1
|
Malek Mohammadi M, Rismanchi H, Esmailzadeh S, Farahani A, Hedayati N, Alimohammadi M, Mafi A, Farahani N, Hushmandi K. The emerging role of circular RNAs in cisplatin resistance in ovarian cancer: From molecular mechanism to future potential. Noncoding RNA Res 2024; 9:1280-1291. [PMID: 39040815 PMCID: PMC11261309 DOI: 10.1016/j.ncrna.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ovarian cancer (OC) is the most common cause of death in female cancers. The prognosis of OC is very poor due to delayed diagnosis and identification of most patients in advanced stages, metastasis, recurrence, and resistance to chemotherapy. As chemotherapy with platinum-based drugs such as cisplatin (DDP) is the main treatment in most OC cases, resistance to DDP is an important obstacle to achieving satisfactory therapeutic efficacy. Consequently, knowing the different molecular mechanisms involved in resistance to DDP is necessary to achieve new therapeutic approaches. According to numerous recent studies, non-coding RNAs (ncRNAs) could regulate proliferation, differentiation, apoptosis, and chemoresistance in many cancers, including OC. Most of these ncRNAs are released by tumor cells into human fluid, allowing them to be used as tools for diagnosis. CircRNAs are ncRNA family members that have a role in the initiation, progression, and chemoresistance regulation of various cancers. In the current study, we investigated the roles of several circRNAs and their signaling pathways on OC progression and also on DDP resistance during chemotherapy.
Collapse
Affiliation(s)
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shakiba Esmailzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Su M, Huang P, Li Q. Long noncoding RNA SNHG6 promotes the malignant phenotypes of ovarian cancer cells via miR-543/YAP1 pathway. Heliyon 2023; 9:e16291. [PMID: 37234669 PMCID: PMC10208841 DOI: 10.1016/j.heliyon.2023.e16291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The long non-coding RNA small nucleolar RNA host gene 6 (SNHG6) acts as an oncogene in several cancers, and is highly expressed in ovarian cancer. MiR-543, a tumor suppressor, was expressed lowly in ovarian cancer. However, whether SNHG6 performed its oncogenic role via miR-543 in ovarian cancer, as well as the underlying mechanism is still not clear. In this study, we showed that the levels of SNHG6 and Yes-associated protein 1 (YAP1) were significantly elevated, while the level of miR-543 was significantly decreased, in ovarian cancer tissues compared with adjacent normal samples. We demonstrated that overexpression of SNHG6 significantly promoted the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of ovarian cancer cells SKOV3 and A2780. Knockdown of SNHG6 showed the opposite effects. MiR-543 level was negatively correlated with the SNHG6 level in ovarian cancer tissues. SHNG6 overexpression significantly inhibited the expression of miR-543, and SHNG6 knockdown significantly elevated the expression of miR-543 in ovarian cancer cells. The effects of SNHG6 on ovarian cancer cells were abrogated by miR-543 mimic, and strengthened by anti-miR-543. YAP1 was identified as a target of miR-543. Forced expression of miR-543 significantly inhibited the expression of YAP1. Moreover, YAP1 overexpression could reverse the effects of SNHG6 downregulation on the malignant phenotypes of ovarian cancer cells. In summary, our study showed that SNHG6 promoted the malignant phenotypes of ovarian cancer cells via miR-543/YAP1 pathway.
Collapse
Affiliation(s)
- Mengya Su
- Department of Reproductive Medicine, Cangzhou Central Hospital, Cangzhou, 061000, Hebei Province, China
| | - Ping Huang
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, 061000, Hebei Province, China
| | - Qian Li
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, 061000, Hebei Province, China
| |
Collapse
|
3
|
Lv Z, Lv Z, Song L, Zhang Q, Zhu S. Role of lncRNAs in the pathogenic mechanism of human decreased ovarian reserve. Front Genet 2023; 14:1056061. [PMID: 36845376 PMCID: PMC9944763 DOI: 10.3389/fgene.2023.1056061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Decreased ovarian reserve (DOR) is defined as a decrease in the quality and quantity of oocytes, which reduces ovarian endocrine function and female fertility. The impaired follicular development and accelerated follicle atresia lead to a decrease in the number of follicles, while the decline of oocyte quality is related to the disorder of DNA damage-repair, oxidative stress, and the dysfunction of mitochondria. Although the mechanism of DOR is still unclear, recent studies have found that long non-coding RNA (lncRNA) as a group of functional RNA molecules participate in the regulation of ovarian function, especially in the differentiation, proliferation and apoptosis of granulosa cells in the ovary. LncRNAs participate in the occurrence of DOR by affecting follicular development and atresia, the synthesis and secretion of ovarian hormones. This review summarizes current research on lncRNAs associated with DOR and reveals the potential underlying mechanisms. The present study suggests that lncRNAs could be considered as prognostic markers and treatment targets for DOR.
Collapse
Affiliation(s)
- Zhexi Lv
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zekai Lv
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Linjiang Song
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shaomi Zhu
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,*Correspondence: Shaomi Zhu,
| |
Collapse
|
4
|
Dong L, Wang H, Gao Y, Wang S, Wang W. Long non-coding RNA PVT1 promotes the proliferation, migration and EMT process of ovarian cancer cells by regulating CTGF. Oncol Lett 2022; 25:71. [PMID: 36688109 PMCID: PMC9843302 DOI: 10.3892/ol.2022.13657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/01/2022] [Indexed: 01/01/2023] Open
Abstract
Ovarian cancer remains one of the most common gynecological malignancies with a poor prognosis. The present study investigated the roles of long non-coding RNA plasmacytoma variant translocation 1 (lncRNA PVT1) in the regulation of the malignant phenotype of ovarian cancer cells, including cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT). SKOV3 and CAOV3 cells were transfected with small interfering RNA (siRNA) targeting lncRNA PVT1 (si-PVT1) or control siRNA and the si-PVT1 transfected cells were co-cultured with recombinant human connective tissue growth factor (rhCTGF). The proliferation, migration and invasion abilities of the cells were examined via Cell Counting Kit-8, colony formation, wound-healing and Transwell assays. The relative expression levels of lncRNA PVT1, CTGF, E-cadherin and vimentin were analyzed using reverse transfection-quantitative polymerase chain reaction, and western blotting was employed to detect the protein levels of CTGF, E-cadherin and vimentin. The expression of lncRNA PVT1 was significantly reduced in SKOV3 and CAOV3 cells following transfection with si-PVT1. In addition, the proliferation, migration and invasion abilities of SKOV3 and CAOV3 cells were repressed following lncRNA PVT1 knockdown. The knockdown of lncRNA PVT1 also reduced the expression of CTGF and vimentin, and increased the expression of E-cadherin. The changes in the proliferation, migration and invasion of the cells induced by transfection with si-PVT1 were partially attenuated in the presence of rhCTGF. Furthermore, co-culture with rhCTGF reversed the si-PVT1-induced changes in the expression of EMT-associated proteins. In conclusion, lncRNA PVT1 promotes the proliferation, migration, invasiveness and EMT process of ovarian cancer cells, and CTGF contributes to the effect of lncRNA PVT1.
Collapse
Affiliation(s)
- Lingling Dong
- Department of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China,Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huan Wang
- College of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Yun Gao
- College of Public Health and Management, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Shuai Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Weibo Wang
- Department of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China,Correspondence to: Dr Weibo Wang, Department of Oncology, Shandong Provincial Hospital, Shandong University, 324 Jingwu Road, Huaiyin, Jinan, Shandong 250021, P.R. China, E-mail:
| |
Collapse
|
5
|
Circ_0026123 promotes cisplatin resistance and progression of ovarian cancer by upregulating RAB1A through sequestering miR-543. Anticancer Drugs 2022; 33:1069-1080. [DOI: 10.1097/cad.0000000000001373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Li R, Wang X, Zhu C, Wang K. lncRNA PVT1: a novel oncogene in multiple cancers. Cell Mol Biol Lett 2022; 27:84. [PMID: 36195846 PMCID: PMC9533616 DOI: 10.1186/s11658-022-00385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs are involved in epigenetic gene modification, including binding to the chromatin rearrangement complex in pre-transcriptional regulation and to gene promoters in gene expression regulation, as well as acting as microRNA sponges to control messenger RNA levels in post-transcriptional regulation. An increasing number of studies have found that long noncoding RNA plasmacytoma variant translocation 1 (PVT1) plays an important role in cancer development. In this review of a large number of studies on PVT1, we found that PVT1 is closely related to tumor onset, proliferation, invasion, epithelial–mesenchymal transformation, and apoptosis, as well as poor prognosis and radiotherapy and chemotherapy resistance in some cancers. This review comprehensively describes PVT1 expression in various cancers and presents novel approaches to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ruiming Li
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
7
|
Lee WJ, Ji H, Jeong SD, Pandey PR, Gorospe M, Kim HH. LINC00162 regulates cell proliferation and apoptosis by sponging PAQR4-targeting miR-485-5p. J Cell Physiol 2022; 237:2943-2960. [PMID: 35491694 PMCID: PMC9846112 DOI: 10.1002/jcp.30758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/21/2023]
Abstract
Growing evidence indicates that long intergenic noncoding RNAs play an important role in cancer progression by affecting gene regulation at the transcriptional and posttranscriptional levels. Recent studies have shown that long intergenic noncoding RNA functions as a competitive endogenous RNA, which can interact with and mitigate the function of microRNA. In this study, we investigated the molecular mechanism by which LINC00162 regulates cell proliferation and apoptotic cell death. By analyzing RNA sequencing data, LINC00162 was identified to be a target of heterogeneous nuclear ribonucleoprotein K (hnRNPK). HnRNPK positively regulated LINC00162 expression through p38 mitogen-activated protein kinase. Lowering the level of either hnRNPK or LINC00162 decreased proliferation and colony formation while it increased apoptotic cell death. Small RNA sequencing followed by the antisense oligonucleotide pulldown, revealed that LINC00162 interacts directly with miR-485-5p which exhibited tumor-suppressing effects by suppressing cell proliferation and colony formation, and increasing apoptotic cell death. Through the bioinformatic approaches, progestin and adipoQ receptor 4 (PAQR4) was selected as a common target of LINC00162 and miR-485-5p. miR-485-5p decreased the expression of PAQR4 by directly binding to the 3'-untranslated region of PAQR4 messenger RNA. Knockdown of hnRNPK and LINC00162 increased the level of functional miR-485-5p, indicating that LINC00162 may compete for miR-485-5p, thereby derepressing PAQR4 expression. Overexpression of either hnRNPK or LINC00162, or inhibition of miR-485-5p, protected cells against etoposide-induced apoptotic death. Our findings demonstrate that a regulatory paradigm implicating hnRNPK, LINC00162, miR-485-5p, and PAQR4 plays an important role in cell proliferation and apoptosis, and is a promising target for cancer therapeutics.
Collapse
Affiliation(s)
- Woo Joo Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Haein Ji
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Seong Dong Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea,Department of Biopharmaceutical Convergence, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea,Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea,Correspondence: Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea. Phone: +82-2-3410-1039; Fax: +82-2-3410-0534;
| |
Collapse
|
8
|
Exosomal miR-543 Inhibits the Proliferation of Ovarian Cancer by Targeting IGF2. J Immunol Res 2022; 2022:2003739. [PMID: 35391781 PMCID: PMC8983272 DOI: 10.1155/2022/2003739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Ovarian cancer (OvCa) is the most lethal gynaecological malignancy worldwide. We aimed to illustrate the potential function and molecular mechanism of exosomal microRNA-543 (miR-543) in the oncogenesis and development of OvCa. Methods Differentially expressed microRNAs in exosomes derived from OvCa cell lines were identified by bioinformatic analysis and verified by RT-PCR. Cell proliferation ability was estimated by clonogenic and 5-ethynyl-2′-deoxyuridine assays in vitro and in vivo. Potential involved pathways and targets of exosomal miRNAs were analysed using DIANA and verified by pyrosequencing, glucose quantification, dual-luciferase reporter experiments, and functional rescue assays. Results Bioinformatic analysis identified miR-543 and its potential target genes involved in the cancer-associated proteoglycan pathway. The expression of miR-543 was significantly decreased in exosomes derived from OvCa cell lines, patient serum, and OvCa tissues, while the mRNA levels of insulin-like growth factor 2 (IGF2) were increased. Furthermore, the overexpression of miR-543 resulted in the suppression of OvCa cell proliferation in vitro and in vivo. Moreover, miR-543 was significantly negatively correlated with IGF2 in OvCa tissues in comparison with paracarcinoma tissues. Notably, upregulation of miR-543 led to increased cell supernatant glucose levels and suppressed cell growth, which was rescued by overexpression of IGF2. Conclusions Exosomal miR-543 participates in the proteoglycan pathway to suppress cell proliferation by targeting IGF2 in OvCa.
Collapse
|
9
|
Chu Q, Gu X, Zheng Q, Guo Z, Shan D, Wang J, Zhu H. Long noncoding RNA SNHG4: a novel target in human diseases. Cancer Cell Int 2021; 21:583. [PMID: 34717631 PMCID: PMC8557547 DOI: 10.1186/s12935-021-02292-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have attracted great attention from researchers. LncRNAs are non-protein-coding RNAs of more than 200 nucleotides in length. Multiple studies have been published on the relationship between lncRNA expression and the progression of human diseases. LncRNA small nucleolar RNA host gene 4 (SNHG4), a member of the lncRNA SNHG family, is abnormally expressed in a variety of human diseases, including gastric cancer, renal cell carcinoma, glioblastoma, neuroblastoma, prostate cancer, colorectal cancer, osteosarcoma, cervical cancer, liver cancer, lung cancer, non-small-cell lung cancer, neonatal pneumonia, diabetic retinopathy, neuropathic pain, acute cerebral infarction, acute myeloid leukaemia, and endometriosis. In this paper, the structure of SNHG4 is first introduced, and then studies in humans, animal models and cells are summarized to highlight the expression and function of SNHG4 in the above diseases. In addition, the specific mechanism of SNHG4 as a competing endogenous RNA (ceRNA) is discussed. The findings indicate that SNHG4 can be used as a biomarker for disease prognosis evaluation and as a potential target for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Zixuan Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Dandan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
10
|
Takeiwa T, Ikeda K, Horie-Inoue K, Inoue S. Mechanisms of Apoptosis-Related Long Non-coding RNAs in Ovarian Cancer. Front Cell Dev Biol 2021; 9:641963. [PMID: 33996797 PMCID: PMC8117355 DOI: 10.3389/fcell.2021.641963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a health-threatening malignancy of ovary in female reproductive systems and one of the most common gynecological malignancies worldwide. Due to rare early symptoms, ovarian cancers are often diagnosed at advanced stages and exhibit poor prognosis. Thus, efforts have been paid to develop alternative diagnostic and therapeutic strategies for the disease. Recent studies have presented that some long non-coding RNAs (lncRNAs) play roles in apoptosis of ovarian cancer cells through various mechanisms involved in the regulation of transcription factors, histone modification complexes, miRNAs, and protein stability. Because evasion of apoptosis in cancer cells facilitates to promote tumor progression and therapy resistance, apoptosis regulatory mechanisms of lncRNAs may be promising new targets in ovarian cancer. In this review, we introduce the recent findings in regard to the molecular mechanisms of apoptosis-related lncRNAs in ovarian cancer cells.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
11
|
Yao X, Gao X, Bao Y, El-Samahy MA, Yang J, Wang Z, Li X, Zhang G, Zhang Y, Liu W, Wang F. lncRNA FDNCR promotes apoptosis of granulosa cells by targeting the miR-543-3p/DCN/TGF-β signaling pathway in Hu sheep. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:223-240. [PMID: 33767918 PMCID: PMC7973142 DOI: 10.1016/j.omtn.2021.02.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) regulate the development of follicles and reproductive diseases, but the mechanisms by which lncRNAs regulate ovarian functions and fertility remain elusive. We profiled the expression of lncRNAs in ovarian tissues of Hu sheep with different prolificacy and identified 21,327 lncRNAs. Many of the lncRNAs were differentially expressed in different groups. We further characterized an lncRNA that was predominantly expressed in the ovaries of the low prolificacy FecB+ (LPB+) group and mainly present in granulosa cells (GCs), and the expression of this lncRNA decreased during follicular development, which we named follicular development-associated lncRNA (FDNCR). Next, we found that FDNCR directly binds miR-543-3p, and decorin (DCN) was identified as a target of miR-543-3p. FDNCR overexpression promoted GC apoptosis through increased expression of DCN, which could be attenuated by miR-543-3p. Furthermore, miR-543-3p increased and FDNCR reduced the expression of transforming growth factor-β (TGF-β) pathway-related genes, including TGF-β1 and inhibin beta A (INHBA), which were upregulated upon DCN silencing. Our results demonstrated that FDNCR sponges miR-543-3p in GCs and prevents miR-543-3p from binding to the DCN 3′ UTR, resulting in DCN transactivation and TGF-β pathway inhibition and promotion of GC apoptosis in Hu sheep. These findings provide insights into the mechanisms underlying prolificacy in sheep.
Collapse
Affiliation(s)
- Xiaolei Yao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - XiaoXiao Gao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongjin Bao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - M A El-Samahy
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinyu Yang
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Zhibo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Kushlinskii NE, Loginov VI, Utkin DO, Filippova EA, Burdennyy AM, Korotkova EA, Pronina IV, Lukina SS, Smirnova AV, Gershtein ES, Braga EA. Novel miRNAs as Potential Regulators of PD-1/PD-L1 Immune Checkpoint, and Prognostic Value of MIR9-1 and MIR124-2 Methylation in Ovarian Cancer. Mol Biol 2021. [DOI: 10.1134/s0026893320060072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
LncRNAs in Ovarian Cancer Progression, Metastasis, and Main Pathways: ceRNA and Alternative Mechanisms. Int J Mol Sci 2020; 21:ijms21228855. [PMID: 33238475 PMCID: PMC7700431 DOI: 10.3390/ijms21228855] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OvCa) develops asymptomatically until it reaches the advanced stages with metastasis, chemoresistance, and poor prognosis. Our review focuses on the analysis of regulatory long non-coding RNAs (lncRNAs) competing with protein-coding mRNAs for binding to miRNAs according to the model of competitive endogenous RNA (ceRNA) in OvCa. Analysis of publications showed that most lncRNAs acting as ceRNAs participate in OvCa progression: migration, invasion, epithelial-mesenchymal transition (EMT), and metastasis. More than 30 lncRNAs turned out to be predictors of survival and/or response to therapy in patients with OvCa. For a number of oncogenic (CCAT1, HOTAIR, NEAT1, and TUG1 among others) and some suppressive lncRNAs, several lncRNA/miRNA/mRNA axes were identified, which revealed various functions for each of them. Our review also considers examples of alternative mechanisms of actions for lncRNAs besides being ceRNAs, including binding directly to mRNA or protein, and some of them (DANCR, GAS5, MALAT1, and UCA1 among others) act by both mechanisms depending on the target protein. A systematic analysis based on the data from literature and Panther or KEGG (Kyoto Encyclopedia of Genes and Genomes) databases showed that a significant part of lncRNAs affects the key pathways involved in OvCa metastasis, EMT, and chemoresistance.
Collapse
|