1
|
Hedges CP, Shetty B, Broome SC, MacRae C, Koutsifeli P, Buckels EJ, MacIndoe C, Boix J, Tsiloulis T, Matthews BG, Sinha S, Arendse M, Jaiswal JK, Mellor KM, Hickey AJR, Shepherd PR, Merry TL. Dietary supplementation of clinically utilized PI3K p110α inhibitor extends the lifespan of male and female mice. NATURE AGING 2023; 3:162-172. [PMID: 37118113 DOI: 10.1038/s43587-022-00349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/02/2022] [Indexed: 04/30/2023]
Abstract
Diminished insulin and insulin-like growth factor-1 signaling extends the lifespan of invertebrates1-4; however, whether it is a feasible longevity target in mammals is less clear5-12. Clinically utilized therapeutics that target this pathway, such as small-molecule inhibitors of phosphoinositide 3-kinase p110α (PI3Ki), provide a translatable approach to studying the impact of these pathways on aging. Here, we provide evidence that dietary supplementation with the PI3Ki alpelisib from middle age extends the median and maximal lifespan of mice, an effect that was more pronounced in females. While long-term PI3Ki treatment was well tolerated and led to greater strength and balance, negative impacts on common human aging markers, including reductions in bone mass and mild hyperglycemia, were also evident. These results suggest that while pharmacological suppression of insulin receptor (IR)/insulin-like growth factor receptor (IGFR) targets could represent a promising approach to delaying some aspects of aging, caution should be taken in translation to humans.
Collapse
Affiliation(s)
- C P Hedges
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - B Shetty
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - S C Broome
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - C MacRae
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - P Koutsifeli
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - E J Buckels
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - C MacIndoe
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - J Boix
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - T Tsiloulis
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - B G Matthews
- Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - S Sinha
- Department of Pathology, Waikato Hospital, Hamilton, New Zealand
| | - M Arendse
- Department of Pathology, Waikato Hospital, Hamilton, New Zealand
| | - J K Jaiswal
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - K M Mellor
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - A J R Hickey
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - P R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - T L Merry
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
2
|
Nunes Azevedo FF, Freitas de Sousa FJ, Santos de Oliveira FL, Vieira Carletti J, Zanatta G. Binding site hotspot map of PI3Kα and mTOR in the presence of selective and dual ATP-competitive inhibitors. J Biomol Struct Dyn 2023; 41:1085-1097. [PMID: 34913837 DOI: 10.1080/07391102.2021.2016487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The PI3K/Akt/mTOR signaling pathway plays a pivotal role in cellular metabolism, growth and survival. PI3Kα hyperactivation impairs downstream signaling, including mTOR regulation, and are linked to poor prognosis and refractory cancer treatment. To support multi-target drug discovery, we took advantage from existing PI3Kα and mTOR crystallographic structures to map similarities and differences in their ATP-binding pockets in the presence of selective or dual inhibitors. Molecular dynamics and MM/PBSA calculations were employed to study the binding profile and identify the relative contribution of binding site residues. Our analysis showed that while varying parameters of solute and solvent dielectric constant interfered in the absolute binding free energy, it had no effect in the relative per residue contribution. In all complexes, the most important interactions were observed within 3-3.5 Å from inhibitors, responding for ∼75-100% of the total calculated interaction energy. While closest residues are essential for the strength of the binding of all ligands, more distant residues seem to have a larger impact on the binding of the dual inhibitor, as observed for PI3Kα residues Phe934, Lys802 and Asp805 and, mTOR residues Leu2192, Phe2358, Leu2354, Lys2187 and Tyr2225. A detailed description of individual residue contribution in the presence of selective or dual inhibitors is provided as an effort to improve the understanding of molecular mechanisms controlling multi-target inhibition. This work provides key information to support further studies seeking the rational design of potent PI3K/mTOR dual inhibitors for cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | | | - Geancarlo Zanatta
- Postgraduate Programme in Biochemistry, Department of Biochemistry at Federal, University of Ceará, Fortaleza, Ceará, Brazil.,Department of Physics at Federal, University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
3
|
Sefiani A, Rusyn I, Geoffroy CG. Novel adult cortical neuron processing and screening method illustrates sex- and age-dependent effects of pharmaceutical compounds. Sci Rep 2022; 12:13125. [PMID: 35908049 PMCID: PMC9338961 DOI: 10.1038/s41598-022-17389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases and neurotraumatic injuries are typically age-associated disorders that can reduce neuron survival, neurite outgrowth, and synaptic plasticity leading to loss of cognitive capacity, executive function, and motor control. In pursuit of reducing the loss of said neurological functions, novel compounds are sought that promote neuron viability, neuritogenesis, and/or synaptic plasticity. Current high content in vitro screenings typically use cells that are iPSC-derived, embryonic, or originate from post-natal tissues; however, most patients suffering from neurodegenerative diseases and neurotrauma are of middle-age and older. The chasm in maturity between the neurons used in drug screens and those in a target population is a barrier for translational success of in vitro results. It has been historically challenging to culture adult neurons let alone conduct screenings; therefore, age-appropriate drug screenings have previously not been plausible. We have modified Miltenyi's protocol to increase neuronal yield, neuron purity, and neural viability at a reduced cost to expand our capacity to screen compounds directly in primary adult neurons. To our knowledge, we developed the first morphology-based screening system using adult cortical neurons and the first to incorporate age and sex as biological variables in a screen using adult cortical neurons. By using primary adult cortical neurons from mice that were 4 to 48 weeks old for screening pharmaceutical agents, we have demonstrated age- and sex-dependent effects on neuritogenesis and neuron survival in vitro. Utilizing age- and sex-appropriate in vitro models to find novel compounds increasing neuron survival and neurite outgrowth, made possible by our modified adult neuron processing method, will greatly increase the relevance of in vitro screening for finding neuroprotective compounds.
Collapse
Affiliation(s)
- Arthur Sefiani
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX, 77807, USA.
| |
Collapse
|
4
|
Hedges CP, Boix J, Jaiswal JK, Shetty B, Shepherd PR, Merry TL. Efficacy of Providing the PI3K p110α Inhibitor BYL719 (Alpelisib) to Middle-Aged Mice in Their Diet. Biomolecules 2021; 11:biom11020150. [PMID: 33503847 PMCID: PMC7911305 DOI: 10.3390/biom11020150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
BYL719 (alpelisib) is a small molecule inhibitor of PI3K p110α developed for cancer therapy. Targeted suppression of PI3K has led to lifespan extension in rodents and model organisms. If PI3K inhibitors are to be considered as an aging therapeutic, it is important to understand the potential consequences of long-term exposure, and the most practical way to achieve this is through diet administration. Here, we investigated the pharmacokinetics of BYL719 delivered in diet and the efficacy of BYL719 to suppress insulin signaling when administered in the diet of 8-month-old male and female mice. Compared to oral gavage, diet incorporation resulted in a lower peak plasma BYL719 (3.6 vs. 9.2 μM) concentration but similar half-life (~1.5 h). Consuming BYL719 resulted in decreased insulin signaling in liver and muscle within 72 h, and mice still showed impaired glucose tolerance and insulin sensitivity following 6 weeks of access to a diet containing 0.3 g/kg BYL719. However, consuming BYL719 did not affect food intake, body mass, muscle function (rotarod and hang time performance) or cognitive behaviors. This provides evidence that BYL719 has long-term efficacy without major toxicity or side effects, and suggests that administering BYL719 in diet is suitable for studying the effect of pharmacological suppression of PI3K p110α on aging and metabolic function.
Collapse
Affiliation(s)
- Christopher P. Hedges
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand; (C.P.H.); (B.S.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1023, New Zealand; (J.K.J.); (P.R.S.)
| | - Jordi Boix
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand;
| | - Jagdish K. Jaiswal
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1023, New Zealand; (J.K.J.); (P.R.S.)
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Bhoopika Shetty
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand; (C.P.H.); (B.S.)
| | - Peter R. Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1023, New Zealand; (J.K.J.); (P.R.S.)
- Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Troy L. Merry
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand; (C.P.H.); (B.S.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1023, New Zealand; (J.K.J.); (P.R.S.)
- Correspondence: ; Tel.: +64-9-923-6372
| |
Collapse
|