1
|
Nguyen TH, Nguyen DQ, Kim LNT, Thi TNN, Nguyen TPM, Tran ND, Nguyen HH. Four novel mutations in the androgen receptor gene from Vietnamese patients with androgen insensitivity syndrome. Genes Genomics 2023; 45:467-474. [PMID: 35445939 DOI: 10.1007/s13258-022-01249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/17/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Androgens and androgen receptor (AR) are critical regulators of the masculinization process in male sexual development. The absence of a functioning AR results in the development of the androgen insensitivity syndrome (AIS), a rare disorder of sexual development (DSD) characterized by the external genitalia feminization, gynecomastia, and impaired spermatogenesis. OBJECTIVE To determine the AR gene mutations associated with male DSD in four unrelated Vietnamese patients. METHODS To detect the disease-causing mutations, whole exome sequencing (WES) was performed on four patients diagnosed with AIS. Sanger sequencing was then used for validation of the identified mutations. Finally, 12 web-based tools, three-dimensional protein modeling software, and the guidelines issued by the American College of Medical Genetics and Genomics were used to assess the potential pathogenicity of these mutations. RESULTS Four distinct novel mutations, namely c.1834T > A (p.Cys612Ser), c.2122 C > G (p.Leu708Val), c.2630T > G (p.Phe877Cys), and c.2641 C > A (p.Leu881Met) in the AR gene, were identified in four AIS patients using WES. The in silico analysis results revealed that the Cys612, Leu708, Phe877, and Leu881 sites are important for an appropriate response to androgens of the AR, and mutation at these sites can have adverse effects on the AR functions, androgen-AR interaction, and AR signaling pathway. CONCLUSIONS WES and in silico analyses strongly suggested that four novel AR mutations are pathogenic and have led to the development of AIS in the four Vietnamese patients under consideration.
Collapse
Affiliation(s)
- Thu Hien Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Department of Anatomy Pathology, Forensic Medicine, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10000, Hanoi, Vietnam
| | - Duc Quan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10000, Hanoi, Vietnam
| | - Lien Nguyen Thi Kim
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10000, Hanoi, Vietnam
| | - Thanh Ngan Nguyen Thi
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10000, Hanoi, Vietnam
| | | | - Ngoc Dung Tran
- Department of Anatomy Pathology, Forensic Medicine, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Huy Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10000, Hanoi, Vietnam.
| |
Collapse
|
2
|
Mary L, Leclerc D, Gilot D, Belaud-Rotureau MA, Jaillard S. The TALE never ends: A comprehensive overview of the role of PBX1, a TALE transcription factor, in human developmental defects. Hum Mutat 2022; 43:1125-1148. [PMID: 35451537 DOI: 10.1002/humu.24388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022]
Abstract
PBX1 is a highly conserved atypical homeodomain transcription factor (TF) belonging to the TALE (three amino acid loop extension) family. Dimerized with other TALE proteins, it can interact with numerous partners and reach dozens of regulating sequences, suggesting its role as a pioneer factor. PBX1 is expressed throughout the embryonic stages (as early as the blastula stage) in vertebrates. In human, PBX1 germline variations are linked to syndromic renal anomalies (CAKUTHED). In this review, we summarized available data on PBX1 functions, PBX1-deficient animal models, and PBX1 germline variations in humans. Two types of genetic alterations were identified in PBX1 gene. PBX1 missense variations generate a severe phenotype including lung hypoplasia, cardiac malformations, and sexual development defects (DSDs). Conversely, truncating variants generate milder phenotypes (mainly cryptorchidism and deafness). We suggest that defects in PBX1 interactions with various partners, including proteins from the HOX (HOXA7, HOXA10, etc.), WNT (WNT9B, WNT3), and Polycomb (BMI1, EED) families are responsible for abnormal proliferation and differentiation of the embryonic mesenchyme. These alterations could explain most of the defects observed in humans. However, some phenotype variability (especially DSDs) remains poorly understood. Further studies are needed to explore the TALE family in greater depth.
Collapse
Affiliation(s)
- Laura Mary
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Delphine Leclerc
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - David Gilot
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| |
Collapse
|
3
|
Wang S, Cheng Y, Shi Y, Zhao W, Gao L, Fang L, Jin X, Han X, Sun Q, Li G, Zhao J, Xu C. Identification and Characterization of Two Novel Compounds: Heterozygous Variants of Lipoprotein Lipase in Two Pedigrees With Type I Hyperlipoproteinemia. Front Endocrinol (Lausanne) 2022; 13:874608. [PMID: 35923617 PMCID: PMC9339609 DOI: 10.3389/fendo.2022.874608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Type I hyperlipoproteinemia, characterized by severe hypertriglyceridemia, is caused mainly by loss-of-function mutation of the lipoprotein lipase (LPL) gene. To date, more than 200 mutations in the LPL gene have been reported, while only a limited number of mutations have been evaluated for pathogenesis. OBJECTIVE This study aims to explore the molecular mechanisms underlying lipoprotein lipase deficiency in two pedigrees with type 1 hyperlipoproteinemia. METHODS We conducted a systematic clinical and genetic analysis of two pedigrees with type 1 hyperlipoproteinemia. Postheparin plasma of all the members was used for the LPL activity analysis. In vitro studies were performed in HEK-293T cells that were transiently transfected with wild-type or variant LPL plasmids. Furthermore, the production and activity of LPL were analyzed in cell lysates or culture medium. RESULTS Proband 1 developed acute pancreatitis in youth, and her serum triglycerides (TGs) continued to be at an ultrahigh level, despite the application of various lipid-lowering drugs. Proband 2 was diagnosed with type 1 hyperlipoproteinemia at 9 months of age, and his serum TG levels were mildly elevated with treatment. Two novel compound heterozygous variants of LPL (c.3G>C, p. M1? and c.835_836delCT, p. L279Vfs*3, c.188C>T, p. Ser63Phe and c.662T>C, p. Ile221Thr) were identified in the two probands. The postheparin LPL activity of probands 1 and 2 showed decreases of 72.22 ± 9.46% (p<0.01) and 54.60 ± 9.03% (p<0.01), respectively, compared with the control. In vitro studies showed a substantial reduction in the expression or enzyme activity of LPL in the LPL variants. CONCLUSIONS Two novel compound heterozygous variants of LPL induced defects in the expression and function of LPL and caused type I hyperlipoproteinemia. The functional characterization of these variants was in keeping with the postulated LPL mutant activity.
Collapse
Affiliation(s)
- Shuping Wang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology and Metabolism, Dongying People’s Hospital, Dongying, China
| | - Yiping Cheng
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingzhou Shi
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wanyi Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Gao
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Li Fang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaolong Jin
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyan Han
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiuying Sun
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guimei Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- *Correspondence: Jiajun Zhao, ; Guimei Li, ; Chao Xu,
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Jiajun Zhao, ; Guimei Li, ; Chao Xu,
| | - Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Jiajun Zhao, ; Guimei Li, ; Chao Xu,
| |
Collapse
|
4
|
Ji Y, Wang S, Cheng Y, Fang L, Zhao J, Gao L, Xu C. Identification and characterization of novel compound variants in SLC25A26 associated with combined oxidative phosphorylation deficiency 28. Gene 2021; 804:145891. [PMID: 34375635 DOI: 10.1016/j.gene.2021.145891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Combined oxidative phosphorylation deficiency 28 (COXPD28) is associated with mitochondrial dysfunction caused by mutations in SLC25A26, the gene which encodes the mitochondrial S-adenosylmethionine carrier (SAMC) that responsible for the transport of S-adenosylmethionine (SAM) into the mitochondria. OBJECTIVE To identify and characterize pathogenic variants of SLC25A26 in a Chinese pedigree, provide a basis for clinical diagnosis and genetic counseling. METHODS We conducted a systematic analysis of the clinical characteristics of a female with COXPD28. Whole-exome and mitochondrial genome sequencing was applied for the genetic analysis, together with bioinformatic analysis of predicted consequences of the identified variant. A homotrimer model was built to visualize the affected region and predict possible outcomes of this mutation. Then a literature review was performed by online searching all cases reported with COXPD28. RESULTS The novel compound heterozygous SLC25A26 variants (c.34G > C, p.A12P; c.197C > A; p.A66E) were identified in a Chinese patient with COXPD28. These two variants are located in the transmembrane region 1 and transmembrane region 2, respectively. As a member of the mitochondrial carrier family, the transmembrane region of SAMC is highly conserved. The variants were predicted to be pathogenic by in silico analysis and lead to a change in the protein structure of SAMC. And the change of the SAMC structure may lead to insufficient methylation and cause disease by affecting the SAM transport. CONCLUSIONS The variants in this region probably resulted in a variable loss of mitochondrial SAMC transport function and cause the COXPD28. This study that further refine genotype-phenotype associations can provide disease prognosis with a basis and families with reproductive planning options.
Collapse
Affiliation(s)
- Yiming Ji
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China; Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Shuping Wang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Endocrinology and Metabolism, Dongying People's Hospital, Dongying, Shandong 257000, China
| | - Yiping Cheng
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China; Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Li Fang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China; Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China; Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China; Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China; Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China.
| |
Collapse
|
5
|
Characteristics and possible mechanisms of 46, XY differences in sex development caused by novel compound variants in NR5A1 and MAP3K1. Orphanet J Rare Dis 2021; 16:268. [PMID: 34112222 PMCID: PMC8194036 DOI: 10.1186/s13023-021-01908-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/07/2021] [Indexed: 02/08/2023] Open
Abstract
Background Dozens of genes are involved in 46, XY differences in sex development (DSD). Notably, about 3/4 of patients cannot make a clear etiology diagnosis and single gene variant identified cannot fully explain the clinical heterogeneity of 46, XY DSD. Materials and methods We conducted a systematic clinical analysis of a 46, XY DSD patient, and applied whole-exome sequencing for the genetic analysis of this pedigree. The identified variants were analyzed by bioinformatic analysis and in vitro studies were performed in human embryonic kidney 293T (HEK-293T) cells which were transiently transfected with wild type or variant NR5A1 and MAP3K1 plasmid. Furthermore, protein production of SRY-box transcription factor 9 (SOX9) was analyzed in cell lysates. Results A novel NR5A1 variant (c.929A > C, p. His310Pro) and a rare MAP3K1 variant (c.2282T > C, p. Ile761Thr) were identified in the proband, whereas the proband's mother and sister who only carry rare MAP3K1 variant have remained phenotypically healthy to the present. These two variants were predicted to be pathogenic by bioinformatic analysis. In vitro, NR5A1 variant decreased the SOX9 production by 82.11% compared to wild type NR5A1, while MAP3K1 variant had little effect on the SOX9 production compared to wild type MAP3K1. Compared to wild type NR5A1 transfection, the SOX9 production of cells transfected with both wild type plasmids decreased by about 17.40%. Compared to variant NR5A1 transfection, the SOX9 production of cells transfected with both variant plasmids increased by the 36.64%. Conclusions Our findings suggested the novel compound variants of NR5A1 and MAP3K1 can alter the expression of SOX9 and ultimately lead to abnormality of sex development. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01908-z.
Collapse
|
6
|
Nonsense-associated altered splicing of MAP3K1 in two siblings with 46,XY disorders of sex development. Sci Rep 2020; 10:17375. [PMID: 33060765 PMCID: PMC7567082 DOI: 10.1038/s41598-020-74405-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/29/2020] [Indexed: 01/31/2023] Open
Abstract
Although splicing errors due to single nucleotide variants represent a common cause of monogenic disorders, only a few variants have been shown to create new splice sites in exons. Here, we report an MAP3K1 splice variant identified in two siblings with 46,XY disorder of sex development. The patients carried a maternally derived c.2254C>T variant. The variant was initially recognized as a nonsense substitution leading to nonsense-mediated mRNA decay (p.Gln752Ter); however, RT-PCR for lymphoblastoid cell lines showed that this variant created a new splice donor site and caused 39 amino acid deletion (p.Gln752_Arg790del). All transcripts from the variant allele appeared to undergo altered splicing. The two patients exhibited undermasculinized genitalia with and without hypergonadotropism. Testosterone enanthate injections and dihydrotestosterone ointment applications yielded only slight increase in their penile length. Dihydrotestosterone-induced APOD transactivation was less significant in patients’ genital skin fibroblasts compared with that in control samples. This study provides an example of nonsense-associated altered splicing, in which a highly potent exonic splice site was created. Furthermore, our data, in conjunction with the previous data indicating the association between MAP3K1 and androgen receptor signaling, imply that the combination of testicular dysgenesis and androgen insensitivity may be a unique phenotype of MAP3K1 abnormalities.
Collapse
|