanisms of circ_0015382 in PE remain unclear. METHODS The expression of circ_0015382, microRNA (miR)-149-5p, and tissue factor pathway inhibitor 2 (TFPI2) was measured using quantitative real-time polymerase chain reaction and Western blot. Cell proliferation, migration, invasion, apoptosis, and cell cycle, were detected using cell counting kit-8, transwell, and flow cytometry assays, respectively. The direct interaction between miR-149-5p and circ_0015382 or TFPI2 was analyzed using the dual-luciferase reporter assay. RESULTS Circ_0015382 was highly expressed in placental tissues of PE. Overexpression of circ_0015382 suppressed trophoblast cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), but induced apoptosis and cell cycle progression, while circ_0015382 knockdown showed inverse effects. MiR-149-5p was confirmed to be a target of circ_0015382, and silencing miR-149-5p reversed the regulatory effects of circ_0015382 knockdown on trophoblast cell biological behaviors. MiR-149-5P was expressed at lower levels in placental tissues of PE, while the expression of its target TFPI2 was higher. Importantly, circ_0015382 could regulate TFPI2 expression via miR-149-5p. Additionally, miR-149-5p was shown to promote trophoblast cell growth, migration, invasion and EMT through TFPI2. DISCUSSION Circ_0015382 was associated with the onset and development of PE through suppressing trophoblast cell growth, migration, invasion and EMT via miR-149-5p/TFPI2 axis, revealing a new insight into the pathogenesis of PE and a potential therapeutic target for PE treatment.
Collapse
|
30
|
Li Z, Zhou X, Gao W, Sun M, Chen H, Meng T. Circular RNA VRK1 facilitates pre-eclampsia progression via sponging miR-221-3P to regulate PTEN/Akt. J Cell Mol Med 2021; 26:1826-1841. [PMID: 33738906 PMCID: PMC8918405 DOI: 10.1111/jcmm.16454] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pre‐eclampsia (PE) is a worldwide pregnancy‐related disorder. It is mainly characterized by defect migration and invasion of trophoblast cells. Recently, circular RNAs (circRNAs) have been believed to play a vital role in PE. The expression patterns and the biological functions of circRNAs in PE remain elusive. Here, we performed a circRNA microarray to identify putative PE‐related circRNAs. Bioinformatics analyses were used to screen the circRNAs which have potential relationships with pre‐eclampsia, and we identified a novel circRNA (circVRK1) that was up‐regulated in PE placenta tissues. By using HTR‐8/SVneo cells, circVRK1 knockdown significantly enhanced cell migration and invasion abilities, as well as epithelial‐mesenchymal transition (EMT). Mechanistically, we found that circVRK1 and PTEN could function as the ceRNAs to miR‐221‐3p. Overexpression of miR‐221‐3p promoted cell migration, invasion and EMT via regulating PTEN. The cotransfection of miR‐221‐3p inhibitor or PTEN reversed the effect from circVRK1 knockdown. Moreover, the circVRK1/miR‐221‐3p/PTEN axis greatly regulated Akt phosphorylation. In general, circVRK1 suppresses trophoblast cell migration, invasion and EMT, by acting as a ceRNA to miR‐221‐3p to regulate PTEN, and further inhibit PI3K/Akt activation. The purpose of this paper is to open wide insights to investigate the onset of PE and provide new potential therapeutic targets in PE.
Collapse
Affiliation(s)
- Ziwei Li
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China.,China Medical University, Shenyang, China
| | - Xinyi Zhou
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China.,China Medical University, Shenyang, China
| | - Wenyan Gao
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Manni Sun
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiying Chen
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Qi T, Zhang D, Shi X, Li M, Xu H. Decreased circUBAP2 Expression Is Associated with Preeclampsia by Limiting Trophoblast Cell Proliferation and Migration. Reprod Sci 2021; 28:2237-2245. [PMID: 33502747 PMCID: PMC8289767 DOI: 10.1007/s43032-020-00450-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
Preeclampsia (PE) is a common obstetric disease and a major cause of maternal, newborn, and fetal death. This condition is a multisystem disorder characterized by hypertension, proteinuria, and involvement of the kidney, liver, and nervous system. It is generally believed that the placenta is the main cause of PE. circRNAs are a special class of noncoding RNAs that can form covalently closed continuous ring structures with tissue-specific conservation, and they have been reported to play a wide range of regulatory functions in various diseases, including PE. In this study, we reported a novel circUBAP2 (hsa_circ_0003496) and found that it was downregulated in placental tissues from patients with PE compared to healthy controls. After knocking down circUBAP2 in trophoblast cells, we found that cell proliferation and migration were significantly suppressed. In addition, preliminary mechanistic studies showed that circUBAP2 can sponge miR-1244, and FOXM1 was identified as a target gene for miR-1244. Cotransfection of si-circUBAP2 and a miR-1244 inhibitor partially reversed the suppressive effect induced by circUBAP2 depletion on proliferation and migration. In conclusion, the circUBAP2/miR-1244/FOXM1 axis might be a promising molecular marker for the diagnosis and treatment of PE.
Collapse
Affiliation(s)
- Tingting Qi
- Obstetrics and Gynecology Department, Huai'an Maternal and Child Health Hospital, Huai'an, China
| | - Di Zhang
- Dalian Medical University, Dalian, China
| | - Xuting Shi
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Minhui Li
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
32
|
Ma Q, Huai B, Liu Y, Jia Z, Zhao Q. Circular RNA circ_0020123 Promotes Non-Small Cell Lung Cancer Progression Through miR-384/TRIM44 Axis. Cancer Manag Res 2021; 13:75-87. [PMID: 33442296 PMCID: PMC7800473 DOI: 10.2147/cmar.s278913] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023] Open
Abstract
Background It was reported that circular RNAs (circRNAs) and microRNAs (miRNAs) were related to non-small cell lung cancer (NSCLC) development. However, the detailed mechanisms of circ_0020123 and miR-384 in NSCLC are elusive. Methods QRT-PCR and Western blot assay were performed to detect the transcription and protein levels of genes, respectively. Then, the functional experiments, including MTT assay, flow cytometry, and transwell assay, were employed. Besides, the interaction between miR-384 and circ_0020123 or tripartite motif‑containing protein 44 (TRIM44) was predicted by starbase or targetscan, and then verified by the dual-luciferase reporter, RNA pull-down assays and RNA immunoprecipitation assay (RIP). Mouse xenograft assay was performed to evaluate the effect of circ_0020123 on tumor growth in vivo. Results Levels of circ_0020123 and TRIM44 were enhanced, and the miR-384 level was attenuated in NSCLC tissues and cells. Circ_0020123 depletion attenuated the abilities of NSCLC cell viability, migration, invasion, and epithelial–mesenchymal transition (EMT), and induced apoptosis. Besides, circ_0020123 interacted with miR-384, and miR-384 targeted TRIM44. Circ_0020123 regulated cell progression by regulating miR-384 and subsequently mediated TRIM44 expression. Besides, circ_0020123 depletion repressed tumor growth in vivo. Conclusion We demonstrated that circ_0020123 knockdown suppressed NSCLC cell progression by regulating the miR-384/TRIM44 axis, providing the theoretical basis for the therapy of NSCLC.
Collapse
Affiliation(s)
- Qingshan Ma
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Baogang Huai
- Department of Pulmonary Disease, Pinyi County Hospital of Traditional Chinese Medicine, Linyi, Shandong 273300, People's Republic of China
| | - Yuting Liu
- University Department, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Zhongyao Jia
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Qilong Zhao
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| |
Collapse
|
33
|
Tang R, Zhang Z, Han W. CircLRRK1 targets miR-223-3p to inhibit the proliferation, migration and invasion of trophoblast cells by regulating the PI3K/AKT signaling pathway. Placenta 2020; 104:110-118. [PMID: 33310596 DOI: 10.1016/j.placenta.2020.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Many studies have shown that circular RNAs (circRNAs) are related to the occurrence of preeclampsia (PE). However, the role of circLRRK1 in the progression of PE is unclear. METHODS The identification and localization of circLRRK1 were verified by Actinomycin D (ActD) assay, Ribonuclease R (RNase R) digestion assay and subcellular localization assay. Moreover, the proliferation of trophoblast cells was detected by 3-(45)-dimethylthiahiazo (-z-y1)-35-di-phenytetrazoliumromide (MTT) assay and colony formation assay. Furthermore, the migration and invasion of trophoblast cells were determined by wound healing assay and transwell assay. Meanwhile, Western blot (WB) analysis was used to examine the protein levels of migration markers and PI3K/AKT signaling pathway markers. In addition, the interaction between circLRRK1 and miR-223-3p was confirmed by dual-luciferase reporter assay and biotin-labeled RNA pull-down assay. RESULTS Our results showed that circLRRK1 was significantly highly expressed in PE patients. Silenced circLRRK1 could markedly enhance the proliferation, migration and invasion of trophoblast cells. Additionally, we found that circLRRK1 could target miR-223-3p. MiR-223-3p overexpression also promoted the proliferation, migration and invasion of trophoblast cells. The rescue experiments revealed that miR-223-3p inhibitor could reverse the promoting effect of circLRRK1 silencing on the proliferation, migration and invasion of trophoblast cells. Furthermore, circLRRK1 silencing could activate the PI3K/AKT signaling pathway by targeting miR-223-3p. DISCUSSION CircLRRK1 could suppress the proliferation, migration and invasion of trophoblast cells by regulating the PI3K/AKT signaling pathway via targeting miR-223-3p, suggesting that circLRRK1 might be a potential biomarker for the treatment of PE.
Collapse
Affiliation(s)
- Rui Tang
- Department of Obstetrics, Yantaishan Hospital of Yantai, Yantai, 264001, Shandong, China
| | - Zhilei Zhang
- Department of Gynaecology, Qingdao Women and Children's Hospital, Qingdao, 266011, Shandong, China
| | - Wenjun Han
- Department of Gynaecology, Qingdao Women and Children's Hospital, Qingdao, 266011, Shandong, China.
| |
Collapse
|
34
|
Ye Y, Li M, Chen L, Li S, Quan Z. Circ-AK2 is associated with preeclampsia and regulates biological behaviors of trophoblast cells through miR-454-3p/THBS2. Placenta 2020; 103:156-163. [PMID: 33129036 DOI: 10.1016/j.placenta.2020.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Circ-AK2 has been found to be differentially expressed in PE placenta tissues, however, the role and the underlying molecular mechanisms of circ-AK2 in PE remain poorly known. METHODS The expression of circ-AK2, miR-454-3p, and THBS2 mRNA was detected using quantitative real-time polymerase chain reaction. Protein levels of CyclinD1, MMP-9 and THBS2 were measured using Western blot. Cell proliferation, migration, and invasion were analyzed by 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay and transwell assay. The interaction between miR-454-3p and circ-AK2 or THBS2 was analyzed by the dual-luciferase reporter assay. RESULTS Circ-AK2 was highly expressed in placental tissues of PE, and overexpression of circ-AK2 inhibited trophoblast cell proliferation, migration and invasion. Circ-AK2 directly bound to miR-454-3p, and miR-454-3p overexpression reversed the inhibitory action of circ-AK2 in biological functions of trophoblast cells. MiR-454-3p was lowly expressed in placental tissues of PE, and directly regulated THBS2 expression in a targeted manner. Silencing miR-454-3p suppressed the proliferating, migratory, and invasive abilities of trophoblast cells, while this condition was abolished by THBS2 knockdown. Besides, we also proved circ-AK2 could regulate THBS2 expression via miR-454-3p. DISCUSSION Circ-AK2 inhibited the proliferation, migration and invasion of trophoblast cells via targeting miR-454-3p/THBS2 axis, suggesting a novel insight into the etiology of PE and a potential therapeutic target for PE treatment.
Collapse
Affiliation(s)
- Yingqin Ye
- Reproductive Medicine Center, Jingmen No.1 People's Hospital, Jingmen, Hubei, China
| | - Mei Li
- Maternity Department, Jingmen No.1 People's Hospital, Jingmen, Hubei, China
| | - Lu Chen
- School of Clinical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Shuxian Li
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhengzhao Quan
- Maternity Department, Jingmen No.1 People's Hospital, Jingmen, Hubei, China.
| |
Collapse
|
35
|
Gai S, Sun L, Wang H, Yang P. Circular RNA hsa_circ_0007121 regulates proliferation, migration, invasion, and epithelial-mesenchymal transition of trophoblast cells by miR-182-5p/PGF axis in preeclampsia. Open Med (Wars) 2020; 15:1061-1071. [PMID: 33336062 PMCID: PMC7718648 DOI: 10.1515/med-2020-0230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background Mounting evidence has revealed that abnormal expression of circular RNAs play pivotal roles in many human diseases including preeclampsia (PE). While human sapiens circular RNA 0007121 (hsa_circ_0007121) has been verified to be downregulated in human placental tissues, the underlying mechanisms were still unclear. This research aims to investigate the effect and underlying mechanisms of hsa_circ_0007121 in preeclampsia. Methods The expression of hsa_circ_0007121, microRNA (miR)-182-5p, and placental growth factor (PGF) was assessed by quantitative reverse transcription polymerase chain reaction in PE placentas relative to the expression in normal pregnancy placentas. After transfection, cell counting kit-8 assay was employed to detect cell proliferation. Cell migration and invasion were tested by the transwell assay. The relative level of epithelial–mesenchymal transition (EMT)-related proteins in HTR-8/SVneo cells and PGF in placentas samples were measured by western blot. The relationship between miR-182-5p and hsa_circ_0007121 or PGF was predicated by circular RNA interactome or ENCORI and verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Results The levels of hsa_circ_0007121 and PGF were significantly declined in PE placental tissues and HTR-8/SVneo cells, whereas miR-182-5p had an opposite result. Downregulation of hsa_circ_0007121 obviously inhibited HTR-8/SVneo cell proliferation, migration, invasion, and EMT, while upregulation of hsa_circ_0007121 promoted this process. Besides, miR-182-5p was a target gene of hsa_circ_0007121 and could target PGF. Further analysis indicated that hsa_circ_0007121 regulated the proliferation, migration, invasion, and EMT of HTR-8/SVneo cells via altering PGF expression by interacting with miR-182-5p. Conclusion Hsa_circ_0007121 mediated the progression of PE via miR-182-5p/PGF axis.
Collapse
Affiliation(s)
- Shukun Gai
- Department of Obstetrics, Yantai Yuhuangding Hospital, 20 Yudong Road, Zhifu District, Shandong Province, 264000, Yantai, Shandong, China
| | - Li Sun
- Department of Obstetrics, Yantai Yuhuangding Hospital, 20 Yudong Road, Zhifu District, Shandong Province, 264000, Yantai, Shandong, China
| | - Huiying Wang
- Department of Obstetrics, Yantai Yuhuangding Hospital, 20 Yudong Road, Zhifu District, Shandong Province, 264000, Yantai, Shandong, China
| | - Ping Yang
- Department of Obstetrics, Yantai Yuhuangding Hospital, 20 Yudong Road, Zhifu District, Shandong Province, 264000, Yantai, Shandong, China
| |
Collapse
|
36
|
Ma B, Zhao H, Gong L, Xiao X, Zhou Q, Lu H, Cui Y, Xu H, Wu S, Tang Y, Ye Y, Gu W, Li X. Differentially expressed circular RNAs and the competing endogenous RNA network associated with preeclampsia. Placenta 2020; 103:232-241. [PMID: 33202359 DOI: 10.1016/j.placenta.2020.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Circular RNAs (circRNAs) are non-coding RNAs that are implicated in preeclampsia (PE) pathogenesis; however, their expression and functions in PE remain unclear. In this study, we aimed to investigate the expression of circRNAs in PE and construct a competing endogenous RNA (ceRNA) network, and analyze the associated pathways in PE pathogenesis. METHODS We performed circRNA sequencing to identify the differential expression profile of circRNAs in PE as compared to normal pregnancy. The circRNA candidates were validated using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Subsequently, we used datasets from the GEO database to generate the interaction network between circRNAs, microRNAs (miRNAs), and mRNAs. GO and KEGG enrichment analyses were performed to understand the functional significance of the differentially expressed circRNAs in PE. RESULTS We identified 361 differentially expressed circRNAs (252 upregulated and 109 downregulated) in preeclamptic placentas. Within the selected 31 circRNAs, 6 of them were verified by qRT-PCR. GO and KEGG analyses revealed the potential pathways affected by these circRNAs, e.g., T cell receptor signaling and MAP kinase pathways. A total of 134 miRNAs and 199 mRNAs were revealed to be differentially expressed in PE by analyzing datasets from the GEO database. The circRNA-miRNA-mRNA network comprised 206 circRNAs, 50 miRNAs, and 38 mRNAs. KEGG analysis of the 38 mRNAs included pathways involved in AMPK and PI3K-Akt signaling. DISCUSSION Our results reported the differential expression profile of circRNAs and the circRNA-miRNA-mRNA network in PE, which provides potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Bo Ma
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Huanqiang Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Lili Gong
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xirong Xiao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Huiqing Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yutong Cui
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Huangfang Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Suwen Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yao Tang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yunzhen Ye
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Weirong Gu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China; The Shanghai Key Laboratory of Birth Defects, Shanghai, China; Institutes of Biochemical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Exosomes released from decidual macrophages deliver miR-153-3p, which inhibits trophoblastic biological behavior in unexplained recurrent spontaneous abortion. Int Immunopharmacol 2020; 88:106981. [PMID: 33182030 DOI: 10.1016/j.intimp.2020.106981] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Spontaneous abortion is a common disease in human pregnancy. Increasing evidence suggests that proper function of trophoblasts and immune balance of the maternal-fetal interface are crucial for successful pregnancy. Macrophages are involved in the maternal-fetal immune microenvironment. However, mechanisms associated with how macrophages impair trophoblasts' function in spontaneous abortion remain to be explored. METHODS Firstly, the characteristics of the isolated macrophage-derived exosomes were verified by TEM and Western blot. Then, we established the co-culture of macrophage-derived exosomes with trophoblasts, and explored the role of the exosomes in trophoblasts. Moreover, expression of miR-153-3p in the macrophage-derived exosomes was detected. A miR-153-3p mimic was transfected into trophoblasts to investigate its function in the biological functions of trophoblast cells. MRNA and protein expressions were detected by qRT-PCR and Western blot. CCK8 assay was performed to measure cell proliferation and Transwell assay was utilized to examine migration of trophoblasts. RESULTS Compared with those in normal pregnant women, decidual macrophage-derived exosomes from unexplained recurrent spontaneous abortion (URSA) patients suppressed the proliferation and migration of trophoblast cells through the IDO/STAT3 pathway. MiR-153-3p was highly expressed in exosomes released from decidual macrophages of URSA patients. Transfecting miR-153-3p mimics into trophoblast cells directly inhibited IDO genes, which suppressed STAT3 pathway activation, regulating the biological behavior of trophoblast cells. CONCLUSIONS This study outlines the role of decidual macrophage-derived exosomal miR-153-3p in successful pregnancy maintenance, paving a new approach for the development of novel treatments for URSA.
Collapse
|
38
|
Liu P, Cai S, Li N. Circular RNA-hsa-circ-0000670 promotes gastric cancer progression through the microRNA-384/SIX4 axis. Exp Cell Res 2020; 394:112141. [PMID: 32535033 DOI: 10.1016/j.yexcr.2020.112141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 01/19/2023]
Abstract
Circular RNAs (circRNAs), a special type of non-coding RNA molecules, have been addressed to be implicated in gastric cancer progression. The GSE93541 and GSE83521 microarrays found hsa-circRNA-000670 (hsa-circ-0000670) as an up-regulated circRNAin gastric cancer. We mainly investigated the function and molecular mechanisms of hsa-circ-0000670 involved in gastric cancer. The expression of hsa-circ-0000670 was determined by RT-qPCR to be highly expressed in gastric cancer tissues relative to corresponding adjacent normal tissues, as well as in gastric cancer cell lines relative to normal gastric mucosal epithelial cell line. By conducting EdU, scratch test and Transwell assays, hsa-circ-000670 was found to be a tumor promoter by potentiating the proliferative, invasive and migrating capabilities of gastric cancer cells. Consistently, a tumor-promotive role of hsa-circ-000670 was validated in vivo. Dual-luciferase reporter gene and RIP assays identified the binding of hsa-circ-0000670 to microRNA-384 (miR-384) and the binding of miR-384 to sine oculis-related homeobox 4 (SIX4). The oncogenic potential of hsa-circ-0000670 in gastric cancer cells were inhibited by overexpressed miR-384. Mechanistically, SIX4 was targeted by miR-384 and was upregulated in gastric cancer. High SIX4 expression was suggested to correlate with the poor prognosis of gastric cancer patients. Additionally, silencing of SIX4 delayed tumor growth and progression, which were reversed by overexpression of hsa-circ-0000670. Taken together, hsa-circ-0000670 acts as a tumor promotor in gastric cancer progression and might be a potential target for gastric cancer treatment.
Collapse
Affiliation(s)
- Pengliang Liu
- Department of Gastroenterology and Endoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Shuang Cai
- Department of Gastroenterology and Endoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Nuo Li
- Department of Gastroenterology and Endoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
39
|
Bai Q, Li L, Chen F, Zhu J, Cao L, Yang Y, Zhong F. Suppression of Circular RNA Hsa_circ_0109320 Attenuates Non-Small Cell Lung Cancer Progression via MiR-595/E2F7 Axis. Med Sci Monit 2020; 26:e921200. [PMID: 32508344 PMCID: PMC7297023 DOI: 10.12659/msm.921200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Circular RNAs (circRNAs) are frequently aberrantly expressed in non-small cell lung cancer (NSCLC) and are considered to exert a pivotal role in the occurrence and development of NSCLC via targeting and negatively regulating microRNAs (miRNAs). We aimed to investigate the role of hsa_circ_0109320 in the proliferation, invasion and apoptosis of NSCLC, and explore its underlying molecular mechanism. Material/Methods Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis was performed to determine the circ_0109320 and miR-595 expression in tissues or cells. Western blot analysis was conducted to examine the cleaved caspase-3, Bax, Bcl-2, and E2F7 protein expression. Transwell detection was used to evaluate the invasion level of NSCLC cell lines. Results The results of present study indicated that circ_0109320 expression in NSCLC patients was upregulated significantly in tumor tissues compared with tissues adjacent to carcinoma. Upregulated circ_0109320 level was significantly associated with TNM stages as well as lymph node metastasis of NSCLC. Moreover, downregulation of circ_0109320 attenuated proliferation and invasion while promoting apoptosis in NSCLC cells. We further confirmed that circ_0109320 could sponge miR-595 to upregulate E2F7 expression. Silencing of miR-595 or overexpression of E2F2 could partially reversed the inhibitory role of circ_0109320 knockdown in NSCLC cells. These data provided evidence that the suppression of circ_0109320 attenuates NSCLC cell proliferation and invasion and enhances apoptosis through the miR-595/E2F7 pathway. Conclusions Circ_0109320/miR-595/E2F2 axis may exert a pivotal role in the pathological mechanism of NSCLC progression, and it has potential application in the future treatment of NSCLC.
Collapse
Affiliation(s)
- Qiaohong Bai
- Department of Respiratory, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Li Li
- Department of Respiratory, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Futao Chen
- Department of Respiratory, The Second Hospital of LianYunGang, Lianyungang, Jiangsu, China (mainland)
| | - Jiang Zhu
- Department of Respiratory, The Second Hospital of LianYunGang, Lianyungang, Jiangsu, China (mainland)
| | - Lifeng Cao
- Department of Respiratory, The Second Hospital of LianYunGang, Lianyungang, Jiangsu, China (mainland)
| | - Yang Yang
- Department of Respiratory, The Second Hospital of LianYunGang, Lianyungang, Jiangsu, China (mainland)
| | - Fukuan Zhong
- Department of Respiratory, The Second Hospital of LianYunGang, Lianyungang, Jiangsu, China (mainland)
| |
Collapse
|
40
|
Zhou W, She G, Yang K, Zhang B, Liu J, Yu B. MiR-384 inhibits proliferation and migration of trophoblast cells via targeting PTBP3. Pregnancy Hypertens 2020; 21:132-138. [PMID: 32512528 DOI: 10.1016/j.preghy.2020.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Preeclampsia (PE) is one type of hypertension during pregnancy that seriously threatens maternal and infant health. Trophoblast dysfunction, such as decreased proliferation and migration, is closely related to the occurrence and development of PE. MicroRNAs (miRNAs) have been proven to play an important role in many diseases, including PE. miR-384 was reported to play a regulatory role in promoting cell apoptosis and inhibiting proliferation, migration and invasion in a variety of tumors. Previously, we found that miR-384 is upregulated in the placenta and plasma in the context of PE. In this study, we elucidated the function of miR-384 in the trophoblast cell line HTR-8/SVneo and the trophoblastic tumor cell line JEG-3. Cell proliferation and migration were inhibited by miR-384 overexpression but promoted by miR-384 downregulation. Subsequently, polypyrimidine tract-binding protein 3(PTBP3) was found to be a direct target gene of miR-384. PTBP3 was downregulated in placental tissues from PE patients, and a negative correlation was found between PTBP3 and miR-384. Our results suggest that the miR-384/PTBP3 axis plays an important role in regulating trophoblast function during the progression of PE, and these data provide novel insight into the molecular pathogenesis of this disorder.
Collapse
Affiliation(s)
- Wenbo Zhou
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Guangtong She
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Kaiyan Yang
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Bin Zhang
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Jingbing Liu
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Bin Yu
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China.
| |
Collapse
|
41
|
The Role of LIN28- let-7-ARID3B Pathway in Placental Development. Int J Mol Sci 2020; 21:ijms21103637. [PMID: 32455665 PMCID: PMC7279312 DOI: 10.3390/ijms21103637] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Placental disorders are a major cause of pregnancy loss in humans, and 40–60% of embryos are lost between fertilization and birth. Successful embryo implantation and placental development requires rapid proliferation, invasion, and migration of trophoblast cells. In recent years, microRNAs (miRNAs) have emerged as key regulators of molecular pathways involved in trophoblast function. A miRNA binds its target mRNA in the 3ʹ-untranslated region (3ʹ-UTR), causing its degradation or translational repression. Lethal-7 (let-7) miRNAs induce cell differentiation and reduce cell proliferation by targeting proliferation-associated genes. The oncoprotein LIN28 represses the biogenesis of mature let-7 miRNAs. Proliferating cells have high LIN28 and low let-7 miRNAs, whereas differentiating cells have low LIN28 and high let-7 miRNAs. In placenta, low LIN28 and high let-7 miRNAs can lead to reduced proliferation of trophoblast cells, resulting in abnormal placental development. In trophoblast cells, let-7 miRNAs reduce the expression of proliferation factors either directly by binding their mRNA in 3ʹ-UTR or indirectly by targeting the AT-rich interaction domain (ARID)3B complex, a transcription-activating complex comprised of ARID3A, ARID3B, and histone demethylase 4C (KDM4C). In this review, we discuss regulation of trophoblast function by miRNAs, focusing on the role of LIN28-let-7-ARID3B pathway in placental development.
Collapse
|
42
|
Wang H, Zhang J, Xu Z, Yang J, Xu Y, Liu Y, Li B, Xie J, Li J. Circular RNA hsa_circ_0000848 Promotes Trophoblast Cell Migration and Invasion and Inhibits Cell Apoptosis by Sponging hsa-miR-6768-5p. Front Cell Dev Biol 2020; 8:278. [PMID: 32509771 PMCID: PMC7249963 DOI: 10.3389/fcell.2020.00278] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background Fetal growth restriction (FGR) is a worldwide problem, and a major cause of perinatal morbidity. The precise molecular mechanisms involved in placental development and function during FGR remain poorly understood. Circular RNAs (circRNAs) are important biological molecules associated with disease pathogenesis. However, the role of circRNAs in FGR has not been well studied. Methods circRNA expression profiles in placental tissues with and without FGR were identified by circRNA microarray. circRNA expression was verified by quantitative reverse-transcription PCR (RT-qPCR) assay. The effect of hsa_circ_0000848 and hsa-miR-6768-5p on HTR-8 cell apoptosis, migration, and invasion was evaluated. The association between hsa_circ_0000848 and hsa-miR-6768-5p was confirmed by dual luciferase activity and anti-AGO2 RNA immunoprecipitation (RIP) assays. Protein levels were examined via western blotting. Results RT-qPCR results showed that hsa_circ_0000848 expression was significantly down-regulated in FGR placenta. Hsa_circ_0000848 overexpression and hsa-miR-6768-5p inhibitor suppressed apoptosis, and promoted cell migration and invasion. In addition, hsa_circ_0000848 overexpression and hsa-miR-6768-5p inhibitor increased the protein abundance of BCL2, MMP2 and MMP9, and decreased the protein abundance of cleaved caspase-3, cleaved caspase-9, and BAX, whereas hsa_circ_0000848 knockdown caused the opposite effect. Moreover, a significant increase in hsa-miR-6768-5p expression and a negative correlation between hsa_circ_0000848 and hsa-miR-6768-5p were identified in the FGR tissues. Luciferase reporter and RIP assay results revealed binding of hsa-miR-6768-5p to hsa_circ_0000848. Furthermore, hsa-miR-6768-5p overexpression eliminated the effect of hsa_circ_0000848 overexpression in HTR-8 cells. Conclusions hsa_circ_0000848 expression is significantly down-regulated in the FGR placenta. hsa_circ_0000848 promotes trophoblast cell migration and invasion, and inhibits cell apoptosis via the sponging of hsa-miR-6768-5p. Our study provided a novel insight into mechanisms underlying the pathogenesis of FGR, as well as into new strategies for the treatment of FGR.
Collapse
Affiliation(s)
- Hui Wang
- Department of Obstetrics and Gynecology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jianming Zhang
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhiyong Xu
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jingxin Yang
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yong Xu
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yang Liu
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Bohong Li
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jiansheng Xie
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Zhou B, Zhang X, Li T, Xie R, Zhou J, Luo Y, Yang C. CircZDHHC20 represses the proliferation, migration and invasion in trophoblast cells by miR-144/GRHL2 axis. Cancer Cell Int 2020; 20:19. [PMID: 31956297 PMCID: PMC6958575 DOI: 10.1186/s12935-020-1097-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/04/2020] [Indexed: 12/25/2022] Open
Abstract
Background Preeclampsia (PE) is a prevalent pregnancy disorder that has been one of the leading causes of maternal and perinatal mortality worldwide. Circular RNAs (circRNAs) have recently considered as important regulators in PE pathogenesis. In the current study, we aimed to explore the impact and mechanisms of circRNA zinc finger DHHC-type palmitoyltransferase 20 (circZDHHC20) in PE pathogenesis. Methods RNase R assay and reverse transcription with Oligo(dT)18 primers were performed to confirm that circZDHHC20 was indeed circular transcript. The expression of circZDHHC20, grainyhead-like 2 (GRHL2) and miR-144 were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Subcellular localization assay was used to determine whether circZDHHC20 was predominantly present in the cytoplasm. The target correlations between miR-144 and circZDHHC20 or GRHL2 were confirmed using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Cell proliferation, migration, and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetr-azolium (MTS), wound healing and transwell assays, respectively. Western blot was used for the quantification of GRHL2 protein level. Results Our data indicated that circZDHHC20 was up-regulated and miR-144 was down-regulated in PE placenta. CircZDHHC20 sequestered miR-144 by acting as a miR-144 sponge. CircZDHHC20 overexpression repressed trophoblast cell proliferation, migration, and invasion, while its knockdown exerted opposite effects. Moreover, miR-144 mediated the regulation of circZDHHC20 on trophoblast cell behaviors. GRHL2 was directly targeted and inhibited by miR-144. MiR-144 exerted regulatory effects on trophoblast cell proliferation, migration and invasion by GRHL2. Furthermore, circZDHHC20 modulated GRHL2 expression through sponging miR-144. Conclusion Our study suggested that a high level of circZDHHC20 inhibited the proliferation, migration, and invasion in trophoblast cells at least partially through sponging miR-144 and up-regulating GRHL2, providing a novel mechanism of PE pathogenesis.
Collapse
Affiliation(s)
- Bing Zhou
- 1Department of Obstetrics and Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan China
| | - Xia Zhang
- 2Department of Ultrasonography, The Second Affiliated Hospital, University of South China, Hengyang, Hunan China
| | - Ting Li
- 1Department of Obstetrics and Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan China
| | - Rongping Xie
- Department of Obstetrics and Gynecology, Guangdong Maternal and Child Health Hospital, Guangzhou, Guangdong China
| | - Jianbin Zhou
- 1Department of Obstetrics and Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan China
| | - Yu Luo
- 1Department of Obstetrics and Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan China
| | - Chunfen Yang
- 4Department of Obstetrics and Gynecology, The First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001 Hunan China
| |
Collapse
|