1
|
Zhang Y, Zhan L, Li J, Jiang X, Yin L. Insights into N6-methyladenosine (m6A) modification of noncoding RNA in tumor microenvironment. Aging (Albany NY) 2023; 15:3857-3889. [PMID: 37178254 PMCID: PMC10449301 DOI: 10.18632/aging.204679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotes, and it participates in the regulation of pathophysiological processes in various diseases, including malignant tumors, by regulating the expression and function of both coding and non-coding RNAs (ncRNAs). More and more studies demonstrated that m6A modification regulates the production, stability, and degradation of ncRNAs and that ncRNAs also regulate the expression of m6A-related proteins. Tumor microenvironment (TME) refers to the internal and external environment of tumor cells, which is composed of numerous tumor stromal cells, immune cells, immune factors, and inflammatory factors that are closely related to tumors occurrence and development. Recent studies have suggested that crosstalk between m6A modifications and ncRNAs plays an important role in the biological regulation of TME. In this review, we summarized and analyzed the effects of m6A modification-associated ncRNAs on TME from various perspectives, including tumor proliferation, angiogenesis, invasion and metastasis, and immune escape. Herein, we showed that m6A-related ncRNAs can not only be expected to become detection markers of tumor tissue samples, but can also be wrapped into exosomes and secreted into body fluids, thus exhibiting potential as markers for liquid biopsy. This review provides a deeper understanding of the relationship between m6A-related ncRNAs and TME, which is of great significance to the development of a new strategy for precise tumor therapy.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Jing Li
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Li Yin
- Department of Biopharmaceutics, Yulin Normal University, Guangxi, Yulin 537000, China
- Bioengineering and Technology Center for Native Medicinal Resources Development, Yulin Normal University, Yulin 537000, China
| |
Collapse
|
2
|
Li L, Xu N, Liu J, Chen Z, Liu X, Wang J. m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Front Genet 2022; 13:908976. [PMID: 35836571 PMCID: PMC9274458 DOI: 10.3389/fgene.2022.908976] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Recent studies have shown that n6-methyladenosine (m6A) plays a major role in cardiovascular homeostasis and pathophysiology. These studies have confirmed that m6A methylation affects the pathophysiology of cardiovascular diseases by regulating cellular processes such as differentiation, proliferation, inflammation, autophagy, and apoptosis. Moreover, plenty of research has confirmed that m6A modification can delay the progression of CVD via the post-transcriptional regulation of RNA. However, there are few available summaries of m6A modification regarding CVD. In this review, we highlight advances in CVD-specific research concerning m6A modification, summarize the mechanisms underlying the involvement of m6A modification during the development of CVD, and discuss the potential of m6A modification as a therapeutic target of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Lo N, Xu X, Soares F, He HH. The Basis and Promise of Programmable RNA Editing and Modification. Front Genet 2022; 13:834413. [PMID: 35154288 PMCID: PMC8831800 DOI: 10.3389/fgene.2022.834413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
One key advantage of RNA over genomic editing is its temporary effects. Aside from current use of DNA-targeting CRISPR-Cas9, the more recently discovered CRISPR-Cas13 has been explored as a means of editing due to its RNA-targeting capabilities. Specifically, there has been a recent interest in identifying and functionally characterizing biochemical RNA modifications, which has spurred a new field of research known as "epitranscriptomics". As one of the most frequently occurring transcriptome modifications, N6-methyladenosine (m6A) has generated much interest. The presence of m6A modifications is under the tight control of a series of regulators, and the ability of fusing these proteins or demethylases to catalytically inactive CRISPR proteins have resulted in a new wave of programmable RNA methylation tools. In addition, studies have been conducted to develop different CRISPR/Cas and base editor systems capable of more efficient editing, and some have explored the effects of in vivo editing for certain diseases. As well, the application of CRISPR and base editors for screening shows promise in revealing the phenotypic outcomes from m6A modification, many of which are linked to physiological, and pathological effects. Thus, the therapeutic potential of CRISPR/Cas and base editors for not only m6A related, but other RNA and DNA related disease has also garnered insight. In this review, we summarize/discuss the recent findings on RNA editing with CRISPR, base editors and non-CRISPR related tools and offer a perspective regarding future applications for basic and clinical research.
Collapse
Affiliation(s)
- Nicholas Lo
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Xin Xu
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Fraser Soares
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Chen DH, Zhang JG, Wu CX, Li Q. Non-Coding RNA m6A Modification in Cancer: Mechanisms and Therapeutic Targets. Front Cell Dev Biol 2022; 9:778582. [PMID: 35004679 PMCID: PMC8728017 DOI: 10.3389/fcell.2021.778582] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Recently, N6-methyl-adenosine (m6A) ribonucleic acid (RNA) modification, a critical and common internal RNA modification in higher eukaryotes, has generated considerable research interests. Extensive studies have revealed that non-coding RNA m6A modifications (e.g. microRNAs, long non-coding RNAs, and circular RNAs) are associated with tumorigenesis, metastasis, and other tumour characteristics; in addition, they are crucial molecular regulators of cancer progression. In this review, we discuss the relationship between non-coding RNA m6A modification and cancer progression from the perspective of various cancers. In particular, we focus on important mechanisms in tumour progression such as proliferation, apoptosis, invasion and metastasis, tumour angiogenesis. In addition, we introduce clinical applications to illustrate more vividly that non-coding RNA m6A modification has broad research prospects. With this review, we aim to summarize the latest insights and ideas into non-coding RNA m6A modification in cancer progression and targeted therapy, facilitating further research.
Collapse
Affiliation(s)
- Da-Hong Chen
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Gang Zhang
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Xing Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Xu X, Huang J, Ocansey DKW, Xia Y, Zhao Z, Xu Z, Yan Y, Zhang X, Mao F. The Emerging Clinical Application of m6A RNA Modification in Inflammatory Bowel Disease and Its Associated Colorectal Cancer. J Inflamm Res 2021; 14:3289-3306. [PMID: 34290515 PMCID: PMC8289367 DOI: 10.2147/jir.s320449] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
Methylation, first proposed in DNAs, but later found in RNAs, serves as one of the most widespread epigenetic modifications in eukaryotes, where N6-methyladenosine (m6A) modification has been found to play an important role in a variety of cancers including colorectal cancer (CRC). Under the action of various enzymes and proteins, the regulatory role of m6A in RNAs and immune cells has also been gradually realized. This paper reviews the general biogenesis and effects of m6A, and its emerging crucial role in intestinal mucosal immunity via the regulation of RNAs and immune cells, and thus closely related to the occurrence and development of inflammatory bowel disease (IBD) and CRC. m6A-related genes and regulatory factors are expected to be potential predictive markers and therapeutic targets.
Collapse
Affiliation(s)
- Xinwei Xu
- Department of Clinical Laboratory Diagnostics, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Jintu Huang
- Clinical Laboratory Department, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, 212300, People’s Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Department of Clinical Laboratory Diagnostics, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
- Department of Clinical Laboratory Diagnostics, Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Yuxuan Xia
- Department of Clinical Laboratory Diagnostics, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Zihan Zhao
- Department of Clinical Laboratory Diagnostics, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Zhiwei Xu
- Department of Clinical Laboratory Diagnostics, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Yongmin Yan
- Department of Clinical Laboratory Diagnostics, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Xu Zhang
- Department of Clinical Laboratory Diagnostics, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| | - Fei Mao
- Department of Clinical Laboratory Diagnostics, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People’s Republic of China
| |
Collapse
|
6
|
Yin L, Zhu X, Novák P, Zhou L, Gao L, Yang M, Zhao G, Yin K. The epitranscriptome of long noncoding RNAs in metabolic diseases. Clin Chim Acta 2021; 515:80-89. [PMID: 33422492 DOI: 10.1016/j.cca.2021.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) have abundant content and extensive functions that regulate the expression of genes at multiple levels. Recently, transcriptome-wide analysis confirmed that RNA can undergo various chemical modifications in response to stimulation by the environment that further determine the action mechanisms of RNAs and expand the diversity of the transcriptome. Modifications that occur in lncRNAs can affect their expression and the regulation of downstream molecules by changing the secondary structure, splicing, degradation or molecular stability of lncRNAs. During the development of metabolic diseases, reversible RNA modifications show a complex transcriptional landscape. Although a wide quantity and variety of lncRNA modifications have been identified, the knowledge regarding their underlying actions in alcohol use disorders (AUDs), osteoporosis, obesity, and cardiovascular disease (CVD) is still in its infancy. Herein, we will focus on the epitranscriptomic modifications that occur on lncRNAs and the crosstalk between them that affect metabolic diseases.
Collapse
Affiliation(s)
- Linjie Yin
- Research Lab for Clinical & Translational Medicine, Medical School, University of South China, Hengyang 421001, China; The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, Guangxi 541100, China
| | - Xiao Zhu
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, Guangxi 541100, China
| | - Petr Novák
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, Guangxi 541100, China
| | - Le Zhou
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, Guangxi 541100, China
| | - Ling Gao
- Research Lab for Clinical & Translational Medicine, Medical School, University of South China, Hengyang 421001, China
| | - Min Yang
- Research Lab for Clinical & Translational Medicine, Medical School, University of South China, Hengyang 421001, China; The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, Guangxi 541100, China
| | - GuoJun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan 511518, China.
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, Guangxi 541100, China.
| |
Collapse
|