1
|
Singh G, Famta P, Shah S, Vambhurkar G, Pandey G, Kumar R, Kumar P, Mourya A, Madan J, Srivastava S, Khatri DK. Nanoparticle-enhanced delivery of resveratrol for targeted therapy of glioblastoma: Modulating the Akt/GSK-3β/NF-kB pathway in C6 glioma cells. Brain Res 2025; 1848:149411. [PMID: 39716595 DOI: 10.1016/j.brainres.2024.149411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE The study aims to explore Resveratrol (RES) as a potential therapeutic agent for Glioblastoma multiforme (GBM), a challenging brain cancer. RES, a polyphenolic compound with known benefits in various diseases including cancer, has shown promise in inhibiting glioma progression through its effects on the AKT signaling pathways. However, its limited ability to cross the blood-brain barrier restricts its clinical application in GBM treatment. This study seeks to enhance efficacy of RES by developing RES-loaded nanoparticles designed to improve penetration into glioma cells and potentially overcome the blood-brain barrier, thereby enhancing therapeutic outcomes. METHODS Albumin nanoparticles were prepared and characterized using FT-IR, X-RD, and SEM to determine particle size. In vitro experiments were conducted using the C6 glioma cell line, employing MTT assays, Immunofluorescence, DC-FDA staining, and western blot analysis. Molecular docking studies were also performed to assess ability of RES to inhibit the AKT/GSK-3β/NF-kB pathway. RESULTS In vitro results demonstrated that RES-loaded nanoparticles induced apoptosis and reduced proliferation of C6 glioma cells compared to controls. Molecular docking studies confirmed RES's potential as an inhibitor targeting the AKT/GSK-3β/NF-kB pathway. Western blot analysis revealed downregulation of AKT and GSK-3β expression in cells treated with RES-loaded nanoparticles, accompanied by increased caspase 1 levels and decreased bcl2 expression, indicative of apoptosis. CONCLUSION The findings suggest that RES effectively targets the AKT/GSK-3β/NF-kB signaling pathway in glioma cells. Furthermore, RES-loaded albumin nanoparticles significantly enhance therapeutic efficacy by improving cellular penetration, highlighting their potential in advancing GBM treatment strategies.
Collapse
Affiliation(s)
- Gurpreet Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Prakash Kumar
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, 303121, India.
| |
Collapse
|
2
|
Wei S, Zhou J, Dong B. A novel risk model consisting of nine platelet-related gene signatures for predicting prognosis, immune features and drug sensitivity in glioma. Hereditas 2024; 161:52. [PMID: 39707577 DOI: 10.1186/s41065-024-00355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Glioma is a malignancy with challenging clinical treatment and poor prognosis. Platelets are closely associated with tumor growth, propagation, invasion, and angiogenesis. However, the role of platelet-related genes in glioma treatment and prognosis remains unclear. RESULTS A prognostic risk model was established using nine platelet-related prognostic signature genes (CAPG, CLIC1, GLB1, GNG12, KIF20A, PDIA4, SULF2, TAGLN2, and WEE1), and the risk score of samples were calculated. Subsequently, the glioma samples were divided into high- and low-risk groups based on the median values of risk scores. scRNA-seq analysis revealed that the prognostic genes were primarily located in astrocytes and natural killer cells. The immune infiltration proportions of most immune cells differed significantly between high- and low-risk groups. Moreover, we found AZD7762 as a potential candidate for glioma treatment. CONCLUSION Nine platelet-related prognostic genes identified as prognostic signatures for glioma were closely associated with the TME and may aid in directing the clinical treatment and prognosis of gliomas.
Collapse
Affiliation(s)
- Sanlin Wei
- Dalian Medical University, Dalian, Liaoning Province, 116000, China
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China
| | - Junke Zhou
- Department of Nephrology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China
| | - Bin Dong
- Dalian Medical University, Dalian, Liaoning Province, 116000, China.
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China.
| |
Collapse
|
3
|
Doghish AS, Abd-Elmawla MA, Hatawsh A, Zaki MB, Aborehab NM, Radwan AF, Moussa R, Eisa MA, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Elimam H. Unraveling the role of LncRNAs in glioblastoma progression: insights into signaling pathways and therapeutic potential. Metab Brain Dis 2024; 40:42. [PMID: 39589598 DOI: 10.1007/s11011-024-01456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/27/2024] [Indexed: 11/27/2024]
Abstract
Glioblastoma (GBM) is one of the most aggressive types of brain cancer, characterized by its poor prognosis and low survival rate despite current treatment modalities. Because GBM is lethal, clarifying the pathogenesis's underlying mechanisms is important, which are still poorly understood. Recent discoveries in the fields of molecular genetics and cancer biology have demonstrated the critical role that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), play in the molecular pathophysiology of GBM growth. LncRNAs are transcripts longer than 200 nucleotides that do not encode proteins. They are significant epigenetic modulators that control gene e expression at several levels. Their dysregulation and interactions with important signaling pathways play a major role in the malignancy and development of GBM. The increasing role of lncRNAs in GBM pathogenesis is thoroughly examined in this review, with particular attention given to their regulation mechanisms in key signaling pathways such as PI3K/AKT, Wnt/β-catenin, and p53. It also looks into lncRNAs' potential as new biomarkers and treatment targets for GBM. In addition, the study discusses the difficulties in delivering lncRNA-based medicines across the blood-brain barrier and identifies areas that need more research to advance lncRNA-oriented treatments for this deadly cancer.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, 26th of July Corridor, Nile University, Sheikh Zayed City, 12588, Giza, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Mahmoud A Eisa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
4
|
Lin W, Liu Y, Liang CS, Yeh PK, Tsai CK, Hung KS, An YC, Yang FC. Syncope in Migraine: A Genome-Wide Association Study Revealing Distinct Genetic Susceptibility Variants Across Subtypes. J Clin Neurol 2024; 20:599-609. [PMID: 39505312 PMCID: PMC11543389 DOI: 10.3988/jcn.2024.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/13/2024] [Accepted: 09/04/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Syncope is characterized by the temporary loss of consciousness and is commonly associated with migraine. However, the genetic factors that contribute to this association are not well understood. This study investigated the specific genetic loci that make patients with migraine more susceptible to syncope as well as the genetic factors contributing to syncope and migraine comorbidity in a Han Chinese population in Taiwan. METHODS A genome-wide association study was applied to 1,724 patients with migraine who visited a tertiary hospital in Taiwan. The patients were genotyped using the Affymetrix Axiom Genome-Wide TWB 2.0 array and categorized into the following subgroups based on migraine type: episodic migraine, chronic migraine, migraine with aura, and migraine without aura. Multivariate regression analyses were used to assess the relationships between specific single-nucleotide polymorphisms (SNPs) and the clinical characteristics in patients with syncope and migraine comorbidity. RESULTS In patients with migraine, SNPs were observed to be associated with syncope. In particular, the rs797384 SNP located in the intron region of LOC102724945 was associated with syncope in all patients with migraine. Additionally, four SNPs associated with syncope susceptibility were detected in the nonmigraine control group, and these SNPs differed from those in the migraine group, suggesting distinct underlying mechanisms. Furthermore, the rs797384 variant in the intron region of LOC102724945 was associated with the score on the Beck Depression Inventory. CONCLUSIONS The novel genetic loci identified in this study will improve our understanding of the genetic basis of syncope and migraine comorbidity.
Collapse
Affiliation(s)
- Wei Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi Liu
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Kuan Yeh
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chin An
- Department of Emergency, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
5
|
Jiang Q, Ling GY, Yan J, Tan JY, Nong RB, Li JW, Deng T, Mo LG, Huang QR. Identification of prognostic risk score of disulfidptosis-related genes and molecular subtypes in glioma. Biochem Biophys Rep 2024; 37:101605. [PMID: 38188362 PMCID: PMC10768521 DOI: 10.1016/j.bbrep.2023.101605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Background Programmed cell death is closely related to glioma. As a novel kind of cell death, the mechanism of disulfidptosis in glioma remains unclear. Therefore, it is of great importance to study the role of disulfidptosis-related genes (DRGs) in glioma. Methods We first investigated the genetic and transcriptional alterations of 15 DRGs. Two consensus cluster analyses were used to evaluate the association between DRGs and glioma subtypes. In addition, we constructed prognostic DRG risk scores to predict overall survival (OS) in glioma patients. Furthermore, we developed a nomogram to enhance the clinical utility of the DRG risk score. Finally, the expression levels of DRGs were verified by immunohistochemistry (IHC) staining. Results Most DRGs (14/15) were dysregulated in gliomas. The 15 DRGs were rarely mutated in gliomas, and only 50 of 987 samples (5.07 %) showed gene mutations. However, most of them had copy number variation (CNV) deletions or amplifications. Two distinct molecular subtypes were identified by cluster analysis, and DRG alterations were found to be related to the clinical characteristics, prognosis, and tumor immune microenvironment (TIME). The DRG risk score model based on 12 genes was developed and showed good performance in predicting OS. The nomogram confirmed that the risk score had a particularly strong influence on the prognosis of glioma. Furthermore, we discovered that low DRG scores, low tumor mutation burden, and immunosuppression were features of patients with better prognoses. Conclusion The DRG risk model can be used for the evaluation of clinical characteristics, prognosis prediction, and TIME estimation of glioma patients. These DRGs may be potential therapeutic targets in glioma.
Collapse
Affiliation(s)
| | | | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ju-Yuan Tan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ren-Bao Nong
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jian-Wen Li
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Li-Gen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qian-Rong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
6
|
Yuan H, Lu Y, Feng Y, Wang N. Epigenetic inhibitors for cancer treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:89-144. [PMID: 38359972 DOI: 10.1016/bs.ircmb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Epigenetics is a heritable and reversible modification that occurs independent of the alteration of primary DNA sequence but remarkably affects genetic expression. Aberrant epigenetic regulators are frequently observed in cancer progression not only influencing the behavior of tumor cells but also the tumor-associated microenvironment (TME). Increasing evidence has shown their great potential as biomarkers to predict clinical outcomes and chemoresistance. Hence, targeting the deregulated epigenetic regulators would be a compelling strategy for cancer treatment. So far, current epigenetic drugs have shown promising efficacy in both preclinical trials and clinical treatment of cancer, which encourages research discoveries on the development of novel epigenetic inhibitors either from natural compounds or artificial synthesis. However, only a few have been approved by the FDA, and more effort needs to be put into the related research. This chapter will update the applications and latest progress of epigenetic inhibitors in cancer treatment and provide prospects for the future development of epigenetic drugs.
Collapse
Affiliation(s)
- Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
7
|
Leung DHL, Phon BWS, Sivalingam M, Radhakrishnan AK, Kamarudin MNA. Regulation of EMT Markers, Extracellular Matrix, and Associated Signalling Pathways by Long Non-Coding RNAs in Glioblastoma Mesenchymal Transition: A Scoping Review. BIOLOGY 2023; 12:818. [PMID: 37372103 PMCID: PMC10294841 DOI: 10.3390/biology12060818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Glioblastoma (GBM) mesenchymal (MES) transition can be regulated by long non-coding RNAs (lncRNAs) via modulation of various factors (Epithelial-to-Mesenchymal (EMT) markers, biological signalling, and the extracellular matrix (ECM)). However, understanding of these mechanisms in terms of lncRNAs is largely sparse. This review systematically analysed the mechanisms by which lncRNAs influence MES transition in GBM from a systematic search of the literature (using PRISMA) performed in five databases (PubMed, MEDLINE, EMBASE, Scopus, and Web of Science). We identified a total of 62 lncRNAs affiliated with GBM MES transition, of which 52 were upregulated and 10 were downregulated in GBM cells, where 55 lncRNAs were identified to regulate classical EMT markers in GBM (E-cadherin, N-cadherin, and vimentin) and 25 lncRNAs were reported to regulate EMT transcription factors (ZEB1, Snai1, Slug, Twist, and Notch); a total of 16 lncRNAs were found to regulate the associated signalling pathways (Wnt/β-catenin, PI3k/Akt/mTOR, TGFβ, and NF-κB) and 14 lncRNAs were reported to regulate ECM components (MMP2/9, fibronectin, CD44, and integrin-β1). A total of 25 lncRNAs were found dysregulated in clinical samples (TCGA vs. GTEx), of which 17 were upregulated and 8 were downregulated. Gene set enrichment analysis predicted the functions of HOXAS3, H19, HOTTIP, MEG3, DGCR5, and XIST at the transcriptional and translational levels based on their interacting target proteins. Our analysis observed that the MES transition is regulated by complex interplays between the signalling pathways and EMT factors. Nevertheless, further empirical studies are required to elucidate the complexity in this process between these EMT factors and the signalling involved in the GBM MES transition.
Collapse
Affiliation(s)
| | | | | | | | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| |
Collapse
|
8
|
Jiang L, Liu J. Prefoldin 6 promotes glioma progression via the AKT signalling pathway. Cell Biol Int 2023; 47:52-62. [PMID: 36300673 DOI: 10.1002/cbin.11895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 01/01/2023]
Abstract
Gliomas are one of the most aggressive primary tumours, accounting for 81% of malignant brain tumours, and are associated with a significant mortality. Therefore, the elucidation of the molecular mechanism underlying glioma progression and identification of promising treatment targets are necessary. Here, the expression of prefoldin (PFDN) 6 in human glioma tissues and cell lines was evaluated using immunohistochemistry and quantitative polymerase chain reaction. Celigo and CCK-8 assays were performed for assessing cell viability. Flow cytometry was used to analyse apoptosis and cell cycle distribution. Wound-healing and transwell assays were performed to observe cell migration. Lastly, xenograft models were developed for the in vivo validation of the results, and a human phospho-kinase array was used to explore the downstream signalling pathways. PFDN6 was upregulated in gliomas, and PFDN6 overexpression was significantly correlated with a low survival rate, estimated glomerular filtration rate (EGFR) expression, and tumour grade and recurrence. Moreover, PFDN6 knockdown significantly attenuated cell proliferation and migration, induced apoptosis, and blocked cell cycle progression in the G2 phase, which was further confirmed in the in vivo experiments. Mechanistically, the effects of PFDN6 may be mediated via the AKT signalling pathway. In conclusion, we showed that PFDN6 promotes glioma development by activating AKT signalling and emphasised the potential of PFDN6 as a crucial target in glioma therapy.
Collapse
Affiliation(s)
- Lianglei Jiang
- Department of Neurosurgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Jun Liu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
9
|
Dong L, Xin X, Chang HM, Leung PCK, Yu C, Lian F, Wu H. Expression of long noncoding RNAs in the ovarian granulosa cells of women with diminished ovarian reserve using high-throughput sequencing. J Ovarian Res 2022; 15:119. [PMID: 36309699 PMCID: PMC9617369 DOI: 10.1186/s13048-022-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background Infertility is a global reproductive-health problem, and diminished ovarian reserve (DOR) is one of the common causes of female infertility. Long noncoding RNAs (lncRNAs) are crucial regulators of numerous physiological and pathological processes in humans. However, whether lncRNAs are involved in the development of DOR remains to be elucidated. Methods Ovarian granulosa cells (OGCs) extracted from infertile women with DOR and from women with normal ovarian reserve (NOR) were subjected to high-throughput sequencing. Comprehensive bioinformatics analysis was conducted to identify the differential expression of messenger RNAs (mRNAs) and lncRNAs. Sequencing results were validated by the selection of lncRNAs and mRNAs using real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results Compared with the NOR group, a total of 244 lncRNAs were upregulated (53 known and 191 novel), and 222 lncRNAs were downregulated (36 known and 186 novel) in the DOR group. Similarly, 457 mRNAs had differential expression between the two groups. Of these, 169 were upregulated and 288 were downregulated. Bioinformatics analysis revealed that the differentially expressed genes of mRNA and lncRNAs were considerably enriched in “cell adhesion and apoptosis”, “steroid biosynthesis”, and “immune system”. A co-expression network comprising lncRNAs and their predicted target genes revealed the possible involvement of the “thyroid hormone signaling pathway” and “protein binding, digestion and absorption” in DOR pathogenesis. The expression of SLC16A10 was positively regulated by multiple lncRNAs. After RT-qPCR validation of seven differentially expressed lncRNAs and mRNAs, respectively, the expression of lncRNA NEAT1, GNG12, ZEB2-AS1, and mRNA FN1, HAS3, RGS4, SUOX were in accordance with RNA-sequencing. Conclusions We presented the first data showing that the expression profiles of lncRNA and mRNA in OGCs between NOR and DOR patients using RNA sequencing. The lncRNAs and mRNAs that we identified may serve as novel diagnostic biomarkers for patients with DOR. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-01053-6.
Collapse
Affiliation(s)
- Li Dong
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Xin Xin
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chen Yu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Fang Lian
- MedicineReproductive and Genetic Center of Integrated Traditional and Western Medicine, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Haicui Wu
- MedicineReproductive and Genetic Center of Integrated Traditional and Western Medicine, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
10
|
Lei T, Gao Y, Duan Y, Cui C, Zhang L, Si M. Panax notoginseng saponins improves healing of high glucose-induced wound through the GSK-3β/β-catenin pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1867-1877. [PMID: 35385194 DOI: 10.1002/tox.23533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Chronic non-healing wounds are one of the most common complications of diabetes mellitus and results in a huge physical and mental burden for patients. Panax notoginseng saponins (PNS) have a wide range of applications in anti-apoptosis, anti-oxidation, and promoting blood circulation. Our study aimed to explore whether PNS could improve diabetic wound healing. High-glucose (HG, 30 Mm) were used to incubated human umbilical vein endothelial cells (HUVECs) to simulate the hyperglycemia environment in vivo, and 200 μg/ml (optimum harmless concentration screened) PNS was added into HG-incubated HUVECs to investigate the protective effect of PNS on the cells. Compared with control, high glucose treatment significantly suppressed HUVEC proliferation, invasion, migration, angiogenesis, malondialdehyde (MDA) production and nitric oxide (NO) release, promoted cell apoptosis, and deactivated the GSK-3β/β-catenin/VEGF pathway. PNS treatment could largely rescue the effects of HG on cell dysfunction and improve the deactivation of GSK-3β/β-catenin/VEGF pathway. ICG-001, a small molecular β-catenin inhibitor that can selectively antagonize β-catenin mediated transcriptional activity, could eliminate the protective effects of PNS on cell dysfunction and activation of GSK-3β/β-catenin/VEGF pathway. Moreover, Furthermore, a diabetic model (50 mg/kg streptozotocin induced) with back skin wound was established in rats, and the wounds were administrated with petrolatum, gelatin/Bletilla striata gelatin (GT/BSGT), or GT/BSGT plus PNS. We found that PNS signally facilitated wound healing and matrix remodeling in vivo. In conclusion, our study verified that PNS improved wound healing in hyperglycemic rats via promoting endothelial cell proliferation, invasion, migration, angiogenesis, suppressing cell apoptosis and oxidative damage, and activating the GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Ting Lei
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary Surgery, Affiliated hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ya Gao
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuhong Duan
- Endocrinology Department, Affiliated hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chunli Cui
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Li Zhang
- Institutional Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Mingming Si
- Department of General Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
11
|
Xiang Z, Lv Q, Zhang Y, Chen X, Guo R, Liu S, Peng X. Long non-coding RNA DDX11-AS1 promotes the proliferation and migration of glioma cells by combining with HNRNPC. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:601-612. [PMID: 35614994 PMCID: PMC9109126 DOI: 10.1016/j.omtn.2022.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/23/2022] [Indexed: 12/11/2022]
Abstract
Glioma is a malignant tumor of the central nervous system with complex pathogenesis, difficult operation, and a high postoperative recurrence rate. At present, there is still a lack of effective treatment. Long non-coding RNA DDX11 antisense RNA 1 (DDX11-AS1) has been shown to promote tumor development, such as hepatocellular carcinoma, esophageal cancer, etc. However, its molecular mechanism in glioma is poorly understood. In this study, we found that the expression of DDX11-AS1 was elevated in glioma tissues, and patients with high expression of DDX11-AS1 had poor prognosis. DDX11-AS1 was a potential prognostic marker. Functionally, DDX11-AS1 promoted glioma cell proliferation and migration. Mechanistically, DDX11-AS1 interacted with RNA-binding protein heterogeneous nuclear ribonucleoprotein C (HNRNPC) to promote Wnt/β-catenin and AKT pathways and the epithelial-mesenchymal transition process. In summary, our study manifests that the DDX11-AS1/HNRNPC axis may play a vital part in the occurrence and development of glioma, which provides new ideas and therapeutic targets for the diagnosis, treatment, and prognosis of glioma.
Collapse
Affiliation(s)
- Zijin Xiang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Yujun Zhang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xueru Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Shikun Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xiangdong Peng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
12
|
Mazzolini J, Le Clerc S, Morisse G, Coulonges C, Zagury J, Sieger D. Wasl is crucial to maintain microglial core activities during glioblastoma initiation stages. Glia 2022; 70:1027-1051. [PMID: 35194846 PMCID: PMC9306864 DOI: 10.1002/glia.24154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
Abstract
Microglia actively promotes the growth of high-grade gliomas. Within the glioma microenvironment an amoeboid microglial morphology has been observed, however the underlying causes and the related impact on microglia functions and their tumor promoting activities is unclear. Using the advantages of the larval zebrafish model, we identified the underlying mechanism and show that microglial morphology and functions are already impaired during glioma initiation stages. The presence of pre-neoplastic HRasV12 expressing cells induces an amoeboid morphology of microglia, increases microglial numbers and decreases their motility and phagocytic activity. RNA sequencing analysis revealed lower expression levels of the actin nucleation promoting factor wasla in microglia. Importantly, a microglia specific rescue of wasla expression restores microglial morphology and functions. This results in increased phagocytosis of pre-neoplastic cells and slows down tumor progression. In conclusion, we identified a mechanism that de-activates core microglial functions within the emerging glioma microenvironment. Restoration of this mechanism might provide a way to impair glioma growth.
Collapse
Affiliation(s)
- Julie Mazzolini
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Sigrid Le Clerc
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Gregoire Morisse
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Cédric Coulonges
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Jean‐François Zagury
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Dirk Sieger
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
13
|
Yang Z, Ye X, Zhang Y, Huang Y, Chen J, Zeng Y, Chen J. ECRG4 acts as a tumor suppressor in nasopharyngeal carcinoma by suppressing the AKT/GSK3β/β-catenin signaling pathway. Cytotechnology 2022; 74:231-243. [PMID: 35464163 PMCID: PMC8976024 DOI: 10.1007/s10616-022-00520-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Nasopharyngeal carcinoma (NPC) is a malignant tumor with a poor prognosis. Studies have shown that esophageal carcinoma related gene 4 (ECRG4) is hypermethylated and significantly downregulated in NPC tissues. However, the role of ECRG4 in NPC, and in particular the underlying molecular mechanism, is largely unclear. In this study, using immunohistochemical staining of ECRG4 in NPC and normal specimens, we confirmed that ECRG4 was downregulated in human NPC tissues. In addition, various biological and molecular studies were carried out and the results showed that ECRG4 exerted anticancer effect in NPC, including inhibiting cell growth, migration, and invasion of NPC cells in vitro. Moreover, restoring ECRG4 expression suppressed the in vivo tumorigenesis of CNE2 cells. ECRG4 inhibited AKT/GSK3β/β-catenin signaling, as well as the downstream targets of β-catenin. LiCl treatment, which reduced GSK3β phosphorylation and upregulated β-catenin expression, restored the invasive ability of ECRG4-overexpressing NPC cells. Furthermore, we showed that the DNA methylation inhibitor 5-aza-dC reduced ECRG4 methylation and the invasive ability of negative control cells, but not that of ECRG4-overexpressing cells, suggesting that the inhibitory effect of 5-aza-dC depends on low expression of ECRG4. Collectively, our results demonstrated that ECRG4 downregulation contributed to NPC growth and invasion by activating AKT/GSK3β/β-catenin signaling pathway. ECRG4 could be a promising therapeutic target for the treatment of NPC. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10616-022-00520-8.
Collapse
Affiliation(s)
- Zhengyuan Yang
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031 People’s Republic of China
| | - Xiajun Ye
- Department of Medical Affairs, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031 People’s Republic of China
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, No. 241 Daxue Road, Shantou, 515031 People’s Republic of China
| | - Yiteng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, 515041 People’s Republic of China
| | - Jian Chen
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. Raoping Road, Shantou, 515031 People’s Republic of China
| | - Yunzhu Zeng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031 Guangdong Province People’s Republic of China
| | - Jiongyu Chen
- Oncological Research Lab, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031 Guangdong Province People’s Republic of China
| |
Collapse
|
14
|
Yang X, Weng X, Yang Y, Jiang Z. Pyroptosis-Related lncRNAs Predict the Prognosis and Immune Response in Patients With Breast Cancer. Front Genet 2022; 12:792106. [PMID: 35360412 PMCID: PMC8963933 DOI: 10.3389/fgene.2021.792106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Breast cancer (BC) is the most common malignant tumor and the leading cause of cancer-related death in women worldwide. Pyroptosis and long noncoding RNAs (lncRNAs) have been demonstrated to play vital roles in the tumorigenesis and development of BC. However, the clinical significance of pyroptosis-related lncRNAs in BC remains unclear. Methods: Using the mRNA and lncRNA profiles of BC obtained from TCGA dataset, a risk model based on the pyroptosis-related lncRNAs for prognosis was constructed using univariate and multivariate Cox regression model, and least absolute shrinkage and selection operator. Patients were divided into high- and low-risk groups based on the risk model, and the prognosis value and immune response in different risk groups were analyzed. Furthermore, functional enrichment annotation, therapeutic signature, and tumor mutation burden were performed to evaluate the risk model we established. Moreover, the expression level and clinical significance of the selected pyroptosis-related lncRNAs were further validated in BC samples. Results: 3,364 pyroptosis-related lncRNAs were identified using Pearson’s correlation analysis. The risk model we constructed comprised 10 pyroptosis-related lncRNAs, which was identified as an independent predictor of overall survival (OS) in BC. The nomogram we constructed based on the clinicopathologic features and risk model yielded favorable performance for prognosis prediction in BC. In terms of immune response and mutation status, patients in the low-risk group had a higher expression of immune checkpoint markers and exhibited higher fractions of activated immune cells, while the high-risk group had a highly percentage of TMB. Further analyses in our cohort BC samples found that RP11-459E5.1 was significantly upregulated, while RP11-1070N10.3 and RP11-817J15.3 were downregulated and significantly associated with worse OS. Conclusion: The risk model based on the pyroptosis-related lncRNAs we established may be a promising tool for predicting the prognosis and personalized therapeutic response in BC patients.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Weng
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yajie Yang
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - ZhiNong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: ZhiNong Jiang,
| |
Collapse
|